Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

I'm attempting to visualize temperature averages across a 2 dimentional space (e.g., a square plate) with fixed heat sources. The 3rd dimension (z axis) represents temperature.  I have created several visualizations but have questions about how these plots work.  The model is attached and the questions will make sense once you open the worksheet.

  1. Using the "colorscheme" option on a couple of matrixplots, I get the error "[Length of output exceeds limit of 1000000]" and the plot doesn't show.  However using the "display()" command on those same plots does render the plot.  Is there a way around this error (i.e., rendering the plot directly) or should I just suppress the error using a colon at the end of the plot statement and rely on display() to show the plot?
  2. I've created a heat map as one of the visualizations.  Is there a way to access the color values at each of the "cells" of the heat map? I would like to use these colors elsewhere in the model but I'm not sure if there is a way to access the color values.
  3. Using a 3D point plot as one of the visualization options, I use the colorschemes with options "xgradient", "ygradient", and "zgradient".  For some reason, "xgradient" and "ygradient" work as expected but "zgradient" looks the same as "ygradient".  How do I get the color transition to change along the z axis rather than only x and y axes?

Thank you for your help on these questions.

temperature_profile_(experimental)(v01).mw

restart;
alias(u = u(x, z, t), f = f(x, z, t));
                              u, f
u := (f+sqrt(R))*exp(I*R*x);
                    /     (1/2)\           
                    \f + R     / exp(I R x)
pde1 := I*(diff(u, z))+diff(u, x, x)+diff(u, t, t)+u*abs(u)*abs(u)-(u*abs(u)*abs(u))*abs(u)*abs(u);
    / d   \              / d  / d   \\           
  I |--- f| exp(I R x) + |--- |--- f|| exp(I R x)
    \ dz  /              \ dx \ dx  //           

           / d   \                /     (1/2)\  2           
     + 2 I |--- f| R exp(I R x) - \f + R     / R  exp(I R x)
           \ dx  /                                          

       / d  / d   \\           
     + |--- |--- f|| exp(I R x)
       \ dt \ dt  //           

                                                            2
       /     (1/2)\                           2 |     (1/2)| 
     + \f + R     / exp(I R x) (exp(-Im(R x)))  |f + R     | 

                                                            4
       /     (1/2)\                           4 |     (1/2)| 
     - \f + R     / exp(I R x) (exp(-Im(R x)))  |f + R     | 

simplify(%);
         / d   \              / d  / d   \\           
       I |--- f| exp(I R x) + |--- |--- f|| exp(I R x)
         \ dz  /              \ dx \ dx  //           

                / d   \                 2             
          + 2 I |--- f| R exp(I R x) - R  exp(I R x) f
                \ dx  /                               

             (5/2)              / d  / d   \\           
          - R      exp(I R x) + |--- |--- f|| exp(I R x)
                                \ dt \ dt  //           

                                               2  
                                   |     (1/2)|   
          + exp(I R x - 2 Im(R x)) |f + R     |  f

                                               2       
                                   |     (1/2)|   (1/2)
          + exp(I R x - 2 Im(R x)) |f + R     |  R     

                                               4  
                                   |     (1/2)|   
          - exp(I R x - 4 Im(R x)) |f + R     |  f

                                               4       
                                   |     (1/2)|   (1/2)
          - exp(I R x - 4 Im(R x)) |f + R     |  R     
collect(%, exp(I*R*x));
  /  (5/2)       / d   \      2       / d   \   / d  / d   \\
  |-R      + 2 I |--- f| R - R  f + I |--- f| + |--- |--- f||
  \              \ dx  /              \ dz  /   \ dx \ dx  //

       / d  / d   \\\           
     + |--- |--- f||| exp(I R x)
       \ dt \ dt  ///           

                                          2  
                              |     (1/2)|   
     + exp(I R x - 2 Im(R x)) |f + R     |  f

                                          2       
                              |     (1/2)|   (1/2)
     + exp(I R x - 2 Im(R x)) |f + R     |  R     

                                          4  
                              |     (1/2)|   
     - exp(I R x - 4 Im(R x)) |f + R     |  f

                                          4       
                              |     (1/2)|   (1/2)
     - exp(I R x - 4 Im(R x)) |f + R     |  R     
 

Please help with the bifurcation diagram for the system and parameter values below

NULL

with(VectorCalculus)

[`&x`, `*`, `+`, `-`, `.`, `<,>`, `<|>`, About, AddCoordinates, ArcLength, BasisFormat, Binormal, ConvertVector, CrossProduct, Curl, Curvature, D, Del, DirectionalDiff, Divergence, DotProduct, Flux, GetCoordinateParameters, GetCoordinates, GetNames, GetPVDescription, GetRootPoint, GetSpace, Gradient, Hessian, IsPositionVector, IsRootedVector, IsVectorField, Jacobian, Laplacian, LineInt, MapToBasis, Nabla, Norm, Normalize, PathInt, PlotPositionVector, PlotVector, PositionVector, PrincipalNormal, RadiusOfCurvature, RootedVector, ScalarPotential, SetCoordinateParameters, SetCoordinates, SpaceCurve, SurfaceInt, TNBFrame, TangentLine, TangentPlane, TangentVector, Torsion, Vector, VectorField, VectorPotential, VectorSpace, Wronskian, diff, eval, evalVF, int, limit, series]

(1)

interface(imaginaryunit = F)

I

(2)

M := Pi*theta-S*c__1-S*lambda+S__v*v__2

Pi*theta-S*c__1-S*lambda+S__v*v__2

(3)

Y := -S__v*c__2*lambda+Pi*b__1+S*v__1-S__v*c__3

-S__v*c__2*lambda+Pi*b__1+S*v__1-S__v*c__3

(4)

P := S__v*alpha+`&rho;__A`*A+c__4*`&rho;__Q`*Q+I*`&rho;__I`-µ*V

Q*c__4*rho__Q+A*rho__A+I*rho__I+S__v*alpha-V*µ

(5)

R := S__v*c__2*lambda-E*c__5+S*lambda

S__v*c__2*lambda-E*c__5+S*lambda

(6)

U := E*a*delta+Q*k*`&rho;__Q`-A*c__6

E*a*delta+Q*k*rho__Q-A*c__6

(7)

L := c__7*E-I*c__8

E*c__7-I*c__8

(8)

X := q__E*E+I*q__I-c__9*Q

E*q__E+I*q__I-Q*c__9

(9)

solve({L = 0, M = 0, P = 0, R = 0, U = 0, X = 0, Y = 0}, {I, A, E, Q, S, S__v, V})

{A = (a*c__8*c__9*delta+c__7*k*q__I*rho__Q+c__8*k*q__E*rho__Q)*lambda*Pi*(b__1*c__1*c__2+b__1*c__2*lambda+c__2*lambda*theta+c__2*theta*v__1+b__1*v__2+c__3*theta)/(c__6*c__9*c__5*c__8*(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2)), E = lambda*Pi*(b__1*c__1*c__2+b__1*c__2*lambda+c__2*lambda*theta+c__2*theta*v__1+b__1*v__2+c__3*theta)/(c__5*(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2)), I = c__7*lambda*Pi*(b__1*c__1*c__2+b__1*c__2*lambda+c__2*lambda*theta+c__2*theta*v__1+b__1*v__2+c__3*theta)/(c__5*c__8*(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2)), Q = (c__7*q__I+c__8*q__E)*lambda*Pi*(b__1*c__1*c__2+b__1*c__2*lambda+c__2*lambda*theta+c__2*theta*v__1+b__1*v__2+c__3*theta)/(c__9*c__5*c__8*(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2)), S = Pi*(c__2*lambda*theta+b__1*v__2+c__3*theta)/(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2), S__v = Pi*(b__1*c__1+b__1*lambda+theta*v__1)/(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2), V = Pi*(a*b__1*c__1*c__2*c__8*c__9*delta*lambda*rho__A+a*b__1*c__2*c__8*c__9*delta*lambda^2*rho__A+a*c__2*c__8*c__9*delta*lambda^2*rho__A*theta+a*c__2*c__8*c__9*delta*lambda*rho__A*theta*v__1+b__1*c__1*c__2*c__4*c__6*c__7*lambda*q__I*rho__Q+b__1*c__1*c__2*c__4*c__6*c__8*lambda*q__E*rho__Q+b__1*c__1*c__2*c__7*k*lambda*q__I*rho__A*rho__Q+b__1*c__1*c__2*c__8*k*lambda*q__E*rho__A*rho__Q+b__1*c__2*c__4*c__6*c__7*lambda^2*q__I*rho__Q+b__1*c__2*c__4*c__6*c__8*lambda^2*q__E*rho__Q+b__1*c__2*c__7*k*lambda^2*q__I*rho__A*rho__Q+b__1*c__2*c__8*k*lambda^2*q__E*rho__A*rho__Q+c__2*c__4*c__6*c__7*lambda^2*q__I*rho__Q*theta+c__2*c__4*c__6*c__7*lambda*q__I*rho__Q*theta*v__1+c__2*c__4*c__6*c__8*lambda^2*q__E*rho__Q*theta+c__2*c__4*c__6*c__8*lambda*q__E*rho__Q*theta*v__1+c__2*c__7*k*lambda^2*q__I*rho__A*rho__Q*theta+c__2*c__7*k*lambda*q__I*rho__A*rho__Q*theta*v__1+c__2*c__8*k*lambda^2*q__E*rho__A*rho__Q*theta+c__2*c__8*k*lambda*q__E*rho__A*rho__Q*theta*v__1+a*b__1*c__8*c__9*delta*lambda*rho__A*v__2+a*c__3*c__8*c__9*delta*lambda*rho__A*theta+b__1*c__1*c__2*c__6*c__7*c__9*lambda*rho__I+b__1*c__2*c__6*c__7*c__9*lambda^2*rho__I+b__1*c__4*c__6*c__7*lambda*q__I*rho__Q*v__2+b__1*c__4*c__6*c__8*lambda*q__E*rho__Q*v__2+b__1*c__7*k*lambda*q__I*rho__A*rho__Q*v__2+b__1*c__8*k*lambda*q__E*rho__A*rho__Q*v__2+c__2*c__6*c__7*c__9*lambda^2*rho__I*theta+c__2*c__6*c__7*c__9*lambda*rho__I*theta*v__1+c__3*c__4*c__6*c__7*lambda*q__I*rho__Q*theta+c__3*c__4*c__6*c__8*lambda*q__E*rho__Q*theta+c__3*c__7*k*lambda*q__I*rho__A*rho__Q*theta+c__3*c__8*k*lambda*q__E*rho__A*rho__Q*theta+alpha*b__1*c__1*c__5*c__6*c__8*c__9+alpha*b__1*c__5*c__6*c__8*c__9*lambda+alpha*c__5*c__6*c__8*c__9*theta*v__1+b__1*c__6*c__7*c__9*lambda*rho__I*v__2+c__3*c__6*c__7*c__9*lambda*rho__I*theta)/(c__5*c__6*c__8*c__9*µ*(c__1*c__2*lambda+c__2*lambda^2+c__1*c__3+c__3*lambda-v__1*v__2))}

(10)

``

lambda := beta*(I+`&eta;__A`*A+`&eta;__Q`*Q)/N

beta*(I+eta__A*A+eta__Q*Q)/N

(11)

``

NULL

k := .15

.15

(12)

delta := .125

.125

(13)

mu := 0.464360344e-4

0.464360344e-4

(14)

pi := .464360344

.464360344

(15)

delta__Q := 0.6847e-3

0.6847e-3

(16)

beta := .1086

.1086

(17)

q__E := 0.18113e-3

0.18113e-3

(18)

rho__Q := 0.815e-1

0.815e-1

(19)

a := .16255

.16255

(20)

v__1 := 0.5e-1

0.5e-1

(21)

v__2 := 0.5e-1

0.5e-1

(22)

alpha := 0.57e-1

0.57e-1

(23)

lambda := 0.765e-2

0.765e-2

(24)

rho__A := 0.915e-1

0.915e-1

(25)

rho__I := 0.515e-1

0.515e-1

(26)

a := .16255

.16255

(27)

q__I := 0.1923e-2

0.1923e-2

(28)

q__A := 0.4013e-7

0.4013e-7

(29)

eta__A := .1213

.1213

(30)

eta__Q := 0.3808e-2

0.3808e-2

(31)

w := .5925

.5925

(32)

Download Bifurcation_Equation.mw

Hello,

Can we impliment Artificial Neural Network for nonlinear coupled ODE equation with boundary conditions.? In maple

I wont seen any post regarding ANN in mapleprime.

Maple code for solving system of ODE using forward-backward sweep method.

Streamlines, isotherms and microrotations for Re = 1, Pr = 7.2, Gr = 105 and (a) Ha = 0 (b) Ha = 30 (c) Ha = 60 (d) Ha = 100.

 

Fig. 2

for Ra = 105Ha = 50, Pr = 0.025 and θ = 1 − Y

 

 

eqat := {M . (D(theta))(0)+2.*Pr . f(0) = 0, diff(phi(eta), eta, eta)+2.*Sc . f(eta) . (diff(phi(eta), eta))-(1/2)*S . Sc . eta . (diff(phi(eta), eta))+N[t]/N[b] . (diff(theta(eta), eta, eta)) = 0, diff(g(eta), eta, eta)-2.*(diff(f(eta), eta)) . g(eta)+2.*f(eta) . (diff(g(eta), eta))-S . (g(eta)+(1/2)*eta . (diff(g(eta), eta)))-1/(sigma . Re[r]) . ((1+d^%H . exp(-eta))/(1+d . exp(-eta))) . g(eta)-beta^%H . ((1+d^%H . exp(-eta))^2/sqrt(1+d . exp(-eta))) . g(eta) . sqrt((diff(f(eta), eta))^2+g(eta)^2) = 0, diff(theta(eta), eta, eta)+2.*Pr . f(eta) . (diff(theta(eta), eta))-(1/2)*S . Pr . eta . (diff(theta(eta), eta))+N[b] . Pr . ((diff(theta(eta), eta)) . (diff(phi(eta), eta)))+N[t] . Pr . ((diff(theta(eta), eta))^2)+4/3 . N . (diff((C[T]+theta(eta))^3 . (diff(theta(eta), eta)), eta)) = 0, diff(f(eta), eta, eta, eta)-(diff(f(eta), eta))^2+2.*f(eta) . (diff(f(eta), eta))+g(eta)^2-S . (diff(f(eta), eta)+(1/2)*eta . (diff(f(eta), eta, eta)))-1/(sigma . Re[r]) . ((1+d^%H . exp(-eta))/(1+d . exp(-eta))) . (diff(f(eta), eta))-beta^%H . ((1+d^%H . exp(-eta))^2/sqrt(1+d . exp(-eta))) . (diff(f(eta), eta)) . sqrt((diff(f(eta), eta))^2+g(eta)^2) = 0, g(0) = 1, g(6) = 0, phi(0) = 1, phi(6) = 0, theta(0) = 1, theta(6) = 0, (D(f))(0) = 1, (D(f))(6) = 0};
sys1 := eval(eqat, {M = 0, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .2, d^%H = 1.5});
sys2 := eval(eqat, {M = 0, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .4, d^%H = 1.5});
sys3 := eval(eqat, {M = 0, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .6, d^%H = 1.5});
sys4 := eval(eqat, {M = 0, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .8, d^%H = 1.5});
sys5 := eval(eqat, {M = .5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .2, d^%H = 1.5});
sys6 := eval(eqat, {M = .5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .4, d^%H = 1.5});
sys7 := eval(eqat, {M = .5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .6, d^%H = 1.5});
sys8 := eval(eqat, {M = .5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .8, d^%H = 1.5});
sys9 := eval(eqat, {M = 1, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .2, d^%H = 1.5});
sys10 := eval(eqat, {M = 1, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .4, d^%H = 1.5});
sys11 := eval(eqat, {M = 1, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .6, d^%H = 1.5});
sys12 := eval(eqat, {M = 1, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .8, d^%H = 1.5});
sys13 := eval(eqat, {M = 1.5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .2, d^%H = 1.5});
sys14 := eval(eqat, {M = 1.5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .4, d^%H = 1.5});
sys15 := eval(eqat, {M = 1.5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .6, d^%H = 1.5});
sys16 := eval(eqat, {M = 1.5, N = 2, Pr = .8, S = -2.5, Sc = .5, d = 2, sigma = .2, C[T] = .5, N[b] = .4, N[t] = .4, Re[r] = 1.1, beta^%H = .8, d^%H = 1.5});
 

restart;

OdeSys := diff(U(Y), Y, Y)+Theta(Y)+N*(Theta(Y)*Theta(Y))-(M*M)*U(Y) = 0, diff(Theta(Y), Y, Y)+E*(diff(U(Y), Y))^2 = 0;

Cond := U(0) = lambda*(D(U))(0), Theta(0) = A+g*(D(Theta))(0), U(1) = 0, Theta(1) = B; sys := [OdeSys, Cond];
Ans := dsolve(sys);

Hi,

I want to solve system of PDE equations by maple and i dont know how can i write it codes that can solve them for me. Can you create the code for the equation

Thank you

Good day,
 

1. Please I need your greatest help. Can anyone please help me to run the examples on the attached papers on Maple software?

 2. Also help me to plot the graphs along with the exact solution

 3. If possible with tables

 I tried but did not get the results as expected. I shall be very grateful if I can get assistance from you

 

Thanks
 

Dear all,

consider two lists of complex values :

list1 := [l1,l2,l3,l4,l5]

list2 := [s1,s2,s3,s4,s5].

There is a set of second order differential equation

d^2u(k)/dt^2+I*A*du/dt-B*u=0

where A is sum of elements of list1 and list2 and B is multiplication of their element. Therefore,

d^2u[1](k)/dt^2+I*(l1+s1)*du[1]/dt-(l1*s1)*u[1]=0

d^2u[2](k)/dt^2+I*(l2+s2)*du[2]/dt-(l2*s2)*u[2]=0

d^2u[3](k)/dt^2+I*(l3+s3)*du[3]/dt-(l3*s3)*u[3]=0

d^2u[4](k)/dt^2+I*(l4+s4)*du[4]/dt-(l4*s4)*u[4]=0

d^2u[5](k)/dt^2+I*(l5+s5)*du[5]/dt-(l5*s5)*u[5]=0

How can I create a set of differential equations and initial conditions based on nops(list1), then solve this system of differential equations numerically in Maple.

since u[i] are function of k, next step is to transforme them to real space by inverse fourier transform.

finally save the results and plot them.

Note that for simplisity I wrote a linear equation but it is not. so, because of nonlinear terms it is not possible to use superposition of the solution. I have to take them as coupled system of equations.

====

for example

list1 := [ [0., -5.496799068*10^(-15)-0.*I], [.1, 5.201897725*10^(-16)-1.188994754*I], [.2, 6.924043163*10^(-17)-4.747763855*I], [.3, 2.297497722*10^(-17)-10.66272177*I], [.4, 1.159126178*10^(-17)-18.96299588*I] ] 

list2 :=[ [0., -8.634351786*10^(-7)-67.81404036*I], [.1, -0.7387644021e-5-67.76491234*I], [.2, -0.1433025271e-4-67.59922295*I], [.3, -0.2231598645e-4-67.25152449*I], [.4, -0.3280855430e-4-66.56357035*I] ]

where first element is k and the second value is l_i and s_i

the differential equation is

ode_u[i]:= diff(u[i](t),t$2)+I*(list1[i][2]+list2[i][2])*diff(u[i](t),t)-list1[1][2]*list2[2][2]*u[i](t)=0;

eta is in fourier space where k values are in list1[i][1].

We laso know that f(-k)= - f*(k) where f=list[i][2]

and u[i] as function of k, initially has a Gaussian shape at t=0 in fourier space..

Thanks in advance for your help

Good day. 

I have been looking into the time series features in Maple and was eager to apply the models to one specific example containing 47 data points (attached).

When I run the ESM routine, Maple provides a forecast based on a (A,N,N) configuration. You will notice that the forecast for the following 12 data points is a constant value. I have also noticed this for several other data set examples and I would have expected the predictions to vary across the next 12 data points.

Does the (A,N,N) configuration in Maple automatically provide an optimal forecast and can anyone advise me on how to specify all possible combinations of (error, trend, season) models?

Thanks you for reading.

MaplePrimes_TS_Example.mw


Hi !

Looks like there is a bug in the inert "Diff" command.

I have Maple 2018 on Windows 10 ,64 bits.

Does Maple consider Diff(f(x),x) to be equal to Diff(f(x),[x]) ?

It should be the same.

Maple displays  that it is equal but keeps in memory something else.

In the attached file, I give a very simple example.

I don't like to say this but my old version of Maple V Release V (1997) is more consistent i.e.

this version shows it's different and  keeps in memory that difference.

diff-problem.mw

 

I wonder if newer versions have this problem ?


Best regards !

Hii!!

I need your help in state space system.... kindly guide me how to solve State Space system in maplesoft.....i excecute the command but i didn't find the answer....can you plz help me?I have been trying for two weeks now but it is not working.Thank you!!

How to plot this equation with explore or animation

E[1]:=Sum((GAMMA(((beta+1)n-gamma(nu-1))+k))/(GAMMA(((beta+1)n-gamma(nu-1)))*GAMMA(rho*k + (nu(1-mu)+mu(2 n+1))))*((omega*t^(p))^(k))/(k!),k=0..5);  E[2] :=Sum((GAMMA((gamma(n+1)-beta *n)+k))/(GAMMA((gamma(n+1)-beta *n))*GAMMA(rho*k + (mu(2 n+1))))*((omega*t^(p))^(k))/(k!),k=0..5);    y(p):=Sum(c*gamma^(n)*t^(nu*(1-mu)+mu+2*mu*n-1)*E[1]+gamma^(n)t^(mu(2 n+1)-1)*E[2]*g, n=0..5);

with the conditions

mu, nu \in (0, 1); omega \in R; rho > 0; gamma, beta > or = 0; c & g are constant

I want to arrange this equation in term of powers of x and then plot the  real and imagenery part of x vs y. How can I do this with Maple?
1-alpha*((1/x^2)+(1/(x-y)^2)+(1/(x+ay)^2))=0;

1.mw     (alpha and a are constant, for example alpha=1 and a=0.3)

1 2 3 4 5 6 7 Last Page 2 of 62