Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

On the very first day of class, a student once told math educator Sam Densley: “Your class feels safe.”

Open classroom door with students inside

Honestly, I can’t think of a better compliment for a teacher. I reflected on this in a LinkedIn post, and I want to share those thoughts here too.

A Story of Struggle

I rarely admit this, because it still carries a sting of shame. In my role at Maplesoft, people often assume I was naturally good at math. The truth is, I wasn’t. I had to work hard, and I failed along the way.

In fact, I failed my very first engineering course, Fundamentals of Electrical Engineering. Not once, but twice. The third time, I finally earned an A.

That second failure nearly crushed me. The first time, I told myself I was just adjusting to university life. But failing again, while my friends all passed easily, left me feeling stupid, ashamed, and like I didn’t belong.

When I got the news, I called my father. He left work to meet me, and instead of offering empty reassurances, he did something unexpected: he told me about his own struggles in school, the courses he failed, the moments he nearly gave up. Here was someone I admired, a successful engineer, admitting that he had stumbled too.

In that moment, the weight lifted. I wasn’t dumb. I wasn’t alone.

That experience has stayed with me ever since: the shame, the anxiety, the voice in my head whispering “I’m not cut out for this.” But also the relief of realizing I wasn’t the only one. And that’s why I believe vulnerability is key.

When teachers open up, something powerful happens:

  • Students stop thinking they’re the only ones who feel lost.
  • They see that failure isn’t the end; it’s part of the process.
  • It gives students permission to be honest about their own struggles.

That’s how you chip away at math anxiety and help students believe: “I can do this too.”

Why Vulnerability Matters

Abstract metallic mask with mathematical symbols

I can’t recall a single teacher in my own schooling who openly acknowledged their academic struggles. Why is that?

We tell students that “struggle is normal,” but simply saying the words isn’t enough. Students need to see it in us.

When teachers hide their struggles, students assume they’re the only ones who falter. That’s when math anxiety takes root. But when teachers are vulnerable, the cycle breaks. Students realize that struggle doesn’t mean they’re “bad at math.” It means they’re learning. Vulnerability builds trust, and trust is the foundation of a safe classroom.

What I Hear from Instructors

In my work at Maplesoft, I often hear instructors say: “Students don’t come to office hours — I wish they did.”

And I get it. Sometimes students are too anxious or hesitant to ask for help, even when a teacher makes it clear they’re available. That’s one of the reasons we built the Student Success Platform. It gives instructors a way to see where students are struggling without calling anyone out. Even if students stay silent, their struggles don’t stay invisible.

But tools can only go so far. They can reveal where students need support and even help illuminate concepts in new ways. What they can’t do is replace a teacher. Real learning happens when students feel safe, and that safety comes from trust. Trust isn’t built on flawless lectures or perfect answers. It grows when teachers are willing to be human, willing to admit they’ve struggled too.

That’s when students believe you mean it. And that’s when they’re more likely to walk through the door and ask for help.

The Real Lesson

Ultimately, what matters most in the classroom, whether in mathematics or any other subject, isn’t perfection. It’s effort.

As a new school year begins, it’s worth remembering:

  • Students don’t just need formulas.
  • They need to know struggle is normal.
  • They need to know questions are welcome.
  • They need to know the classroom is safe enough to try.

Because long after they move on, that’s what they’ll remember: not just what they learned, but how they felt.

I test a lot of them but some of them make a problem i  don't know i am do it in wrong way or the author did wrong i need verifying thus solution of odes specially in case 4 when we have not equal sign how use that?

and case 5 is Weierstrass elliptic function which i don't know how set up and use i think is a on kinf of odes but why they use that sign for this function?

ode-17.mw


I'm struggling to construct a statistical Distribution involving Product.
This is likely a question of delayed evaluation but I'm not capable to fix it.
Can you please look to this  Product_error.mw  worksheet  and help me fixing the issue?

Thanks in advance

Hi,

I’m having fun animating a beautiful geometric shape starting from a few trigonometric functions. I’m wondering if there’s a way to link each curve in the animation to its name.

restart

plots:-animatecurve([sin(x), sin(x)^2, sin(x)^3, sin(x)^4, sin(x)^5, sin(x)^6, surd(sin(x), 2), surd(sin(x), 3), surd(sin(x), 4), surd(sin(x), 5), surd(sin(x), 6)], x = 0 .. Pi, thickness = 2.5, background = "AliceBlue", labels = ["", ""], size = [800, 800])

 

plot([sin(x), sin(x)^2, sin(x)^3, sin(x)^4, sin(x)^5, sin(x)^6, surd(sin(x), 2), surd(sin(x), 3), surd(sin(x), 4), surd(sin(x), 5), surd(sin(x), 6)], x = 0 .. Pi, thickness = 2.5)

 

NULL

Download Animation_Trigo.mw

How to get amultiple line plots in one graph for differnt values of E1 := .1,0.2,0.3,and 0.4 with differnt color line red,blue,black and green and how to get numerical values for the all E1 value in one matrix form 

at E1=0.1 value of diff(g(x), x, x), diff(f(x), x, x),diff(f(x), x) and diff(g(x),  x).

AGM_method_single_line_plot.mw

I recently upgraded from Maple 23 to Maple 24. While many display issues have been resolved, I’ve encountered a new real problem: when entering operations or a factorial in a denominator or exponent, the cursor unexpectedly jumps to the inline position. This forces me to manually reposition the cursor using backspace plus left-arrow keys, and forgetting to do so can lead to errors. I have a perpetual Maple license through my university and haven’t purchased maintenance this time. Is there any way to fix or work around this cursor-jumping issue in Maple 24 without purchasing a new license?

The_Bohrs_Model_-_MaplePrimes.mw

Look at the equation (11) in the Maple's document. I would like to force Maple to let the variable "r" inside the squared root so to get the equation (12). Any idea of doing that?  Thank you in advance for your help.

Already  by Help of my favorite Dr.David he did find the thus three step for non schrodinger equation but in here i got some issue of coding which is so different from before, is about transformation of pdes to two parts od real and imaginary part and then substitution our function the functions is clear but combining them and findinf leading exponent and resonance point and finding function in step 3 in different and jsut the function is different with eperate the real and imaginary part for finding step one ...

note:=q=u*exp(#) then |q|=u

schrodinger-test.mw

paper-1

paper-2

(2500iw/(1+5iw) )+(200iw/1-10iw)+5 rationalize and simplify

I was surprised that Maple can't solve this first order ode which is exact ode.

I solved by hand and Maple says my solution is correct.

Any one can find why Maple failed to solve this and if older versions can solve it? Also tried implicit option, but that did not help.

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

SupportTools:-Version();

`The Customer Support Updates version in the MapleCloud is 29 and is the same as the version installed in this computer, created June 23, 2025, 10:25 hours Eastern Time.`

restart;

ode:=diff(y(x),x) = (2*sin(2*x)-tan(y(x)))/x/sec(y(x))^2;

diff(y(x), x) = (2*sin(2*x)-tan(y(x)))/(x*sec(y(x))^2)

sol:=dsolve(ode);

mysol:=cos(2*x)+x*tan(y(x))=c__1;

cos(2*x)+x*tan(y(x)) = c__1

odetest(mysol,ode);

0

 

 

Download maple_solving_exact_ode_august_25_2025.mw

In the attached file, the trigonometric term (2, term) is transformed into a term (3, term1) consisting of radicals. Is there a Maple procedure that can be used to reverse this process? Given an algebraic term (e.g., consisting of radicals, powers, etc.), under what conditions can it be transformed into a trigonometric form (not a Fourier series) in the sense of (3) according to (2)?test.mw

 interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 11, October 29 2024 Build ID 1872373`

(1)

restart

term := 2*cos(5*arcsin((1/2)*x))

2*cos(5*arcsin((1/2)*x))

(2)

term1 := expand(term)

-3*(-x^2+4)^(1/2)*x^2+(-x^2+4)^(1/2)+(-x^2+4)^(1/2)*x^4

(3)

convert(term1, trig)

-3*(-x^2+4)^(1/2)*x^2+(-x^2+4)^(1/2)+(-x^2+4)^(1/2)*x^4

(4)

simplify(term1, trig)

(-x^2+4)^(1/2)*(x^4-3*x^2+1)

(5)

solve(term1 = sqrt(2), x)

(1/2)*(8-2*(10+2*5^(1/2))^(1/2))^(1/2), (1/2)*(8+2*(10-2*5^(1/2))^(1/2))^(1/2), (1/2)*(8+2*(10+2*5^(1/2))^(1/2))^(1/2), -(1/2)*(8-2*(10+2*5^(1/2))^(1/2))^(1/2), -(1/2)*(8+2*(10-2*5^(1/2))^(1/2))^(1/2), -(1/2)*(8+2*(10+2*5^(1/2))^(1/2))^(1/2)

(6)

evalf(solve(term1 = sqrt(2), x))

.3128689302, 1.782013048, 1.975376681, -.3128689302, -1.782013048, -1.975376681

(7)

plot(term, x = -2.5 .. 2.5)

 

plot(term1, x = -2.5 .. 2.5)

 

NULL

Download test.mw

As we can see, RealDomain:-solve gives an incorrect solution to the following system: 

restart;

sys := `~`[diff](sqrt(2*a^2-8*a+10)+sqrt(b^2-6*b+10)+sqrt(2*a^2-2*a*b+b^2), [a, b]):

RealDomain:-solve(`~`[`=`](sys, 0), {a, b})

{a = 5/3, b = 5/2}, {a = a, b = 2*a/(a-1)}

(1)

plot(eval(sys, {max(2*5^(1/2), (2*a^2-8*a+10)^(1/2)+2^(1/2)*((a^2-4*a+5)/(a-1)^2)^(1/2)+2^(1/2)*(a^2*(a^2-4*a+5)/(a-1)^2)^(1/2)), min(2*5^(1/2), (2*a^2-8*a+10)^(1/2)+2^(1/2)*((a^2-4*a+5)/(a-1)^2)^(1/2)+2^(1/2)*(a^2*(a^2-4*a+5)/(a-1)^2)^(1/2))}[-1]), a = -infinity .. infinity)

 

extrema(sqrt(2*a^2-8*a+10)+sqrt(b^2-6*b+10)+sqrt(2*a^2-2*a*b+b^2), {}, {a, b})

{max(2*5^(1/2), (2*a^2-8*a+10)^(1/2)+2^(1/2)*((a^2-4*a+5)/(a-1)^2)^(1/2)+2^(1/2)*(a^2*(a^2-4*a+5)/(a-1)^2)^(1/2)), min(2*5^(1/2), (2*a^2-8*a+10)^(1/2)+2^(1/2)*((a^2-4*a+5)/(a-1)^2)^(1/2)+2^(1/2)*(a^2*(a^2-4*a+5)/(a-1)^2)^(1/2))}

(2)

Download solve_returns_an_unsatisfiable_real_solution.mw

This appears to be a bug; is it possible to fix it? 
Text: 

sys := diff~(sqrt(2*a^2 - 8*a + 10) + sqrt(b^2 - 6*b + 10) + sqrt(2*a^2 - 2*a*b + b^2), [a, b]):
RealDomain:-solve(sys =~ 0, {a, b});

THis is problem from textbook. Maple do not give solution. 

But when asked for implicit solution, it gives one.  Should it not have done this automatically?

interface(version);

`Standard Worksheet Interface, Maple 2025.1, Linux, June 12 2025 Build ID 1932578`

ode:=y(x)*diff(y(x),x) = a;
ic:=y(0) = b;
sol:=dsolve([ode,ic]);

y(x)*(diff(y(x), x)) = a

y(0) = b

sol:=dsolve([ode,ic],'implicit')

-2*a*x+y(x)^2-b^2 = 0

 

 

Download why_no_solution_maple_2025_1.mw

We see now there are two solutions for y(x), since quadratic.

So why dsolve do not solve this and at least give implicit solution automatically? Should this be reported as defect?

is been a while i work on a test still i am study and there is a lot paper remain and is so important in PDEs, a lot paper explain in 2003 untill know and there is other way to find it too but i choose a easy one but is 2025 paper  which is explanation is so beeter than other paper, also some people write a package for take out this test with a second but maybe is not work for all i  search for that  but i didn't find it i will ask the question how we can find thus as shown in graph i did my train but need a little help while i am collect more information and style of solving 

Download p1.mw

Hello everyone,
I hope this message finds you well. I am trying to plot a function f(x, y) and overlay its contour on a quarter ellipse using Maple 2015. However, I’ve encountered some difficulties and have not been successful so far. I would greatly appreciate any assistance in resolving this issue. Thank you!

Plotting in 2D

restart:with(plots):  aa := 4: bb := 2:  
f := -((x^(2))/(aa^(2))+(y^(2))/(bb^(2))-1)*((aa^(2)*bb^(2))/(aa^(2)+bb^(2))):  
plot3d(f,x = 0 .. aa/(2),y = 0 .. bb/(2),region = (x, y) -> ((2 x)/(aa))^(2) + ((2 y)/(bb))^(2)<= 1,axes = boxed,style = patchcontour, grid = [50, 50],orientation = [-120, 45],shading = zhue,title = "f(x,y) over quarter ellipse domain");

Contour plotting
xrange := 0 .. aa/(2): yrange := 0 .. bb/(2):  
nx := 100:   ny := 100:  
dx := (rhs(xrange) - lhs(xrange))/(nx-1):dy := (rhs(yrange) - lhs(yrange))/(ny-1):  
Z := Matrix(nx, ny, (i, j) -> local x, y, inside;x := lhs(xrange) + (i-1)*dx;y := lhs(yrange) + (j-1)*dy;inside := (((2 x)/aa)^2 + ((2 y)/bb)^2 <= 1);if inside then f(x, y) else NULL end if):  
contourplot(Z, xrange, yrange,contours = 15, filled = true, coloring = [blue, green, yellow, red], axes = boxed, title = "Contour plot over quarter ellipse", grid = [nx, ny]);  

First 19 20 21 22 23 24 25 Last Page 21 of 2238