Maple 2024 Questions and Posts

These are Posts and Questions associated with the product, Maple 2024

i did plot without reducing the decimal but when i reduce to 2 decimal this error is showing up How i fix this issue?
plot.mw

I occasionally find myself inexplicably in a region of my worksheet that does not respond to my editing, fe.g., I cannot erae or I cannot copy. I recently typed a command-there was an error of some form and I tried unsuccessfully to edit it. Then I tried to copy the code and enter it at a prompt. It refused to enter it at the prompt but copied it below the prompt in a strnge region that I do not understand. When I retyped the command at a prompt it worked fine. I do not understand th dead regions that pop up mysteriously. (I am using Maple 2024 on a Mac) The page is too long to copy but I could upload it if given directions.

in this equation we have a list of a lot paramter which i have to find it but in prgress to find it some issue are appear i don't know how many term i have to replacing by algsubs there is any way for showing that something like lpring just for factoring and replacing if we did something like that in one step we can replacing all and then find our parameter there is any way for finding parameter like that?

Download pro.mw

in this integral PDE author did a substitution and the integral is simplify and removing how i can do that as mention in picture i did try but i think need a technique

Download int.mw

All three expressions define the same initial velocity condition in different notations.
ic1 := u(x, 0) = f, D[2](u)(x, 0) = g
ic2 := u(x, 0) = f, diff(u(x, 0), t) = g;
ic3 := u(x, 0) = f, u__t(x, 0) = g;  

Why does only ic1 work while ic2 and ic3 do not? Should I use another way?

wave_equation_1D.mw

Working on updating a very large and out of date guidebook and I need the content of execution cells to be 'Text' for illustrative purposes. It's tedious to constantly have to hit F5 for every, single, new, cell as I'm working through this. Is there a way I can just have the default style be 'Text' instead of 'Math'?  I can't seem to find that as an option anywhere.

Ctrl-j/k work fine for inserting a new execution prompt, why doesn't there seem to be a short cut for a new text prompt?  Ctrl+shift+j/k just enters a new line in the current execution prompt.  I'm on Linux using Maplesoft 2024.

I'm doing something wrong again in the attached file. Please advise.

test.mw

Is it possible to reduce the space between the plot title and the 3dplot in the attached file?

Plot_title_too_high.mw

This is problem from INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014 ,  Chapter 2. First Order Equations. Exercises 2.4, page 57, problem 39

Maple 2024.2 can't solve it. But solution is arctan(t)-t*y(t)^2 = 0 which Maple verifies correct

restart;

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1848 and is the same as the version installed in this computer, created 2025, March 11, 16:9 hours Pacific Time.`

restart;

ode:=(1/(1+t^2)-y(t)^2)-(2*t*y(t))*diff(y(t),t)=0;
IC:=y(0)=0;

1/(t^2+1)-y(t)^2-2*t*y(t)*(diff(y(t), t)) = 0

y(0) = 0

sol:=dsolve([ode,IC])

mysol:=arctan(t)-t*y(t)^2 = 0;

arctan(t)-y(t)^2*t = 0

odetest(mysol,[ode,IC])

[0, 0]

 

 

Download can_not_dsolve_march_12_2025.mw

Any one has suggestion how to help dsolve find this solution?

Hey guys, 

I am solving many systems of polynomial equations. Sometimes I get the same solution, just in a diffrent are, so for example the first solution is for y between 0 and 1 and the second solution is for y between 1 and 2. So now I want to take those solutions intervals and combine them so I can make one solution out of two. However I am struggeling with working with intervals in Maple. It is not that easy how I expected it to be.

I wrote an own program which works quite nice unless there is a single solution which would meen an interval like [1,1] meaning y=1working_with_intervals.mw

restart; sets := [{1 < y}, {y <= 1/2, 0 < y}, {1/2 < y, y < 1}]; intervals := [RealRange(Open(1), Open(infinity)), RealRange(Open(0), 1/2), RealRange(Open(1/2), Open(1))]; correct_form := [y::(RealRange(Open(1), Open(infinity))), y::(RealRange(Open(0), 1/2)), y::(RealRange(Open(1/2), Open(1)))]; Sol := solve(`~`[convert](Or(op(correct_form)), relation))

[{1 < y}, {y <= 1/2, 0 < y}, {1/2 < y, y < 1}]

 

[RealRange(Open(1), infinity), RealRange(Open(0), 1/2), RealRange(Open(1/2), Open(1))]

 

[y::(RealRange(Open(1), infinity)), y::(RealRange(Open(0), 1/2)), y::(RealRange(Open(1/2), Open(1)))]

 

RealRange(Open(0), Open(1)), RealRange(Open(1), infinity)

(1)

restart; sets := [{1}, {1 < y}, {y <= 1/2, 0 < y}, {1/2 < y, y < 1}]; intervals := [[1, 1], RealRange(Open(1), Open(infinity)), RealRange(Open(0), 1/2), RealRange(Open(1/2), Open(1))]; correct_form := [y::[1, 1], y::(RealRange(Open(1), Open(infinity))), y::(RealRange(Open(0), 1/2)), y::(RealRange(Open(1/2), Open(1)))]; Sol := solve(`~`[convert](Or(op(correct_form)), relation))

[{1}, {1 < y}, {y <= 1/2, 0 < y}, {1/2 < y, y < 1}]

 

[[1, 1], RealRange(Open(1), infinity), RealRange(Open(0), 1/2), RealRange(Open(1/2), Open(1))]

 

[y::[1, 1], y::(RealRange(Open(1), infinity)), y::(RealRange(Open(0), 1/2)), y::(RealRange(Open(1/2), Open(1)))]

 

RealRange(Open(0), Open(1)), RealRange(Open(1), infinity)

(2)
 

NULL

Download working_with_intervals.mw

In the attached file you can see my problem. When I add the intervall [1,1] the solution should become (0,infty), but it seems like Maple does not understand what I mean by [1,1], so the 1 is not part of the solution "Sol".

FYI: I wrote a program which is able to convert "sets" into "intervals" into "correct_form" using RealRange, but it is not necesarry for my problem. 

So my questions are: Why doesnt Maple recognize [1,1] as an interval containing only the 1? Is there a way I can rewrite the intervall so I can use it for the solve process in "Sol"? I also thought about making two diffrent sets with the same intervals than adding [1,2) to the one set and (1,2) to the other set and than make an intersection but I seems to be very complicated for a seemingly easy problem. Is there a easier way to work with intervals? 

Regards and thank you

Felix

i don't know where is issue?

p-not.mw

restart

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

t := 0

0

(1)

M := -(2*(-(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+((6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta)+(6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta)-(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)-(6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta*conjugate(a[1]+I*b[1]))-(6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta*(a[1]+I*b[1]))+(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta))*(a[2]+I*b[2])*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta)+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta)-(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp(conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta*conjugate(a[1]+I*b[1]))-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta*(a[1]+I*b[1]))+(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta))*conjugate(a[2]+I*b[2])*exp(conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(-(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+(6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta)+(6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta))*((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(-3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)+((alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))-((6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-((6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta)+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)+(36*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2))*((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(-3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)))/((alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta)+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)-(6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta*conjugate(a[1]+I*b[1]))-(6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta*(a[1]+I*b[1]))+(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta))*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta*conjugate(a[1]+I*b[1]))-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta*(a[1]+I*b[1]))+(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta))*exp(conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+((alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/((a[1]+I*b[1])*conjugate(a[1]+I*b[1]))-((6*(a[4]+I*b[4]))*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2*beta))*(alpha*t*(a[1]+I*b[1])-y*(a[1]+I*b[1])^2+beta*t-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-((6*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta)+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta))*(alpha*t*conjugate(a[1]+I*b[1])-y*conjugate(a[1]+I*b[1])^2+beta*t-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+(6*(a[1]+I*b[1]))*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2*beta)+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2)+(36*(a[4]+I*b[4]))*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-a[4]-I*b[4])^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/((a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2*beta^2*(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2))*((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(-3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*(-((a[2]+I*b[2])^2*(a[4]+I*b[4])+alpha*(a[4]+I*b[4])+beta)*t/(a[4]+I*b[4])+(a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(-(conjugate(a[2]+I*b[2])^2*conjugate(a[4]+I*b[4])+alpha*conjugate(a[4]+I*b[4])+beta)*t/conjugate(a[4]+I*b[4])+conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-(3*(a[2]+I*b[2]))*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-(2*(3*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])*(1/2)+beta))*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2))

NULL

lprint(indets(M,name));

{beta, x, y, a[1], a[2], a[3], a[4], b[1], b[2], b[3], b[4]}

 

G := proc(alpha,beta,a__1,a__2,a__3,a__4,b__1,b__2,b__3,b__4) global last; last := [[:-alpha=alpha, :-beta=beta, :-a[1]=a__1 , :-a[2]=a__2, :-a[3]=a__3,:-a[4]=a__4,:-b[1]=b__1,:-b[2]=b__2,:-b[3]=b__3,:-b[4]=b__4], eval(M, [:-alpha=alpha, :-beta=beta,:-a[1]=a__1,:-a[2]=a__2 ,:-a[3]=a__3,:-a[4]=a__4,:-b[1]=b__1,:-b[2]=b__2,:-b[3]=b__3,:-b[4]=b__4])]; plot3d(eval(M), y = -100 .. 100, x = -100 .. 100, view = -100 .. 100, grid = [150, 150], color = blue, style = surface, adaptmesh = false, size = [500, 500]); end proc;

proc (alpha, beta, a__1, a__2, a__3, a__4, b__1, b__2, b__3, b__4) global last; last := [[:-alpha = alpha, :-beta = beta, :-a[1] = a__1, :-a[2] = a__2, :-a[3] = a__3, :-a[4] = a__4, :-b[1] = b__1, :-b[2] = b__2, :-b[3] = b__3, :-b[4] = b__4], eval(M, [:-alpha = alpha, :-beta = beta, :-a[1] = a__1, :-a[2] = a__2, :-a[3] = a__3, :-a[4] = a__4, :-b[1] = b__1, :-b[2] = b__2, :-b[3] = b__3, :-b[4] = b__4])]; plot3d(eval(M), y = -100 .. 100, x = -100 .. 100, view = -100 .. 100, grid = [150, 150], color = blue, style = surface, adaptmesh = false, size = [500, 500]) end proc

(2)

last := 'last'; Explore(G(alpha, beta, a__1, a__2, a__3, a__4, b__1, b__2, b__3, b__4), alpha = -5.000000001 .. 5.000000001, beta = -5.000000001 .. 5.00000010, a__1 = -5.000000001 .. 5.00000010, a__2 = -5.000000001 .. 5.00000010, a__3 = -5.000000001 .. 5.00000010, a__4 = -5.000000001 .. 5.00000010, b__1 = -5.000000001 .. 5.00000010, b__2 = -5.000000001 .. 5.00000010, b__3 = -5.000000001 .. 5.00000010, b__4 = -5.000000001 .. 5.00000010, placement = right)

Warning, expecting only range variables [y, x] in expression -2*(-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2-6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta/conjugate(a[1]+I*b[1])-6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*(a[2]+I*b[2])*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta/conjugate(a[1]+I*b[1])-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*conjugate(a[2]+I*b[2])*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta+6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)+((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])-(6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta)*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2))/((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2-6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta/conjugate(a[1]+I*b[1])-6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta/conjugate(a[1]+I*b[1])-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])-(6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta)*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)) to be plotted but found names [beta, a[1], a[2], a[3], a[4], b[1], b[2], b[3], b[4]]

 

Warning, expecting only range variables [y, x] in expression -2*(-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2-6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta/conjugate(a[1]+I*b[1])-6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*(a[2]+I*b[2])*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1]))*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta/conjugate(a[1]+I*b[1])-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*conjugate(a[2]+I*b[2])*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+(-(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])-(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])+6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta+6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)+((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])-(6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta)*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2))/((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+(36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2-6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta/conjugate(a[1]+I*b[1])-6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3])+(36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2-6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta/conjugate(a[1]+I*b[1])-6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta/(a[1]+I*b[1])+(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta)*exp(conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))+((-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/(a[1]+I*b[1])/conjugate(a[1]+I*b[1])-(6*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2/beta)*(-y*(a[1]+I*b[1])^2-x*(a[1]+I*b[1]))/(a[1]+I*b[1])-(6*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta+6*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta)*(-y*conjugate(a[1]+I*b[1])^2-x*conjugate(a[1]+I*b[1]))/conjugate(a[1]+I*b[1])+6*(a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[1]+I*b[1]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[1]+I*b[1]))^2/beta+36*(a[4]+I*b[4])^2*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*conjugate(a[4]+I*b[4])*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(a[4]+I*b[4]+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-a[4]-I*b[4])^2+36*(a[4]+I*b[4])*(a[1]+I*b[1])*(a[4]+I*b[4]+a[1]+I*b[1])*conjugate(a[4]+I*b[4])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-a[4]-I*b[4])^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2+36*conjugate(a[4]+I*b[4])^2*(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+a[1]+I*b[1])*conjugate(a[1]+I*b[1])*(conjugate(a[4]+I*b[4])+conjugate(a[1]+I*b[1]))/(a[1]+I*b[1]-conjugate(a[4]+I*b[4]))^2/beta^2/(conjugate(a[1]+I*b[1])-conjugate(a[4]+I*b[4]))^2)*((-3*(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(-3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]-conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)*exp((a[2]+I*b[2])*((a[4]+I*b[4])*y+x)+a[3]+I*b[3]+conjugate(a[2]+I*b[2])*(conjugate(a[4]+I*b[4])*y+x)+conjugate(a[3]+I*b[3]))/((-3*(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*(a[4]+I*b[4])^2-2*(3/2*conjugate(a[2]+I*b[2])*(a[2]+I*b[2]+conjugate(a[2]+I*b[2]))*conjugate(a[4]+I*b[4])+beta)*conjugate(a[4]+I*b[4])*(a[4]+I*b[4])+beta*conjugate(a[4]+I*b[4])^2)) to be plotted but found names [beta, a[1], a[2], a[3], a[4], b[1], b[2], b[3], b[4]]

 

I am trying to set up a new tensor expression (r^hat is my unit vector):  

Can someone show me how to do it and/or point me to the right help page? 

The first part of the equation works but the rest does not. How do I get around the problem with the different indices? Another problem I have is that KroneckerDelta is no longer a tensor. Is there a way to define it as such?

with(Physics); Setup(mathematicalnotation = true)

with(Vectors)NULL

Setup(spacetimeindices = greek, spaceindices = lowercaselatin, su2indices = uppercaselatin, signature = `- - - +`, coordinates = cartesian)

[coordinatesystems = {X}, signature = `- - - +`, spaceindices = lowercaselatin, spacetimeindices = greek, su2indices = uppercaselatin]
````

(1)

Define(A[mu, a] = (1-fA(r))/(g*r)*(LeviCivita[a, nu, mu, 4]*X[nu]/r))

{R, A[mu, a], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[a, b], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(2)

A[]

A[mu, a] = Matrix(%id = 36893490522608139428)

(3)

Define(V[mu, a] = (1-fA(r))/(g*r)*(LeviCivita[a, nu, mu, 4]*X[nu]/r)-fB(r)*(KroneckerDelta[i, j]-X[i]*X[j]/r^2)/gr+fC(r)*X[i]*X[j]/(gr*r^2))

Error, (in Physics:-Define) found different free indices in different operands of a sum; in operand 1: [], in operand 2: [i, j], in `+`(Physics:-KroneckerDelta[i,j],-Physics:-SpaceTimeVector[i](x,y,z,t)*Physics:-SpaceTimeVector[j](x,y,z,t)/r^2)

 

NULL

Download V_Tensor.mw

Hello everyone,

I have created a Maple worksheet titled "ΕΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ", designed to help my students prepare for their final exams as they qualify for university. This worksheet focuses on area calculations in plane geometry, using Maple to visualize and solve problems efficiently.

This worksheet is aimed at high school students preparing for university entrance exams, as well as teachers who want to integrate Maple into their teaching.

I would love to hear your thoughts and feedback!

Have you used Maple for similar exam preparation?
εμβαδόν_χωρίου.mw

I believe I found I bug.

The 'next' statement for loop control will not work in 2D Input but it does in Code Edit Region.

From the documentation on 'next', I copied the following code into a 2D input in a document. 

Running it results in Error, invalid expression for eval; id=54 which is a missing help page.

for i to 4 do
    for j to 4 do
       print([i, j]);
         if i = j then next i;
        end if;
   end do;
end do

However 'next' without a following integer/name works fine in both 2D Input and Code Edit Region.

So is there only a subset of Maple code that will work in 2D Input?

First 6 7 8 9 10 11 12 Last Page 8 of 43