Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

The issue arises from solving the following ODEs in Maple (where a is a suitable real parameter): 

ode__1 := a*(diff(y(x), x) + 1)^2 + (y(x) - x)^2*diff(y(x), x) = 0: # dsolve(ode__1);
ode__4 := a*(x*diff(y(x), x) + y(x))^2 - (y(x) + x)^2*diff(y(x), x) = 0: # dsolve(ode__4);

However, dsolve cannot give fully simplified solutions, so I have to compute these unevaluated integrals (i.e., expr1) manually: (For the sake of completeness, I list some related ODEs below.) 
 

restart;

ode__1 := a*(diff(y(x), x)+1)^2+(y(x)-x)^2*(diff(y(x), x)) = 0
ode__4 := a*(x*(diff(y(x), x))+y(x))^2-(y(x)+x)^2*(diff(y(x), x)) = 0

dsolve(ode__1, y(x), explicit)

expr__1 := convert(useInt(eval(selectfun([%], Intat), _Z = z)), list)

[Int(1/(z^2+(z^4+4*a*z^2)^(1/2)+4*a), z), Int(-1/(z^2-(z^4+4*a*z^2)^(1/2)+4*a), z)]

(1)

value(expr__1)

[(z^4+4*a*z^2)^(1/2)*((1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)+2*(-a)^(1/2)*ln(z+((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)-2*(-a)^(1/2)*ln(z+((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)-2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)^2*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2))*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z*(z^2+4*a)^(1/2))+(1/2)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))-(1/2)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(1/2))-4*a*(-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*a*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))-(1/8)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(3/2))), -(1/2)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))+(1/2)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(1/2))+(z^4+4*a*z^2)^(1/2)*((1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)+2*(-a)^(1/2)*ln(z+((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)-2*(-a)^(1/2)*ln(z+((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)-2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)^2*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2))*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z*(z^2+4*a)^(1/2))+4*a*(-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*a*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))-(1/8)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(3/2)))]

(2)

verify(diff([-z/(z^2+sqrt(z^2*(z^2+4*a))), z/(z^2-sqrt(z^2*(z^2+4*a)))], z), `~`[op](1, expr__1), simplify)

true

(3)

dsolve(ode__4, y(x), explicit)

expr__4 := convert(useInt(eval(selectfun([%], Intat), _Z = z)), list)

[Int((z^2-4*a*z+(-4*a*z^3+z^4-8*a*z^2+4*z^3-4*a*z+6*z^2+4*z+1)^(1/2)+2*z+1)/(z*(-4*a*z+z^2+2*z+1)), z), Int(-(z^2-4*a*z+2*z+1-((-4*a*z+z^2+2*z+1)*(z+1)^2)^(1/2))/(z*(-4*a*z+z^2+2*z+1)), z)]

(4)

value(expr__4)

[(-4*a*z^3+z^4-8*a*z^2+4*z^3-4*a*z+6*z^2+4*z+1)^(1/2)*(ln(z-2*a+1+(-4*a*z+z^2+2*z+1)^(1/2))+arctanh((2*a*z-z-1)/(-4*a*z+z^2+2*z+1)^(1/2)))/((z+1)*(-4*a*z+z^2+2*z+1)^(1/2))+ln(z), ((-4*a*z+z^2+2*z+1)*(z+1)^2)^(1/2)*(ln(z-2*a+1+(-4*a*z+z^2+2*z+1)^(1/2))+arctanh((2*a*z-z-1)/(-4*a*z+z^2+2*z+1)^(1/2)))/((z+1)*(-4*a*z+z^2+2*z+1)^(1/2))-ln(z)]

(5)

verify(diff([2*arctanh(sqrt((z+1)^2*(z*(z-2*(2*a-1))+1))/(z^2-1))+ln(z), 2*arctanh(sqrt((z+1)^2*(z*(z-2*(2*a-1))+1))/(z^2-1))-ln(z)], z), `~`[op](1, expr__4), simplify)

true

(6)

NULL


 

Download senseless_results_of_int.mw
 

restart;

ode__1 := a*(diff(y(x), x)+1)^2+(y(x)-x)^2*(diff(y(x), x)) = 0
ode__4 := a*(x*(diff(y(x), x))+y(x))^2-(y(x)+x)^2*(diff(y(x), x)) = 0

dsolve(ode__1, y(x), explicit)

expr__1 := convert(useInt(eval(selectfun([%], Intat), _Z = z)), list)

[Int(1/(z^2+(z^4+4*a*z^2)^(1/2)+4*a), z), Int(-1/(z^2-(z^4+4*a*z^2)^(1/2)+4*a), z)]

(1)

value(expr__1)

[(z^4+4*a*z^2)^(1/2)*((1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)+2*(-a)^(1/2)*ln(z+((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)-2*(-a)^(1/2)*ln(z+((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)-2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)^2*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2))*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z*(z^2+4*a)^(1/2))+(1/2)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))-(1/2)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(1/2))-4*a*(-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*a*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))-(1/8)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(3/2))), -(1/2)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))+(1/2)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(1/2))+(z^4+4*a*z^2)^(1/2)*((1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)+2*(-a)^(1/2)*ln(z+((z-2*(-a)^(1/2))^2+4*(-a)^(1/2)*(z-2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)*(((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)-2*(-a)^(1/2)*ln(z+((z+2*(-a)^(1/2))^2-4*(-a)^(1/2)*(z+2*(-a)^(1/2)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))+(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)-2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^2-4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2)))-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)^2*(((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*ln(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)-2*(z^4+4*a*z^2)*a*ln((8*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)*((z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))^2+4*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)*(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1))/((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)+4*(z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2))/(z+2*(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)/(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*((z^4+4*a*z^2)*a/(z^2*(z^2+4*a)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)))^(1/2)))/((-(-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)+(-a)^(1/2))*((-a)^(1/2)*(z^4+4*a*z^2)/(z^2*(z^2+4*a))+(a*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))-1)*((z^4+4*a*z^2)^(1/2)/(z*(z^2+4*a)^(1/2))+1))^(1/2)-(-a)^(1/2))*(-(z^4+4*a*z^2)/(z^2*(z^2+4*a))+1)))/(z*(z^2+4*a)^(1/2))+4*a*(-(1/8)*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)*z^2*(z^2+4*a)*arctanh((1/2)*z*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1)/(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))/((z^4+4*a*z^2)*a*(a*((z^4+4*a*z^2)/(z^2*(z^2+4*a))-1))^(1/2))-(1/8)*z^2*(z^2+4*a)*arctan((1/2)*z/a^(1/2))/((z^4+4*a*z^2)*a^(3/2)))]

(2)

verify(diff([-z/(z^2+sqrt(z^2*(z^2+4*a))), z/(z^2-sqrt(z^2*(z^2+4*a)))], z), `~`[op](1, expr__1), simplify)

true

(3)

dsolve(ode__4, y(x), explicit)

expr__4 := convert(useInt(eval(selectfun([%], Intat), _Z = z)), list)

[Int((z^2-4*a*z+(-4*a*z^3+z^4-8*a*z^2+4*z^3-4*a*z+6*z^2+4*z+1)^(1/2)+2*z+1)/(z*(-4*a*z+z^2+2*z+1)), z), Int(-(z^2-4*a*z+2*z+1-((-4*a*z+z^2+2*z+1)*(z+1)^2)^(1/2))/(z*(-4*a*z+z^2+2*z+1)), z)]

(4)

value(expr__4)

[(-4*a*z^3+z^4-8*a*z^2+4*z^3-4*a*z+6*z^2+4*z+1)^(1/2)*(ln(z-2*a+1+(-4*a*z+z^2+2*z+1)^(1/2))+arctanh((2*a*z-z-1)/(-4*a*z+z^2+2*z+1)^(1/2)))/((z+1)*(-4*a*z+z^2+2*z+1)^(1/2))+ln(z), ((-4*a*z+z^2+2*z+1)*(z+1)^2)^(1/2)*(ln(z-2*a+1+(-4*a*z+z^2+2*z+1)^(1/2))+arctanh((2*a*z-z-1)/(-4*a*z+z^2+2*z+1)^(1/2)))/((z+1)*(-4*a*z+z^2+2*z+1)^(1/2))-ln(z)]

(5)

verify(diff([2*arctanh(sqrt((z+1)^2*(z*(z-2*(2*a-1))+1))/(z^2-1))+ln(z), 2*arctanh(sqrt((z+1)^2*(z*(z-2*(2*a-1))+1))/(z^2-1))-ln(z)], z), `~`[op](1, expr__4), simplify)

true

(6)

NULL


 

Download senseless_results_of_int.mw

 

As you can see, the lengthy output of is nearly meaningless! (And if you want to simplify it, Maple will simply return: Error, (in simplify/recurse) indeterminate expression of the form 0/0.) So, how do I get the simplified results in Maple?
The integrals are: 

expr__1 := [Int(1/(z^2 + sqrt(z^4 + 4*a*z^2) + 4*a), z), Int(-1/(z^2 - sqrt(z^4 + 4*a*z^2) + 4*a), z)]: # (value(expr__1));
expr__4 := [Int((z^2 - 4*a*z + sqrt(-4*a*z^3 + z^4 - 8*a*z^2 + 4*z^3 - 4*a*z + 6*z^2 + 4*z + 1) + 2*z + 1)/(z*(-4*a*z + z^2 + 2*z + 1)), z), Int(-(z^2 - 4*a*z + 2*z + 1 - sqrt((-4*a*z + z^2 + 2*z + 1)*(z + 1)^2))/(z*(-4*a*z + z^2 + 2*z + 1)), z)]: # (value(expr__4)):

Note. By the way, Mma can solve the original ODEs directly and explicitly: 

In[1]:= DSolve[a*(y'[x]+1)^2+(y[x]-x)^2*y'[x]==0,y[x],x,IncludeSingularSolutions->Automatic]

                                   2                3                    2
                  a - x C[1] - C[1]             16 a  - 4 a x C[1] - C[1]
Out[1]= {{y[x] -> ------------------}, {y[x] -> --------------------------}}
                       x + C[1]                     4 a (4 a x + C[1])

In[2]:= DSolve[a*(x*y'[x]+y[x])^2-(y[x]+x)^2*y'[x]==0,y[x],x,IncludeSingularSolutions->Automatic]

                     2 a C[1]       2 a C[1]     2  2 a C[1]
                  a E         (-(a E        ) + a  E         + x)
Out[2]= {{y[x] -> -----------------------------------------------}, 
                                     2 a C[1]
                                  a E         - x
 
                2 a C[1]    2 a C[1]
               E         (-E         + 2 a x)
>    {y[x] -> --------------------------------}}
                    2 a C[1]              2
              2 a (E         - 2 a x + 2 a  x)

Unfortunately, Maple fails to do so.

(x^(3))^(1/3) doesn't simplify to x.  I am missing something.

The ODE is: 

eqn := y(x)*(2*x*diff(y(x), x) + y(x)*(diff(y(x), x)^2 - 1)) = -1: # How about another ODE 'lhs(eqn) = +1' ?

Maple can solve it, but I find that (to get all four solutions) I have to execute the dsolve command twice
 

restart;

eqn := y(x)*(2*x*(diff(y(x), x))+y(x)*((diff(y(x), x))^2-1)) = -1

dsolve(eqn, {y(x)}, 'parametric', 'singsol' = all)

y(x) = (c__1^2+2*c__1*x+1)^(1/2), y(x) = -(c__1^2+2*c__1*x+1)^(1/2)

(1)

dsolve(eqn, {y(x)}, 'singsol' = all)

y(x) = (-x^2+1)^(1/2), y(x) = -(-x^2+1)^(1/2), Int(-((_a^2+y(x)^2-1)^(1/2)*_a*y(x)^2-_a^2*y(x)^2-y(x)^4+2*_a^2+3*y(x)^2-2)/((y(x)^2+2*_a-2)*(-y(x)^2+2*_a+2)*(_a^2+y(x)^2-1)), _a = _b .. x)+Intat(-_f/(2*(_f^2+x^2-1)^(1/2)*x^2+(_f^2+x^2-1)^(1/2)*_f^2+2*x^3+2*x*_f^2-2*(_f^2+x^2-1)^(1/2)-2*x)-(Int(-(_a*_f^3/(_a^2+_f^2-1)^(1/2)+2*(_a^2+_f^2-1)^(1/2)*_a*_f-2*_a^2*_f-4*_f^3+6*_f)/((_f^2+2*_a-2)*(-_f^2+2*_a+2)*(_a^2+_f^2-1))+2*((_a^2+_f^2-1)^(1/2)*_a*_f^2-_a^2*_f^2-_f^4+2*_a^2+3*_f^2-2)*_f/((_f^2+2*_a-2)^2*(-_f^2+2*_a+2)*(_a^2+_f^2-1))-2*((_a^2+_f^2-1)^(1/2)*_a*_f^2-_a^2*_f^2-_f^4+2*_a^2+3*_f^2-2)*_f/((_f^2+2*_a-2)*(-_f^2+2*_a+2)^2*(_a^2+_f^2-1))+2*((_a^2+_f^2-1)^(1/2)*_a*_f^2-_a^2*_f^2-_f^4+2*_a^2+3*_f^2-2)*_f/((_f^2+2*_a-2)*(-_f^2+2*_a+2)*(_a^2+_f^2-1)^2), _a = _b .. x)), _f = y(x))+c__1 = 0, Int((_a^2*y(x)^2-2*_a^2+y(x)^4-3*y(x)^2+(_a^2+y(x)^2-1)^(1/2)*_a*y(x)^2+2)/((y(x)^2+2*_a-2)*(-y(x)^2+2*_a+2)*(_a^2+y(x)^2-1)), _a = _b .. x)+Intat(_f/(2*(_f^2+x^2-1)^(1/2)*x^2+(_f^2+x^2-1)^(1/2)*_f^2-2*x^3-2*x*_f^2-2*(_f^2+x^2-1)^(1/2)+2*x)-(Int((2*_a^2*_f+4*_f^3-6*_f+_a*_f^3/(_a^2+_f^2-1)^(1/2)+2*(_a^2+_f^2-1)^(1/2)*_a*_f)/((_f^2+2*_a-2)*(-_f^2+2*_a+2)*(_a^2+_f^2-1))-2*(_a^2*_f^2-2*_a^2+_f^4-3*_f^2+(_a^2+_f^2-1)^(1/2)*_a*_f^2+2)*_f/((_f^2+2*_a-2)^2*(-_f^2+2*_a+2)*(_a^2+_f^2-1))+2*(_a^2*_f^2-2*_a^2+_f^4-3*_f^2+(_a^2+_f^2-1)^(1/2)*_a*_f^2+2)*_f/((_f^2+2*_a-2)*(-_f^2+2*_a+2)^2*(_a^2+_f^2-1))-2*(_a^2*_f^2-2*_a^2+_f^4-3*_f^2+(_a^2+_f^2-1)^(1/2)*_a*_f^2+2)*_f/((_f^2+2*_a-2)*(-_f^2+2*_a+2)*(_a^2+_f^2-1)^2), _a = _b .. x)), _f = y(x))+c__1 = 0

(2)

NULL


 

Download dsolve_twice.mw

However, in MATLAB®, the complete solutions can be found just in one go

>> dsolve('y*(2*x*Dy + y*(Dy^2 - 1)) = -1', 'x') % require the Symbolic Math Toolbox™
ans =
                         1
                        -1
 -(-(x - 1)*(x + 1))^(1/2)
  (-(x - 1)*(x + 1))^(1/2)
 (C1^2 + 2*x*C1 + 1)^(1/2)
-(C1^2 + 2*x*C1 + 1)^(1/2)

Does anyone know why?

Ideally, I would like to find all roots of this RootOf expression for a given interval.

I tried defining a function from the argument of the RootOf expression and using fsolve to find solutions, but could not get all of them.

What I managed to do skips the interval, is not really elegant and raises additional questions.
I would be grateful for any hints and improvements.

RootOf(_Z*cos(_Z)-sqrt(sin(_Z)^2))

RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))

(1)

allvalues(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2)))

Error, (in RootOf/sort1) cannot numerically evaluate the argument

 

RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), index = i)

RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2), index = i)

(2)

evalf(subs(i = 3, RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2), index = i)))

RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2), index = 3)

(3)

evalf(RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 3))

-4.493409458

(4)

rt := ''RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), i)''

'RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), i)'

(5)

subs(i = 3, rt)

RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 3)

(6)

evalf(RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 3))

-4.493409458

(7)

seq(subs(i = k, rt), k = 1 .. 5)

RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 1), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 2), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 3), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 4), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 5)

(8)

evalf(%)

0., 0., -4.493409458, 4.913180439, 4.913180439

(9)

{-4.493409458, 0., 4.913180439}[]

-4.493409458, 0., 4.913180439

(10)

seq(evalf(subs(i = k, rt)), k = 1 .. 5)

Error, (in evalf/RootOf) numeric exception: division by zero

 

evalf(seq(subs(i = k, rt), k = 1 .. 5))

Error, (in evalf/RootOf) numeric exception: division by zero

 

NULL

seq(subs(i = k, rt), k = -5 .. 5)

RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), -5), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), -4), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), -3), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), -2), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), -1), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 0), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 1), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 2), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 3), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 4), RootOf(op(RootOf(_Z*cos(_Z)-(sin(_Z)^2)^(1/2))), 5)

(11)

evalf(%)

-4.493409458, -4.493409458, -2.028757845, -2.028757838, 4.913180439, 0., 0., 0., -4.493409458, 4.913180439, 4.913180439

(12)

NULL

NULL

Download RootOf_a_periodic_function.mw

Is there any setting that controls the extent of a plot?

Left hand plot has defined extent of the plot, while the plot on the right hand side has not. When panning the graphics on the right side the plot is clipped.

Any idea how to make Maple to use the whole extent of the plot component as a boundary?

Download plotpoint2.mw

restart;
with(plots);
with(plottools);
with(DEtools);
N := S(t) + In(t) + C(t);
                    N := S(t) + In(t) + C(t)

eqn1 := diff*(S(t), t) = lambda - (lambda + sigma)*S(t) - (beta + Zeta)*S(t)*In(t) - beta[1]*S(t)*C(t), S(0) = ic1;
 eqn1 := diff (S(t), t) = lambda - (lambda + sigma) S(t)

    - (beta + Zeta) S(t) In(t) - beta[1] S(t) C(t), S(0) = ic1


eqn2 := diff*(In(t), t) = beta*S(t)*In(t) - (lambda + gamma)*In(t), In(0) = ic2;
 eqn2 := 

   diff (In(t), t) = beta S(t) In(t) - (lambda + gamma) In(t), 

   In(0) = ic2


eqn3 := diff*(C(t), t) = Zeta*In(t) + Zeta*In(t)^2 - (rho + lambda)*C(t) - Zeta*C(t)*In(t), C(0) = ic3;
                                                     2
     eqn3 := diff (C(t), t) = Zeta In(t) + Zeta In(t) 

        - (rho + lambda) C(t) - Zeta C(t) In(t), C(0) = ic3


lambda := 0.117852;
                       lambda := 0.117852

mu := 0.035378;
                         mu := 0.035378

beta := 0.11;
                          beta := 0.11

beta__1 := 0.05;
                        beta__1 := 0.05

g := 1;
rho := 0.1;
                           rho := 0.1

zeta := 0.02;
                          zeta := 0.02

sigma := 0.066;
                         sigma := 0.066


ic1 := 2390000;
ic2 := 753;
ic4 := 358500;
                         ic1 := 2390000

                           ic2 := 753

                         ic4 := 358500

dsol := dsolve([eqn1, eqn2, eqn3], numeric);
Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations
 

Hi all, how to get radical of expression?

Example: sqrt(a*(a+b+c))/(a*b+a*c+b*c) is 2, (a*b+a*c+b*c)*((1/3)*a+(1/3)*b+(1/3)*c)^(1/3) is 3

Thanks

I have this tedious looking function that I want to write in terms of the other expression but the command i usually use does not work here because the expressions are not polynomials. I am wondering if there is an alternative to doing this manually.
Temp.mw

As an example, the second display in the web site below shows the 42 possible triangulations of a cyclic heptagon polygon.

https://en.wikipedia.org/wiki/Polygon_triangulation

I have a document with quite a few symbols saved to my favorites palette. When I close the file and then reopoen it the Favorites Palette has not changed-the symbols are right where I want them. However, if I open the file with another computer the Favorites Palette is empty! What is happening?  (The document is stored in Dropbox and both computers are Macs running Maple 2023.)

Say I have a data matrix with one dependent variable and 50 independent variable

The first column is the dependent variable columns my first row has header names of variables say.

Is their way to code such that I can do a Linear regression stepwise such that even interactions terms can be into account and check for a best fit.

As only matlab can do it easily as i  see and it is paid costly software.

If pssible any help kind help. 

If possible some code can be written in maple kind help.

I have some large systems of linear equations.  The solutions are probability generating functions.  I can get solutions in a few minutes for systems of up to n= 200 eqns or so, but Maple just cycles indefinitely if I try to solve much larger systems.  I really only need to perform Gaussian Elimination, as I only need to solve for one of the n solutions.  The matrices are sparse, there are only 3 non-zero entries per row.  I tried to get help from the manuals but I get the impression that sparse solutions are only available for numeric computations.   Doesn't Maple allow for sparse symbolic solutions?  If so, how to do it?

What is the correct way to plot objects which have been created by the geometry library.

e.g. circle, point, line, e.g.

restart; with(geometry)

point(B, 2, 0)

B

(1)

form(B)

point2d

(2)

coordinates(B)

[2, 0]

(3)

with(plots)

display(pointplot(B))

Error, (in plots:-pointplot) points are not in the correct format

 

NULL

Download plotpoint.mw

Hi everyone
how can i overcome this error to solve this ODE ? tnx in advanced.

restart

U := 1:L := 10:k := 1:Dea := 0.00001:CA0 := 10:Pe := U*L/Dea:Da := k*CA0^2/Dea:

Eq1 := diff(CA(x), x, x) - Pe*diff(CA(x), x)/L = Da*L*CA(x)^2/CA0;

diff(diff(CA(x), x), x)-100000.0000*(diff(CA(x), x)) = 10000000.00*CA(x)^2

(1)

BCs := CA(0) = CA0, D(CA)(L) = 0

CA(0) = 10, (D(CA))(10) = 0

(2)

ans := dsolve([Eq1, BCs], numeric);

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

 

 

Download Hw.mw

Hallo every body 

i have a question How can be written this system of eqautions without the variable "t"

thanks 

restart

``

eq10 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-Y(t)*alpha

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-Y(t)*alpha

(1)

eq11 := alpha*X(t)

alpha*X(t)

(2)

eq12 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-beta*U(t)

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-beta*U(t)

(3)

eq13 := beta*Z(t)

beta*Z(t)

(4)

eq14 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-W(t)

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))-W(t)

(5)

eq15 := V(t)

V(t)

(6)

eq16 := epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))

epsilon*F(-(V(t)*alpha^4*beta^2-V(t)*alpha^2*beta^4-S(t)*alpha^4*beta^2+S(t)*alpha^2*beta^4+X(t)*beta^4-Z(t)*alpha^4+S(t)*alpha^4-S(t)*beta^4-X(t)*beta^2+Z(t)*alpha^2-S(t)*alpha^2+S(t)*beta^2)/(alpha^2*(alpha^2-1)*(alpha^2-beta^2)*beta^2*(beta^2-1)), (W(t)*alpha^3*beta-W(t)*alpha*beta^3+Y(t)*beta^3-U(t)*alpha^3-Y(t)*beta+U(t)*alpha)/((alpha^2*beta^2-alpha^2-beta^2+1)*beta*alpha*(alpha^2-beta^2)), (X(t)*beta^2-Z(t)*alpha^2+V(t)*alpha^2-V(t)*beta^2-X(t)+Z(t))/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), -(Y(t)*alpha*beta^2-U(t)*alpha^2*beta+W(t)*alpha^2-W(t)*beta^2-Y(t)*alpha+beta*U(t))/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), -(X(t)*alpha^2*beta^2-Z(t)*alpha^2*beta^2-X(t)*alpha^2+beta^2*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)), (Y(t)*alpha^3*beta^2-U(t)*alpha^2*beta^3-Y(t)*alpha^3+beta^3*U(t)+W(t)*alpha^2-W(t)*beta^2)/((alpha^2-beta^2)*(alpha^2*beta^2-alpha^2-beta^2+1)), (X(t)*alpha^4*beta^2-Z(t)*alpha^2*beta^4-X(t)*alpha^4+beta^4*Z(t)+V(t)*alpha^2-V(t)*beta^2)/((alpha^2-beta^2)*(beta^2-1)*(alpha^2-1)))

(7)

``

Download problem.mw

First 204 205 206 207 208 209 210 Last Page 206 of 2218