Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hi

Keep getting "Error, null" on every calculation i make. It indicates hidden spaces or something weird????.

Screenshot of it is included. 

https://imgur.com/a/wSdUeqe

Would be great with a fix or some help because this is driving me mad....

I have  a:=1; b:= 2; c:=1; d:= 6; e:= 2;

P:= a*b*c*d*e;

How do I get  P:=1*2*1*6*2  result with the Maple command?

Thank you for your help!

This is an interesting exercise, the computation of the Liénard–Wiechert potentials describing the classical electromagnetic field of a moving electric point charge, a problem of a 3rd year undergrad course in Electrodynamics. The calculation is nontrivial and is performed below using the Physics  package, following the presentation in [1] (Landau & Lifshitz "The classical theory of fields"). I have not seen this calculation performed on a computer algebra worksheet before. Thus, this also showcases the more advanced level of symbolic problems that can currently be tackled on a Maple worksheet. At the end, the corresponding document is linked  and with it the computation below can be reproduced. There is also a link to a corresponding PDF file with all the sections open.

Moving charges:
The retarded and Liénard-Wiechert potentials, and the fields `#mover(mi("E"),mo("→"))` and `#mover(mi("H"),mo("→"))`

Freddy Baudine(1), Edgardo S. Cheb-Terrab(2)

(1) Retired, passionate about Mathematics and Physics

(2) Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Generally speaking, determining the electric and magnetic fields of a distribution of charges involves determining the potentials `ϕ` and `#mover(mi("A"),mo("→"))`, followed by determining the fields `#mover(mi("E"),mo("→"))` and `#mover(mi("H"),mo("→"))` from

`#mover(mi("E"),mo("→"))` = -(diff(`#mover(mi("A"),mo("→"))`, t))/c-%Gradient(`ϕ`(X)),        `#mover(mi("H"),mo("→"))` = `&x`(VectorCalculus[Nabla], `#mover(mi("A"),mo("→"))`)

In turn, the formulation of the equations for `ϕ` and `#mover(mi("A"),mo("→"))` is simple: they follow from the 4D second pair of Maxwell equations, in tensor notation

"`∂`[k](F[]^( i, k))=-(4 Pi)/c j^( i)"

where "F[]^( i, k)" is the electromagnetic field tensor and j^i is the 4D current. After imposing the Lorentz condition

`∂`[i](A^i) = 0,     i.e.    (diff(`ϕ`, t))/c+VectorCalculus[Nabla].`#mover(mi("A"),mo("→"))` = 0

we get

`∂`[k](`∂`[`~k`](A^i)) = 4*Pi*j^i/c

which in 3D form results in

"(∇)^2A-1/(c^2) (((∂)^2)/(∂t^2)( A))=-(4 Pi)/c j"

 

Laplacian(`ϕ`)-(diff(`ϕ`, t, t))/c^2 = -4*Pi*rho/c

where `#mover(mi("j"),mo("→"))` is the current and rho is the charge density.

 

Following the presentation shown in [1] (Landau and Lifshitz, "The classical theory of fields", sec. 62 and 63), below we solve these equations for `ϕ` and `#mover(mi("A"),mo("→"))` resulting in the so-called retarded potentials, then recompute these fields as produced by a charge moving along a given trajectory `#mover(mi("r"),mo("→"))` = r__0(t) - the so-called Liénard-Wiechert potentials - finally computing an explicit form for the corresponding `#mover(mi("E"),mo("→"))` and `#mover(mi("H"),mo("→"))`.

 

While the computation of the generic retarded potentials is, in principle, simple, obtaining their form for a charge moving along a given trajectory `#mover(mi("r"),mo("→"))` = r__0(t), and from there the form of the fields `#mover(mi("E"),mo("→"))` and `#mover(mi("H"),mo("→"))` shown in Landau's book, involves nontrivial algebraic manipulations. The presentation below thus also shows a technique to map onto the computer the manipulations typically done with paper and pencil for these problems. To reproduce the contents below, the Maplesoft Physics Updates v.1252 or newer is required.

NULL

with(Physics); Setup(coordinates = Cartesian); with(Vectors)

[coordinatesystems = {X}]

(1)

The retarded potentials phi and `#mover(mi("A"),mo("→"))`

 

 

The equations which determine the scalar and vector potentials of an arbitrary electromagnetic field are input as

CompactDisplay((`ϕ`, rho, A_, j_)(X))

j_(x, y, z, t)*`will now be displayed as`*j_

(2)

%Laplacian(`ϕ`(X))-(diff(`ϕ`(X), t, t))/c^2 = -4*Pi*rho(X)

%Laplacian(varphi(X))-(diff(diff(varphi(X), t), t))/c^2 = -4*Pi*rho(X)

(3)

%Laplacian(A_(X))-(diff(A_(X), t, t))/c^2 = -4*Pi*j_(X)

%Laplacian(A_(X))-(diff(diff(A_(X), t), t))/c^2 = -4*Pi*j_(X)

(4)

The solutions to these inhomogeneous equations are computed as the sum of the solutions for the equations without right-hand side plus a particular solution to the equation with right-hand side.

Computing the solution to the equations for `ϕ`(X) and  `#mover(mi("A"),mo("→"))`(X)

   

The Liénard-Wiechert potentials of a charge moving along `#mover(mi("r"),mo("→"))` = r__0_(t)

 

From (13), the potential at the point X = (x, y, z, t)is determined by the charge e(t-r/c), i.e. by the position of the charge e at the earlier time

`#msup(mi("t"),mo("'",fontweight = "bold"))` = t-LinearAlgebra[Norm](`#mover(mi("R"),mo("→"))`)/c

The quantityLinearAlgebra[Norm](`#mover(mi("R"),mo("→"))`)is the 3D distance from the position of the charge at the time diff(t(x), x) to the 3D point of observationx, y, z. In the previous section, the charge was located at the origin and at rest, so LinearAlgebra[Norm](`#mover(mi("R"),mo("→"))`) = r, the radial coordinate. If the charge is moving, say on a path r__0_(t), we have

`#mover(mi("R"),mo("→"))` = `#mover(mi("r"),mo("→"))`-r__0_(`#msup(mi("t"),mo("'",fontweight = "bold"))`)

From (13)`ϕ`(r, t) = de(t-r/c)/r and the definition of `#msup(mi("t"),mo("'",fontweight = "bold"))` above, the potential `ϕ`(r, t) of a moving charge can be written as

`ϕ`(r, t(x)) = e/LinearAlgebra[Norm](`#mover(mi("R"),mo("→"))`) and e/LinearAlgebra[Norm](`#mover(mi("R"),mo("→"))`) = e/(c*(t(x)-(diff(t(x), x))))

When the charge is at rest, in the Lorentz gauge we are working, the vector potential is `#mover(mi("A"),mo("→"))` = 0. When the charge is moving, the form of `#mover(mi("A"),mo("→"))` can be found searching for a solution to "(∇)^2A-1/(c^2) (((∂)^2)/(∂t^2)( A))=-(4 Pi)/c j" that gives `#mover(mi("A"),mo("→"))` = 0 when `#mover(mi("v"),mo("→"))` = 0. Following [1], this solution can be written as

"A( )^(alpha)=(e u( )^(alpha))/(`R__beta` u^(beta))" 

where u^mu is the four velocity of the charge, "R^(mu)  =  r^( mu)-`r__0`^(mu)  =  [(r)-(`r__`),c(t-t')]".  

 

Without showing the intermediate steps, [1] presents the three dimensional vectorial form of these potentials `ϕ` and `#mover(mi("A"),mo("→"))` as

 

`ϕ` = e/(R-`#mover(mi("v"),mo("→"))`/c.`#mover(mi("R"),mo("→"))`),   `#mover(mi("A"),mo("→"))` = e*`#mover(mi("v"),mo("→"))`/(c*(R-`#mover(mi("v"),mo("→"))`/c.`#mover(mi("R"),mo("→"))`))

Computing the vectorial form of the Liénard-Wiechert potentials

   

The electric and magnetic fields `#mover(mi("E"),mo("→"))` and `#mover(mi("H"),mo("→"))` of a charge moving along `#mover(mi("r"),mo("→"))` = r__0_(t)

 

The electric and magnetic fields at a point x, y, z, t are calculated from the potentials `ϕ` and `#mover(mi("A"),mo("→"))` through the formulas

 

`#mover(mi("E"),mo("→"))`(x, y, z, t) = -(diff(`#mover(mi("A"),mo("→"))`(x, y, z, t), t))/c-(%Gradient(`ϕ`(X)))(x, y, z, t),        `#mover(mi("H"),mo("→"))`(x, y, z, t) = `&x`(VectorCalculus[Nabla], `#mover(mi("A"),mo("→"))`(x, y, z, t))

where, for the case of a charge moving on a path r__0_(t), these potentials were calculated in the previous section as (24) and (18)

`ϕ`(x, y, z, t) = e/(LinearAlgebra[Norm](`#mover(mi("R"),mo("→"))`)-`#mover(mi("R"),mo("→"))`.(`#mover(mi("v"),mo("→"))`/c))

`#mover(mi("A"),mo("→"))`(x, y, z, t) = e*`#mover(mi("v"),mo("→"))`/(c*(LinearAlgebra[Norm](`#mover(mi("R"),mo("→"))`)-`#mover(mi("R"),mo("→"))`.(`#mover(mi("v"),mo("→"))`/c)))

These two expressions, however, depend on the time only through the retarded time t__0. This dependence is within `#mover(mi("R"),mo("→"))` = `#mover(mi("r"),mo("→"))`(x, y, z)-r__0_(t__0(x, y, z, t)) and through the velocity of the charge `#mover(mi("v"),mo("→"))`(t__0(x, y, z, t)). So, before performing the differentiations, this dependence on t__0(x, y, z, t) must be taken into account.

CompactDisplay(r_(x, y, z), (E_, H_, t__0)(x, y, z, t))

t__0(x, y, z, t)*`will now be displayed as`*t__0

(29)

R_ = r_(x, y, z)-r__0_(t__0(x, y, z, t)), v_ = v_(t__0(x, y, z, t))

R_ = r_(x, y, z)-r__0_(t__0(X)), v_ = v_(t__0(X))

(30)

The Electric field `#mover(mi("E"),mo("→"))` = -(diff(`#mover(mi("A"),mo("→"))`, t))/c-%Gradient(`ϕ`)

 

Computation of Gradient(`ϕ`(X)) 

Computation of "(∂A)/(∂t)"

   

 Collecting the results of the two previous subsections, we have for the electric field

`#mover(mi("E"),mo("→"))`(X) = -(diff(`#mover(mi("A"),mo("→"))`(X), t))/c-%Gradient(`ϕ`(X))

E_(X) = -(diff(A_(X), t))/c-%Gradient(varphi(X))

(60)

subs(%Gradient(varphi(X)) = -c*e*(-Physics[Vectors][Norm](v_)^2*R_-Physics[Vectors][Norm](R_)*c*v_+R_*c^2+Physics[Vectors][`.`](R_, a_)*R_+Physics[Vectors][`.`](R_, v_)*v_)/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3, Physics[Vectors]:-diff(A_(X), t) = e*(Physics[Vectors][Norm](R_)^2*a_*c-v_*Physics[Vectors][Norm](v_)^2*Physics[Vectors][Norm](R_)-Physics[Vectors][Norm](R_)*Physics[Vectors][`.`](R_, v_)*a_+v_*Physics[Vectors][`.`](R_, a_)*Physics[Vectors][Norm](R_)+c*v_*Physics[Vectors][`.`](R_, v_))/((1-Physics[Vectors][`.`](R_, v_)/(Physics[Vectors][Norm](R_)*c))*(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^2*Physics[Vectors][Norm](R_)), E_(X) = -(diff(A_(X), t))/c-%Gradient(varphi(X)))

E_(X) = -e*(Physics:-Vectors:-Norm(R_)^2*a_*c-v_*Physics:-Vectors:-Norm(v_)^2*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-Norm(R_)*Physics:-Vectors:-`.`(R_, v_)*a_+v_*Physics:-Vectors:-`.`(R_, a_)*Physics:-Vectors:-Norm(R_)+c*v_*Physics:-Vectors:-`.`(R_, v_))/(c*(1-Physics:-Vectors:-`.`(R_, v_)/(Physics:-Vectors:-Norm(R_)*c))*(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^2*Physics:-Vectors:-Norm(R_))+c*e*(-Physics:-Vectors:-Norm(v_)^2*R_-Physics:-Vectors:-Norm(R_)*c*v_+R_*c^2+Physics:-Vectors:-`.`(R_, a_)*R_+Physics:-Vectors:-`.`(R_, v_)*v_)/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3

(61)

The book, presents this result as equation (63.8):

`#mover(mi("E"),mo("→"))` = e*(1-v^2/c^2)*(`#mover(mi("R"),mo("→"))`-`#mover(mi("v"),mo("→"))`*R/c)/(R-(`#mover(mi("v"),mo("→"))`.`#mover(mi("R"),mo("→"))`)/c)^3+`&x`(e*`#mover(mi("R"),mo("→"))`/c(R-(`#mover(mi("v"),mo("→"))`.`#mover(mi("R"),mo("→"))`)/c)^6, `&x`(`#mover(mi("R"),mo("→"))`-`#mover(mi("v"),mo("→"))`*R/c, `#mover(mi("a"),mo("→"))`))

where `≡`(R, LinearAlgebra[Norm](`#mover(mi("R"),mo("→"))`)) and `≡`(v, LinearAlgebra[Norm](`#mover(mi("v"),mo("→"))`)). To rewrite (61) as in the above, introduce the two triple vector products

`&x`(R_, `&x`(v_, a_)); expand(%) = %

v_*Physics:-Vectors:-`.`(R_, a_)-Physics:-Vectors:-`.`(R_, v_)*a_ = Physics:-Vectors:-`&x`(R_, Physics:-Vectors:-`&x`(v_, a_))

(62)

simplify(E_(X) = -e*(Physics[Vectors][Norm](R_)^2*a_*c-v_*Physics[Vectors][Norm](v_)^2*Physics[Vectors][Norm](R_)-Physics[Vectors][Norm](R_)*Physics[Vectors][`.`](R_, v_)*a_+v_*Physics[Vectors][`.`](R_, a_)*Physics[Vectors][Norm](R_)+c*v_*Physics[Vectors][`.`](R_, v_))/(c*(1-Physics[Vectors][`.`](R_, v_)/(Physics[Vectors][Norm](R_)*c))*(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^2*Physics[Vectors][Norm](R_))+c*e*(-Physics[Vectors][Norm](v_)^2*R_-Physics[Vectors][Norm](R_)*c*v_+R_*c^2+Physics[Vectors][`.`](R_, a_)*R_+Physics[Vectors][`.`](R_, v_)*v_)/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3, {v_*Physics[Vectors][`.`](R_, a_)-Physics[Vectors][`.`](R_, v_)*a_ = Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](v_, a_))})

E_(X) = e*(-Physics:-Vectors:-Norm(R_)*Physics:-Vectors:-`&x`(R_, Physics:-Vectors:-`&x`(v_, a_))+R_*c*Physics:-Vectors:-`.`(R_, a_)-Physics:-Vectors:-Norm(R_)^2*a_*c+(-c^2*v_+v_*Physics:-Vectors:-Norm(v_)^2)*Physics:-Vectors:-Norm(R_)+R_*c^3-R_*c*Physics:-Vectors:-Norm(v_)^2)/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3

(63)

`&x`(R_, `&x`(R_, a_)); expand(%) = %

Physics:-Vectors:-`.`(R_, a_)*R_-Physics:-Vectors:-Norm(R_)^2*a_ = Physics:-Vectors:-`&x`(R_, Physics:-Vectors:-`&x`(R_, a_))

(64)

simplify(E_(X) = e*(-Physics[Vectors][Norm](R_)*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](v_, a_))+R_*c*Physics[Vectors][`.`](R_, a_)-Physics[Vectors][Norm](R_)^2*a_*c+(-c^2*v_+v_*Physics[Vectors][Norm](v_)^2)*Physics[Vectors][Norm](R_)+R_*c^3-R_*c*Physics[Vectors][Norm](v_)^2)/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3, {Physics[Vectors][`.`](R_, a_)*R_-Physics[Vectors][Norm](R_)^2*a_ = Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](R_, a_))})

E_(X) = (c*Physics:-Vectors:-`&x`(R_, Physics:-Vectors:-`&x`(R_, a_))-Physics:-Vectors:-Norm(R_)*Physics:-Vectors:-`&x`(R_, Physics:-Vectors:-`&x`(v_, a_))+(c-Physics:-Vectors:-Norm(v_))*(c+Physics:-Vectors:-Norm(v_))*(R_*c-Physics:-Vectors:-Norm(R_)*v_))*e/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3

(65)

Split now this result into two terms, one of them involving the acceleration `#mover(mi("a"),mo("→"))`. For that purpose first expand the expression without expanding the cross products

lhs(E_(X) = (c*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](R_, a_))-Physics[Vectors][Norm](R_)*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](v_, a_))+(c-Physics[Vectors][Norm](v_))*(c+Physics[Vectors][Norm](v_))*(R_*c-Physics[Vectors][Norm](R_)*v_))*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3) = frontend(expand, [rhs(E_(X) = (c*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](R_, a_))-Physics[Vectors][Norm](R_)*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](v_, a_))+(c-Physics[Vectors][Norm](v_))*(c+Physics[Vectors][Norm](v_))*(R_*c-Physics[Vectors][Norm](R_)*v_))*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3)])

E_(X) = e*Physics:-Vectors:-Norm(R_)*Physics:-Vectors:-Norm(v_)^2*v_/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3-e*Physics:-Vectors:-Norm(R_)*c^2*v_/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3-e*Physics:-Vectors:-Norm(v_)^2*R_*c/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3+e*R_*c^3/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3+e*c*Physics:-Vectors:-`&x`(R_, Physics:-Vectors:-`&x`(R_, a_))/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3-e*Physics:-Vectors:-Norm(R_)*Physics:-Vectors:-`&x`(R_, Physics:-Vectors:-`&x`(v_, a_))/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3

(66)

Introduce the notation used in the textbook, `≡`(R, LinearAlgebra[Norm](`#mover(mi("R"),mo("→"))`)) and `≡`(v, LinearAlgebra[Norm](`#mover(mi("v"),mo("→"))`)) and proceed with the splitting

lhs(E_(X) = (c*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](R_, a_))-Physics[Vectors][Norm](R_)*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](v_, a_))+(c-Physics[Vectors][Norm](v_))*(c+Physics[Vectors][Norm](v_))*(R_*c-Physics[Vectors][Norm](R_)*v_))*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3) = subs(Norm(R_) = R, Norm(v_) = v, add(normal([selectremove(`not`(has), rhs(E_(X) = e*Physics[Vectors][Norm](R_)*Physics[Vectors][Norm](v_)^2*v_/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3-e*Physics[Vectors][Norm](R_)*c^2*v_/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3-e*Physics[Vectors][Norm](v_)^2*R_*c/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3+e*R_*c^3/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3+e*c*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](R_, a_))/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3-e*Physics[Vectors][Norm](R_)*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](v_, a_))/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3), `#mover(mi("a"),mo("→"))`)])))

E_(X) = e*(-R*c^2*v_+R*v^2*v_+R_*c^3-R_*c*v^2)/(c*R-Physics:-Vectors:-`.`(R_, v_))^3-e*(R*Physics:-Vectors:-`&x`(R_, Physics:-Vectors:-`&x`(v_, a_))-c*Physics:-Vectors:-`&x`(R_, Physics:-Vectors:-`&x`(R_, a_)))/(c*R-Physics:-Vectors:-`.`(R_, v_))^3

(67)

Rearrange only the first term using simplify; that can be done in different ways, perhaps the simplest is using subsop

subsop([2, 1] = simplify(op([2, 1], E_(X) = e*(-R*c^2*v_+R*v^2*v_+R_*c^3-R_*c*v^2)/(c*R-Physics[Vectors][`.`](R_, v_))^3-e*(R*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](v_, a_))-c*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](R_, a_)))/(c*R-Physics[Vectors][`.`](R_, v_))^3)), E_(X) = e*(-R*c^2*v_+R*v^2*v_+R_*c^3-R_*c*v^2)/(c*R-Physics[Vectors][`.`](R_, v_))^3-e*(R*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](v_, a_))-c*Physics[Vectors][`&x`](R_, Physics[Vectors][`&x`](R_, a_)))/(c*R-Physics[Vectors][`.`](R_, v_))^3)

E_(X) = e*(c-v)*(c+v)*(-R*v_+R_*c)/(c*R-Physics:-Vectors:-`.`(R_, v_))^3-e*(R*Physics:-Vectors:-`&x`(R_, Physics:-Vectors:-`&x`(v_, a_))-c*Physics:-Vectors:-`&x`(R_, Physics:-Vectors:-`&x`(R_, a_)))/(c*R-Physics:-Vectors:-`.`(R_, v_))^3

(68)

NULL

By eye this result is mathematically equal to equation (63.8) of the textbook, shown here above before (62) .

 

Algebraic manipulation rewriting (68) as the textbook equation (63.8)

   

The magnetic field  `#mover(mi("H"),mo("→"))` = `&x`(VectorCalculus[Nabla], `#mover(mi("A"),mo("→"))`)

 

 

The book does not show an explicit form for `#mover(mi("H"),mo("→"))`, it only indicates that it is related to the electric field by the formula

 

`#mover(mi("H"),mo("→"))` = `&x`(`#mover(mi("R"),mo("→"))`, `#mover(mi("E"),mo("→"))`)/LinearAlgebra[Norm](`#mover(mi("R"),mo("→"))`)

 

Thus in this section we compute the explicit form of `#mover(mi("H"),mo("→"))` and show that this relationship mentioned in the book holds. To compute `#mover(mi("H"),mo("→"))` = `&x`(VectorCalculus[Nabla], `#mover(mi("A"),mo("→"))`) we proceed as done in the previous sections, the right-hand side should be taken at the previous (retarded) time t__0. For clarity, turn OFF the compact display of functions.

OFF

 

We need to calculate

H_(X) = Curl(A_(x, y, z, t__0(x, y, z, t)))

H_(X) = Physics:-Vectors:-Curl(A_(x, y, z, t__0(X)))

(75)

Deriving the chain rule `&x`(VectorCalculus[Nabla], `#mover(mi("A"),mo("→"))`(t__0(x, y, z, t))) = %Curl(A_(x, y, z, `#msub(mi("t"),mi("0"))`))+`&x`(%Gradient(`#msub(mi("t"),mi("0"))`(X)), diff(`#mover(mi("A"),mo("→"))`(t__0), t__0))

   

So applying to (75)  the chain rule derived in the previous subsection we have

H_(X) = %Curl(A_(x, y, z, t__0))+`&x`(%Gradient(t__0(X)), diff(A_(x, y, z, t__0), t__0))

H_(X) = %Curl(A_(x, y, z, t__0))+Physics:-Vectors:-`&x`(%Gradient(t__0(X)), diff(A_(x, y, z, t__0), t__0))

(87)

where t__0 is taken as a function of x, y, z, t only in %Gradient(`#msub(mi("t"),mi("0"))`(X)). Now that the functionality is understood, turning ON the compact display of functions and displaying the fields by their names,

CompactDisplay(H_(X) = %Curl(A_(x, y, z, t__0))+Physics[Vectors][`&x`](%Gradient(t__0(X)), diff(A_(x, y, z, t__0), t__0)), E_(X))

E_(x, y, z, t)*`will now be displayed as`*E_

(88)

The value of %Gradient(`#msub(mi("t"),mi("0"))`(X)) is computed lines above as (48)

%Gradient(t__0(X)) = R_/(-c*Physics[Vectors][Norm](R_)+Physics[Vectors][`.`](R_, v_))

%Gradient(t__0(X)) = R_/(-c*Physics:-Vectors:-Norm(R_)+Physics:-Vectors:-`.`(R_, v_))

(89)

The expression for `#mover(mi("A"),mo("→"))` with no dependency is computed lines above, as (28),

subs(A_ = A_(x, y, z, t__0), A_ = e*v_/((Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_/c))*c))

A_(x, y, z, t__0) = e*v_/((Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_)/c)*c)

(90)

The expressions for `#mover(mi("R"),mo("→"))` and the velocity in terms of t__0 with no dependency are

R_ = r_(x, y, z)-r__0_(t__0), v_ = v_(t__0)

R_ = r_(x, y, z)-r__0_(t__0), v_ = v_(t__0)

(91)

CompactDisplay(r_(x, y, z))

r_(x, y, z)*`will now be displayed as`*r_

(92)

subs(R_ = r_(x, y, z)-r__0_(t__0), v_ = v_(t__0), [%Gradient(t__0(X)) = R_/(-c*Physics[Vectors][Norm](R_)+Physics[Vectors][`.`](R_, v_)), A_(x, y, z, t__0) = e*v_/((Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_)/c)*c)])

[%Gradient(t__0(X)) = (r_(x, y, z)-r__0_(t__0))/(-c*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_(t__0))+Physics:-Vectors:-`.`(r_(x, y, z)-r__0_(t__0), v_(t__0))), A_(x, y, z, t__0) = e*v_(t__0)/((Physics:-Vectors:-Norm(r_(x, y, z)-r__0_(t__0))-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_(t__0), v_(t__0))/c)*c)]

(93)

Introducing this into "H(X)=`%Curl`(A_(x,y,z,t[`0`]))+(`%Gradient`(t[`0`](X)))*((∂A)/(∂`t__0`))",

eval(H_(X) = %Curl(A_(x, y, z, t__0))+Physics[Vectors][`&x`](%Gradient(t__0(X)), diff(A_(x, y, z, t__0), t__0)), [%Gradient(t__0(X)) = (r_(x, y, z)-r__0_(t__0))/(-c*Physics[Vectors][Norm](r_(x, y, z)-r__0_(t__0))+Physics[Vectors][`.`](r_(x, y, z)-r__0_(t__0), v_(t__0))), A_(x, y, z, t__0) = e*v_(t__0)/((Physics[Vectors][Norm](r_(x, y, z)-r__0_(t__0))-Physics[Vectors][`.`](r_(x, y, z)-r__0_(t__0), v_(t__0))/c)*c)])

H_(X) = %Curl(e*v_(t__0)/((Physics:-Vectors:-Norm(r_(x, y, z)-r__0_(t__0))-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_(t__0), v_(t__0))/c)*c))+Physics:-Vectors:-`&x`(r_(x, y, z)-r__0_(t__0), -e*v_(t__0)*(-Physics:-Vectors:-`.`(diff(r__0_(t__0), t__0), r_(x, y, z)-r__0_(t__0))/Physics:-Vectors:-Norm(r_(x, y, z)-r__0_(t__0))-(-Physics:-Vectors:-`.`(diff(r__0_(t__0), t__0), v_(t__0))+Physics:-Vectors:-`.`(r_(x, y, z)-r__0_(t__0), diff(v_(t__0), t__0)))/c)/((Physics:-Vectors:-Norm(r_(x, y, z)-r__0_(t__0))-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_(t__0), v_(t__0))/c)^2*c)+e*(diff(v_(t__0), t__0))/((Physics:-Vectors:-Norm(r_(x, y, z)-r__0_(t__0))-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_(t__0), v_(t__0))/c)*c))/(-c*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_(t__0))+Physics:-Vectors:-`.`(r_(x, y, z)-r__0_(t__0), v_(t__0)))

(94)

Before computing the first term `&x`(VectorCalculus[Nabla], () .. ()), for readability, re-introduce the velocity diff(`#msub(mi("r"),mi("0_"))`(t__0), t__0) = `#mover(mi("v"),mo("→"))`, the acceleration diff(`#mover(mi("v"),mo("→"))`(t__0), t__0) = `#mover(mi("a"),mo("→"))`, then remove the dependency of these functions on t__0, not relevant anymore since there are no more derivatives with respect to t__0. Performing these substitutions in sequence,

diff(`#msub(mi("r"),mi("0_"))`(t__0), t__0) = `#mover(mi("v"),mo("→"))`, diff(`#mover(mi("v"),mo("→"))`(t__0), t__0) = `#mover(mi("a"),mo("→"))`, `#mover(mi("v"),mo("→"))`(t__0) = `#mover(mi("v"),mo("→"))`, `#msub(mi("r"),mi("0_"))`(t__0) = `#msub(mi("r"),mi("0_"))`

diff(r__0_(t__0), t__0) = v_, diff(v_(t__0), t__0) = a_, v_(t__0) = v_, r__0_(t__0) = r__0_

(95)

subs(diff(r__0_(t__0), t__0) = v_, diff(v_(t__0), t__0) = a_, v_(t__0) = v_, r__0_(t__0) = r__0_, H_(X) = %Curl(e*v_(t__0)/((Physics[Vectors][Norm](r_(x, y, z)-r__0_(t__0))-Physics[Vectors][`.`](r_(x, y, z)-r__0_(t__0), v_(t__0))/c)*c))+Physics[Vectors][`&x`](r_(x, y, z)-r__0_(t__0), -e*v_(t__0)*(-Physics[Vectors][`.`](diff(r__0_(t__0), t__0), r_(x, y, z)-r__0_(t__0))/Physics[Vectors][Norm](r_(x, y, z)-r__0_(t__0))-(-Physics[Vectors][`.`](diff(r__0_(t__0), t__0), v_(t__0))+Physics[Vectors][`.`](r_(x, y, z)-r__0_(t__0), diff(v_(t__0), t__0)))/c)/((Physics[Vectors][Norm](r_(x, y, z)-r__0_(t__0))-Physics[Vectors][`.`](r_(x, y, z)-r__0_(t__0), v_(t__0))/c)^2*c)+e*(diff(v_(t__0), t__0))/((Physics[Vectors][Norm](r_(x, y, z)-r__0_(t__0))-Physics[Vectors][`.`](r_(x, y, z)-r__0_(t__0), v_(t__0))/c)*c))/(-c*Physics[Vectors][Norm](r_(x, y, z)-r__0_(t__0))+Physics[Vectors][`.`](r_(x, y, z)-r__0_(t__0), v_(t__0))))

H_(X) = %Curl(e*v_/((Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_)/c)*c))+Physics:-Vectors:-`&x`(r_(x, y, z)-r__0_, -e*v_*(-Physics:-Vectors:-`.`(v_, r_(x, y, z)-r__0_)/Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-(-Physics:-Vectors:-`.`(v_, v_)+Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, a_))/c)/((Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_)/c)^2*c)+e*a_/((Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_)/c)*c))/(-c*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)+Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_))

(96)

Activate now the inert curl `&x`(VectorCalculus[Nabla], () .. ())

value(H_(X) = %Curl(e*v_/((Physics[Vectors][Norm](r_(x, y, z)-r__0_)-Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_)/c)*c))+Physics[Vectors][`&x`](r_(x, y, z)-r__0_, -e*v_*(-Physics[Vectors][`.`](v_, r_(x, y, z)-r__0_)/Physics[Vectors][Norm](r_(x, y, z)-r__0_)-(-Physics[Vectors][`.`](v_, v_)+Physics[Vectors][`.`](r_(x, y, z)-r__0_, a_))/c)/((Physics[Vectors][Norm](r_(x, y, z)-r__0_)-Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_)/c)^2*c)+e*a_/((Physics[Vectors][Norm](r_(x, y, z)-r__0_)-Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_)/c)*c))/(-c*Physics[Vectors][Norm](r_(x, y, z)-r__0_)+Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_)))

H_(X) = e*Physics:-Vectors:-`&x`(-c^2*_i*Physics:-Vectors:-`.`(diff(r_(x, y, z), x), r_(x, y, z)-r__0_)/((c*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_))^2*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_))+c*_i*Physics:-Vectors:-`.`(diff(r_(x, y, z), x), v_)/(c*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_))^2-c^2*_j*Physics:-Vectors:-`.`(diff(r_(x, y, z), y), r_(x, y, z)-r__0_)/((c*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_))^2*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_))+c*_j*Physics:-Vectors:-`.`(diff(r_(x, y, z), y), v_)/(c*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_))^2-c^2*_k*Physics:-Vectors:-`.`(diff(r_(x, y, z), z), r_(x, y, z)-r__0_)/((c*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_))^2*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_))+c*_k*Physics:-Vectors:-`.`(diff(r_(x, y, z), z), v_)/(c*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_))^2, v_)/c+Physics:-Vectors:-`&x`(r_(x, y, z)-r__0_, -e*v_*(-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_)/Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-(-Physics:-Vectors:-Norm(v_)^2+Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, a_))/c)/((Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_)/c)^2*c)+e*a_/((Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)-Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_)/c)*c))/(-c*Physics:-Vectors:-Norm(r_(x, y, z)-r__0_)+Physics:-Vectors:-`.`(r_(x, y, z)-r__0_, v_))

(97)

From (34)diff(`#mover(mi("r"),mo("→"))`, x) = `#mover(mi("i"),mo("∧"))`, diff(`#mover(mi("r"),mo("→"))`, y) = `#mover(mi("j"),mo("∧"))`, diff(`#mover(mi("r"),mo("→"))`, z) = `#mover(mi("k"),mo("∧"))`, and reintroducing `#mover(mi("r"),mo("→"))`(x, y, z)-r__0_ = `#mover(mi("R"),mo("→"))`

subs(diff(r_(x, y, z), x) = _i, diff(r_(x, y, z), y) = _j, diff(r_(x, y, z), z) = _k, `#mover(mi("r"),mo("→"))`(x, y, z)-r__0_ = `#mover(mi("R"),mo("→"))`, H_(X) = e*Physics[Vectors][`&x`](-c^2*_i*Physics[Vectors][`.`](diff(r_(x, y, z), x), r_(x, y, z)-r__0_)/((c*Physics[Vectors][Norm](r_(x, y, z)-r__0_)-Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_))^2*Physics[Vectors][Norm](r_(x, y, z)-r__0_))+c*_i*Physics[Vectors][`.`](diff(r_(x, y, z), x), v_)/(c*Physics[Vectors][Norm](r_(x, y, z)-r__0_)-Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_))^2-c^2*_j*Physics[Vectors][`.`](diff(r_(x, y, z), y), r_(x, y, z)-r__0_)/((c*Physics[Vectors][Norm](r_(x, y, z)-r__0_)-Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_))^2*Physics[Vectors][Norm](r_(x, y, z)-r__0_))+c*_j*Physics[Vectors][`.`](diff(r_(x, y, z), y), v_)/(c*Physics[Vectors][Norm](r_(x, y, z)-r__0_)-Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_))^2-c^2*_k*Physics[Vectors][`.`](diff(r_(x, y, z), z), r_(x, y, z)-r__0_)/((c*Physics[Vectors][Norm](r_(x, y, z)-r__0_)-Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_))^2*Physics[Vectors][Norm](r_(x, y, z)-r__0_))+c*_k*Physics[Vectors][`.`](diff(r_(x, y, z), z), v_)/(c*Physics[Vectors][Norm](r_(x, y, z)-r__0_)-Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_))^2, v_)/c+Physics[Vectors][`&x`](r_(x, y, z)-r__0_, -e*v_*(-Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_)/Physics[Vectors][Norm](r_(x, y, z)-r__0_)-(-Physics[Vectors][Norm](v_)^2+Physics[Vectors][`.`](r_(x, y, z)-r__0_, a_))/c)/((Physics[Vectors][Norm](r_(x, y, z)-r__0_)-Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_)/c)^2*c)+e*a_/((Physics[Vectors][Norm](r_(x, y, z)-r__0_)-Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_)/c)*c))/(-c*Physics[Vectors][Norm](r_(x, y, z)-r__0_)+Physics[Vectors][`.`](r_(x, y, z)-r__0_, v_)))

H_(X) = e*Physics:-Vectors:-`&x`(-c^2*_i*Physics:-Vectors:-`.`(_i, R_)/((c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^2*Physics:-Vectors:-Norm(R_))+c*_i*Physics:-Vectors:-`.`(_i, v_)/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^2-c^2*_j*Physics:-Vectors:-`.`(_j, R_)/((c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^2*Physics:-Vectors:-Norm(R_))+c*_j*Physics:-Vectors:-`.`(_j, v_)/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^2-c^2*_k*Physics:-Vectors:-`.`(_k, R_)/((c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^2*Physics:-Vectors:-Norm(R_))+c*_k*Physics:-Vectors:-`.`(_k, v_)/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^2, v_)/c+Physics:-Vectors:-`&x`(R_, -e*v_*(-Physics:-Vectors:-`.`(R_, v_)/Physics:-Vectors:-Norm(R_)-(-Physics:-Vectors:-Norm(v_)^2+Physics:-Vectors:-`.`(R_, a_))/c)/((Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_)/c)^2*c)+e*a_/((Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_)/c)*c))/(-c*Physics:-Vectors:-Norm(R_)+Physics:-Vectors:-`.`(R_, v_))

(98)

Simplify(H_(X) = e*Physics[Vectors][`&x`](-c^2*_i*Physics[Vectors][`.`](_i, R_)/((c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^2*Physics[Vectors][Norm](R_))+c*_i*Physics[Vectors][`.`](_i, v_)/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^2-c^2*_j*Physics[Vectors][`.`](_j, R_)/((c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^2*Physics[Vectors][Norm](R_))+c*_j*Physics[Vectors][`.`](_j, v_)/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^2-c^2*_k*Physics[Vectors][`.`](_k, R_)/((c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^2*Physics[Vectors][Norm](R_))+c*_k*Physics[Vectors][`.`](_k, v_)/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^2, v_)/c+Physics[Vectors][`&x`](R_, -e*v_*(-Physics[Vectors][`.`](R_, v_)/Physics[Vectors][Norm](R_)-(-Physics[Vectors][Norm](v_)^2+Physics[Vectors][`.`](R_, a_))/c)/((Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_)/c)^2*c)+e*a_/((Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_)/c)*c))/(-c*Physics[Vectors][Norm](R_)+Physics[Vectors][`.`](R_, v_)))

H_(X) = (-e*c*Physics:-Vectors:-`&x`(R_, v_)*(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))+e*(-c*Physics:-Vectors:-`.`(R_, v_)+(Physics:-Vectors:-Norm(v_)^2-Physics:-Vectors:-`.`(R_, a_))*Physics:-Vectors:-Norm(R_))*Physics:-Vectors:-`&x`(R_, v_)-e*(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))*Physics:-Vectors:-Norm(R_)*Physics:-Vectors:-`&x`(R_, a_))/((c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3*Physics:-Vectors:-Norm(R_))

(99)

To conclude, rearrange this expression as done with the one for the electric field `#mover(mi("E"),mo("→"))` at (65), so first expand  (99) without expanding the cross products

lhs(H_(X) = (-e*c*Physics[Vectors][`&x`](R_, v_)*(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))+e*(-c*Physics[Vectors][`.`](R_, v_)+(Physics[Vectors][Norm](v_)^2-Physics[Vectors][`.`](R_, a_))*Physics[Vectors][Norm](R_))*Physics[Vectors][`&x`](R_, v_)-e*(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))*Physics[Vectors][Norm](R_)*Physics[Vectors][`&x`](R_, a_))/((c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3*Physics[Vectors][Norm](R_))) = frontend(expand, [rhs(H_(X) = (-e*c*Physics[Vectors][`&x`](R_, v_)*(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))+e*(-c*Physics[Vectors][`.`](R_, v_)+(Physics[Vectors][Norm](v_)^2-Physics[Vectors][`.`](R_, a_))*Physics[Vectors][Norm](R_))*Physics[Vectors][`&x`](R_, v_)-e*(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))*Physics[Vectors][Norm](R_)*Physics[Vectors][`&x`](R_, a_))/((c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3*Physics[Vectors][Norm](R_)))])

H_(X) = -Physics:-Vectors:-Norm(R_)*Physics:-Vectors:-`&x`(R_, a_)*c*e/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3+Physics:-Vectors:-`&x`(R_, v_)*Physics:-Vectors:-Norm(v_)^2*e/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3-Physics:-Vectors:-`&x`(R_, v_)*c^2*e/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3+Physics:-Vectors:-`.`(R_, v_)*Physics:-Vectors:-`&x`(R_, a_)*e/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3-Physics:-Vectors:-`&x`(R_, v_)*Physics:-Vectors:-`.`(R_, a_)*e/(c*Physics:-Vectors:-Norm(R_)-Physics:-Vectors:-`.`(R_, v_))^3

(100)

Then introduce the notation used in the textbook, `≡`(R, LinearAlgebra[Norm](`#mover(mi("R"),mo("→"))`)) and `≡`(v, LinearAlgebra[Norm](`#mover(mi("v"),mo("→"))`)) and split into two terms, one of which contains the acceleration `#mover(mi("a"),mo("→"))`

lhs(H_(X) = -Physics[Vectors][Norm](R_)*Physics[Vectors][`&x`](R_, a_)*c*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3+Physics[Vectors][`&x`](R_, v_)*Physics[Vectors][Norm](v_)^2*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3-Physics[Vectors][`&x`](R_, v_)*c^2*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3+Physics[Vectors][`.`](R_, v_)*Physics[Vectors][`&x`](R_, a_)*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3-Physics[Vectors][`&x`](R_, v_)*Physics[Vectors][`.`](R_, a_)*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3) = subs(Norm(R_) = R, Norm(v_) = v, add(normal([selectremove(`not`(has), rhs(H_(X) = -Physics[Vectors][Norm](R_)*Physics[Vectors][`&x`](R_, a_)*c*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3+Physics[Vectors][`&x`](R_, v_)*Physics[Vectors][Norm](v_)^2*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3-Physics[Vectors][`&x`](R_, v_)*c^2*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3+Physics[Vectors][`.`](R_, v_)*Physics[Vectors][`&x`](R_, a_)*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3-Physics[Vectors][`&x`](R_, v_)*Physics[Vectors][`.`](R_, a_)*e/(c*Physics[Vectors][Norm](R_)-Physics[Vectors][`.`](R_, v_))^3), `#mover(mi("a"),mo("→"))`)])))

H_(X) = Physics:-Vectors:-`&x`(R_, v_)*e*(-c^2+v^2)/(c*R-Physics:-Vectors:-`.`(R_, v_))^3-e*(Physics:-Vectors:-`&x`(R_, a_)*R*c-Physics:-Vectors:-`&x`(R_, a_)*Physics:-Vectors:-`.`(R_, v_)+Physics:-Vectors:-`.`(R_, a_)*Physics:-Vectors:-`&x`(R_, v_))/(c*R-Physics:-Vectors:-`.`(R_, v_))^3

(101)

Verifying `#mover(mi("H"),mo("→"))` = `&x`(`#mover(mi("R"),mo("→"))`, `#mover(mi("E"),mo("→"))`)/R

   

References

 

NULL

[1] Landau, L.D., and Lifshitz, E.M. Course of Theoretical Physics Vol 2, The Classical Theory of Fields. Elsevier, 1975.

NULL

 

Download document: The_field_of_moving_charges.mw

Download PDF with sections open: The_field_of_moving_charges.pdf

 

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

Hello,

I have a term:

eq:=2*cosh(xi)^8*alpha*B[2]^2 + 4*A[2]*sinh(xi)^6*cosh(xi)^2 + 4*A[1]*sinh(xi)^5*cosh(xi)^3 + 4*sinh(xi)^4*cosh(xi)^4*A[0];

I want to extract the coefficient of for example "sinh(xi)^6*cosh(xi)^2" but the following codes failed:
coeff(eq,(sinh(xi)^6)*(cosh(xi)^2));

frontend(coeff,[eq,(sinh(xi)^6)*(cosh(xi)^2)]);

please help me to solve it.

Thanks in advance.

It would be nice to have the file name in addition to the name of the code attachment on the top.

 suppose i have outputs of several functions retured as variables float

A , B , C , D ,E , F , G , H , I , J , K ,L,M ,N , O, P,Q

I run the functions several times that all the function are run even if one is run 

so for each run I get a row of the matrix M in that order how to create from that outputs

each output is appended as next row in the same way to the matrix in the same order

Then I want the final matrix after all run to me exported to excel

I have downloaded Maple and install the trial version , i entered the Purchase code  and every thing was done, I did not get any errors , however, while i am trying to open Maple, when I open the software , I see this window which i have uploaded below , and when i click on Active i eneter my purchase code again , and it says it has acitivated and then when i click ok , it exit , what is the issue ?

can you help me ?

Hi.

1- I want to solve the following equation:
eq:=diff(theta(t),t)=-(A[1]*Dirac(t-T[1])+A[2]*Dirac(t-T[2]));

with the boundary conditions:

bcon := theta(0)=-v[1],theta(1)=v[3]:

but the code

dsolve({eq,bcon},theta(t)) assuming T[1]<T[2];
and also

dsolve({eq,bcon},theta(t), method=laplace) assuming T[1]<T[2];

do not work. 

The solution must be:

theta(t)=piecewise(0 <= t and t < T[1], -v[1], T[1] < t and t < T[2], 0, T[2] < t and t <= 1, v[3]);

2-Furthemore, solving the ode:

restart;
eq2 := diff(phi(t),t)=piecewise(0 <= t and t < T[1], -v[1], T[1] < t and t < T[2], 0, T[2] < t and t <= 1, v[3]);

with the similar bc:

bcon2 := phi(0)=-v[2],phi(1)=v[4];

is another problem which I am trying to solve it. but again the code

dsolve({eq2,bcon2},phi(t)) assuming T[1]<T[2];

does not work!! while the solution must be:

phi(t)=piecewise(0 <= t and t < T[1], v[1]*(t-T[1]), T[1] < t and t < T[2], 0, T[2] < t and t <= 1, v[3]*(t-T[2]));

Could you please help me to solve these two problems??

I really appreciate any help you can provide.

 

Write a recursive procedure proc2 with option remember, to compute the function 
                             "f[n]"

 recursively defined by 
                           "f[0] = 0"

,   
                        "f[1] = -7*x^2"

,  
       "f[n] = -3*f[n - 2]^2 + (n + 21)*cos(2*f[n - 1])"

  for n>1.
Evaluate the first derivative of 
f[18];
 at  "x = 2*Pi"

 numerically by the two procedures, and compare running times.

Okay, so for this problem, here is what I have:

>proc2:=proc(n)
option remember;
if n=0 then 0
elif n=1 then -7*x^2;
elif n>1 then -3*f^2[n-2]+(n+21)*cos(2*f[n-1]);
end if;
end proc:

>proc2(18)

and I get this as my result: -3*f^2[16] + 39*cos(2*f[17])

which is true but what can I do to let the proc2 solve it all the way til they get n=0 or 1? 

and how can I plug in 2*pi in to x?

Please help! Thank you so much for your time!

Is their anyway we can get the smiles file of given IUPAC name 

Smiles with explicit hydrogen

And draw its chemical graph 

Hi seniors, I have solved some questions of derivative, intgration and limits by using built in command. I am interested to you show full step of each questions. Could any one plase help  me in this regards

Help_derivative_and_limit.mw

This is the problem: My object is getting large with many private methods.

In non-OOP setup, I could make different modules A,B,C and put relevent methods inside each module.

Now I find I can not do this inside the object. All methods have to be flat and at same level. So I lose the benefit of using different name space for different methods.

It will be easier to explain with a simple example. Lets say I have this now

restart;

A:=module() 
    option object; 
    local name::string:="";  

    export ModuleCopy::static:= proc( self, proto, name::string, $)          
         self:-name := name;
    end proc;

    export process_1::static:=proc(_self,$)
       _self:-process_2();
    end proc;

    local process_2::static:=proc(_self,$)
       print("in process_2 ",_self:-name);
    end proc;

end module; 

The above works by having all methods at same level. I can now do 

o:=Object(A,"me");
o:-process_1()

                  "in process_2 ", "me"

But now as the number of private methods increases I want to put a name space around collection of these for better orgnization, but keep all methods logically as part of the object as before.

I change the above to be

restart;

A:=module() 
    option object; 
    local name::string:="";  

    export ModuleCopy::static:= proc( self, proto, name::string, $)          
         self:-name := name;
    end proc;

    export process_1::static:=proc(_self,$)
       o:-B:-process_2();
    end proc;
    
    #method process_2 is now inside a module. 
    local B::static:=module()
       export process_2::static:=proc(_self,$)
           print("in B:-process_2 ",_self:-name);
       end proc;
    end module;

end module; 

Now

o:=Object(A,"me");
o:-process_1()

Gives an error

Error, (in unknown) invalid input: process_2 uses a 1st argument, _self, which is missing

I tried many different combinations, but nothing works.

So right now I have all methods flat. All at same level. But I do not like this setup. Since I lose the nice modular orgnization I had with using different modules with different methods inside different modules.  

Is there a way to have a module inside an object and call its methods from inside the object as if these method were part of the object private method with only differece is adding the module name in between?

So instead of _self:-foo()  I just change it to  _self:-B:-foo() and have both behave the same way?

In C++, one can use what is called a friend class to do this. 

Please I will like to know if there exists any command to isolate the known regular mathematical functions from an expression. For example, given the equation 

I need a means of isolating (ex & sin(v)) from the above expression

Thanks

First 301 302 303 304 305 306 307 Last Page 303 of 2219