Ahmed111

140 Reputation

5 Badges

7 years, 126 days

MaplePrimes Activity


These are questions asked by Ahmed111

I am trying to solve a set of differential equations in maple. The maple code:

de1:=diff(u1(x,t),x)=-h*(u1(x,t))+i*exp(-i*t)*(u2(x,t));
              d
       de1 := -- u1(x, t) = -h u1(x, t) + i exp(-i t) u2(x, t)
              dx

> de2:=diff(u1(x,t),t)=(-h-i/2)*u1(x,t)-h*exp(-i*t)*u2(x,t);

         d
  de2 := -- u1(x, t) = (-h - 1/2 i) u1(x, t) - h exp(-i t) u2(x, t)
         dt

> dsolve({de1,de2},{u1(x,t),u1(x,t)});
 

However, when I execute it, maple show "Warning: system is consistent". How to remove it

I am trying to solve system of coupled equations in maple, but when I execute it, maple gives a trivial answer. Here is the code:

de1:=diff(u1(x,t),x)=(i/lambda)*(p*u1(x,t)+q*u2(x,t));
                  d             i (p u1(x, t) + q u2(x, t))
           de1 := -- u1(x, t) = ---------------------------
                  dx                      lambda

> de2:=diff(u2(x,t),x)=(i/lambda)*(q*u1(x,t)-p*u2(x,t));

                  d             i (q u1(x, t) - p u2(x, t))
           de2 := -- u2(x, t) = ---------------------------
                  dx                      lambda

> de3 := diff(u1(x,t),t) = -(i*lambda/2)*u1(x,t)-q*u2(x,t);

             d
      de3 := -- u1(x, t) = - 1/2 i lambda u1(x, t) - q u2(x, t)
             dt

> de4 := diff(u2(x,t),t) = 1/2*i*lambda*u2(x,t)+q*u1(x,t);

              d
       de4 := -- u2(x, t) = 1/2 i lambda u2(x, t) + q u1(x, t)
              dt

> dsolve({de1,de2,de3,de4},{u1(x,t),u2(x,t)});
 

how to solve differential equations with dependent functions in maple? 

First 7 8 9 Page 9 of 9