Christopher2222

MaplePrimes Activity


These are replies submitted by Christopher2222

At work I don't have access to Maple but I do have access to Excel, so I just whipped up a simple little excel sheet, that simulates Player A picking a new random number if it's below a threshold value.

Of course Maple worksheet would be better, but for now and for interest, I have attached the excel file.

**edit change - formula in cells weren't quite right - fixed and updated version is below

Rand_excel_3.xls

@marc005 Yes exactly one dollar - a fool I was.  I suppose leaving out the word exactly in the question made me mis-interperet the question but something I obviously overlooked.  A guess of 10 cents, as 50% of the Harvard, MIT and Princeton students guessed, would make the bat $1.10 and the total $1.20 which is indeed wrong.

On interpretations of the same sentence.  
He didn't marry her because she was rich - (he didn't marry her)
He didn't marry her because she was rich - (he did marry her)

I'm playing devils advocate here, why are the other 10 solutions wrong?

ie

Bat     Ball      Total
-----------------------

1.10   0          1.10
1.09   .01       1.10
1.08   .02       1.10
1.07   .03       1.10
1.06   .04       1.10
1.05   .05       1.10
1.04   .06       1.10
1.03   .07       1.10
1.02   .08       1.10
1.01   .09       1.10
1.00   .10       1.10

In all the solutions above the bat satisfies being $1 more than the ball.   While at the same time, the ball and the bat will be totalling $1.10.

On the subject of fuel efficiency, if you ride the bumper of a transport truck you reduce the effects of air drag.  Take this model I produced in Cosmos Flo Works from solidworks of a simple rectangular box moving through air at highway speed.

 

It would be interesting to see how easily this model could be produced in Maple.

On the topic of gas consumption.  It is said that if you idle your car for more than 10 sec. you should turn off your car otherwise you'll be wasting fuel.  It is simple math but rather than take it for granted let's prove it once and for all.

So lets see.  Although not much Maple but still in the spirit of the topic. 

They say starting a car uses roughly 1/2 tsp. of fuel and ilding a typical 4 cylinder vehicle will use about 0.25 - 0.3 gal./hr.  

convert( 0.5 , 'units' , 'tsp' , 'ml')                          2.46446079

That is starting your car will use about 2.46 mL of fuel.  Taking the lower end consumption we will just convert the .25 gal/hr to mL/(10 sec.) 

idling:=0.25 * Unit ( gal / h )
                         

convert( idling, units, ml/(10 s) )

                         

And there we have it.  Based on the given information starting your car uses 2.46 mL of fuel and idling it for 10 seconds uses 2.63 mL of fuel.  So yes indeed you will use more fuel idling your car for ten seconds than if you just turned it off. 

So what about turning your car off at stoplights?  I can't really weigh in on that one.  I haven't looked into it, but I would believe that starting and stopping your engine 30 times a day can't be too good on your engine (ie heat build up in the engine from no coolant flow, wear on the starter motor etc..) and won't outweigh any gain in fuel savings. 

 

With a bimodal set of data I can't see why Mode shouldn't show both results ie {22,23}  Similarily with trimodal datasets, I think 3 values should be shown.

Pehaps the way Mode works should be altered slightly?

With a bimodal set of data I can't see why Mode shouldn't show both results ie {22,23}  Similarily with trimodal datasets, I think 3 values should be shown.

Pehaps the way Mode works should be altered slightly?

Maple's adaptability makes it easy to add such functions.  Thanks.  I was just curious that maybe I was overlooking a command somewhere. 

Could also just multiply the binomial by r! -  convert(r!*binomial(n,r),factorial)

 

Also, I never knew .. something like .. a:=unapply(b/c,b,c) was equivalent to a:=(b,c)->b/c  I haven't realized unapply could be used that way thanks for that too.

 

Maple's adaptability makes it easy to add such functions.  Thanks.  I was just curious that maybe I was overlooking a command somewhere. 

Could also just multiply the binomial by r! -  convert(r!*binomial(n,r),factorial)

 

Also, I never knew .. something like .. a:=unapply(b/c,b,c) was equivalent to a:=(b,c)->b/c  I haven't realized unapply could be used that way thanks for that too.

 

Not really maple related, but simply, you have 52 cards and half (26) of them are black it is 26/52 = 0.5

How about what is the probability of picking 5 black cards?
26/52 * 25/51 * 24/50 * 23/49 * 22/48  = .02531012404

And two cards

1 red and 1 black card?
26/52*26/51 = 0.2549019608

2 red cards
26/52 * 25/51 = 0.2450980392

That is your more likely to pick one black and one red than you are of two cards the same color.

Ah, okay numpoints default is 50 in M12 the numpoints default in M17 is 200.  Changing to 200 in M12 with anti-aliasing on, achieves the same wavering result shown in M17

Interestingly even numbered points specified in numpoints has the x^2 line away from the x axis.  For M12 not specifying numpoints=50 uses a default of 50 but uses different points (and the line is on the axis) Why is that?

Ah, okay numpoints default is 50 in M12 the numpoints default in M17 is 200.  Changing to 200 in M12 with anti-aliasing on, achieves the same wavering result shown in M17

Interestingly even numbered points specified in numpoints has the x^2 line away from the x axis.  For M12 not specifying numpoints=50 uses a default of 50 but uses different points (and the line is on the axis) Why is that?

Actually copying the lprint output of Maple 17 to M12 and running the PLOT(CURVES(Matrix .. HFloats ..))  uses 11Mb and maybe slightly produces the waiver in the line but is not too noticeable. 

using showstat(plot) the calling to underlying routines is exactly the same.  Perhaps some wrapper calling an M12 routine in M17 could produce the same CURVES plot without the Matrix?

using lprint we can see what's involved in drawing the curves.

In M12 lprint(%) produces

PLOT(CURVES([[-10., 100.], [-9.56405691666666690, 91.4711847052395086], [-9.18474517083333274, 84.3595438531462208], [-8.75816944166666644, 76.7055319689438022], [-8.32876609166666704, 69.3683446096964503], [-7.90140362083333336, 62.4321791793181120], [-7.50518390416666659, 56.3277854353624079], [-7.09492133750000064, 50.3379087853127985], [-6.67062720416666632, 44.4972672969683956], [-6.24769378749999938, 39.0336776623660882], [-5.81265478333333263, 33.7869556302078706], [-5.42947219166666617, 29.4791682800816304], [-4.99809934999999950, 24.9809971124704192], [-4.56495524999999968, 20.8388164345025580], [-4.14754064999999984, 17.2020934434024220], [-3.76848820416666630, 14.2015033449433048], [-3.31775818333333294, 11.0075193630752981], [-2.93593073333333265, 8.61968927093120030], [-2.49177463749999984, 6.20894084408825542], [-2.09862123333333360, 4.40421108099752257], [-1.66726963749999868, 2.77978804412937696], [-1.25652091249999920, 1.57884480354983058], [-.827947708333331534, .685497407734415476], [-.434383720833332987, .188689216925010978], [-0.987179166666685150e-2, 0.974522707100730932e-4], [.431076795833334359, .185827203905934240], [.814923837500000302, .664100860925726955], [1.22948915833333494, 1.51164359045921226], [1.65777570000000018, 2.74822027151049042], [2.07677052500000058, 4.31297581350877835], [2.48216956250000110, 6.16116573700144698], [2.93229607500000000, 8.59836027146040570], [3.33675476666666526, 11.1339323728727120], [3.76860075000000094, 14.2023516129005696], [4.15991739583333242, 17.3049127401567731], [4.58772985000000232, 21.0472651765810426], [4.99026802916666590, 24.9027750029229616], [5.41103641250000145, 29.2793150574008863], [5.82241441666666582, 33.9005096394078294], [6.25308906249999908, 39.1011228235571196], [6.66787993333333516, 44.4606228053493596], [7.09206350833333586, 50.2973648062333467], [7.51273462916666901, 56.4411816082800471], [7.89928770000000212, 62.3987461673713213], [8.34232114166666960, 69.5943220306986916], [8.73857553333333570, 76.3627023517719863], [9.16106536250000048, 83.9251185759972600], [9.56544203750000222, 91.4976813727721918], [10., 100.]], COLOUR(RGB, 1.00000000, 0., 0.)), AXESLABELS(x, ""), VIEW(-10. .. 10., DEFAULT))

Having access to M17 once again we can see M17's underlying structure

PLOT(CURVES(Matrix(200, 2, {(1, 1) = HFloat(-10.), (1, 2) = HFloat(100.), (2, 1) = HFloat(-9.89484789949748666), (2, 2) = HFloat(97.9080149541898238), (3, 1) = HFloat(-9.80335561909547692), (3, 2) = HFloat(96.1057813944508581), (4, 1) = HFloat(-9.70046298090452197), (4, 2) = HFloat(94.0989820438990421), (5, 1) = HFloat(-9.59688830351758780), (5, 2) = HFloat(92.1002651101926801), (6, 1) = HFloat(-9.49380589849246270), (6, 2) = HFloat(90.1323504382502705), (7, 1) = HFloat(-9.39823531356783980), (7, 2) = HFloat(88.3268270091935932), (8, 1) = HFloat(-9.29927750854271372), (8, 2) = HFloat(86.4765621808883794), (9, 1) = HFloat(-9.19693520502512562), (9, 2) = HFloat(84.5836171654305532), (10, 1) = HFloat(-9.09492111457286434), (10, 2) = HFloat(82.7175900803033102), (11, 1) = HFloat(-8.98998708341708586), (11, 2) = HFloat(80.8198677600060478), (12, 1) = HFloat(-8.89756113165829098), (12, 2) = HFloat(79.1665940915963660), (13, 1) = HFloat(-8.79351140100502526), (13, 2) = HFloat(77.3258427596053650), (14, 1) = HFloat(-8.68903443216080440), (14, 2) = HFloat(75.4993193632760296), (15, 1) = HFloat(-8.58835151356783832), (15, 2) = HFloat(73.7597817206029732), (16, 1) = HFloat(-8.49692177788944746), (16, 2) = HFloat(72.1976796995719639), (17, 1) = HFloat(-8.38820297889447274), (17, 2) = HFloat(70.3619492151341035), (18, 1) = HFloat(-8.29610389547738690), (18, 2) = HFloat(68.8253398445550744), (19, 1) = HFloat(-8.18897076683417068), (19, 2) = HFloat(67.0592422200646325), (20, 1) = HFloat(-8.09413979497487368), (20, 2) = HFloat(65.5150990205958834), (21, 1) = HFloat(-7.99009518894472314), (21, 2) = HFloat(63.8416211283976126), (22, 1) = HFloat(-7.89102011959798942), (22, 2) = HFloat(62.2681985279002675), (23, 1) = HFloat(-7.78764567839195898), (23, 2) = HFloat(60.6474252121769554), (24, 1) = HFloat(-7.69271567135678324), (24, 2) = HFloat(59.1778744003382471), (25, 1) = HFloat(-7.59032083417085434), (25, 2) = HFloat(57.6129703656481312), (26, 1) = HFloat(-7.48396137587939680), (26, 2) = HFloat(56.0096778756546314), (27, 1) = HFloat(-7.39137515477386930), (27, 2) = HFloat(54.6324266786084394), (28, 1) = HFloat(-7.29137949949748698), (28, 2) = HFloat(53.1642150056922205), (29, 1) = HFloat(-7.18807420301507526), (29, 2) = HFloat(51.6684107480508104), (30, 1) = HFloat(-7.08701012462311564), (30, 2) = HFloat(50.2257125065105470), (31, 1) = HFloat(-6.98922543216080428), (31, 2) = HFloat(48.8492721415633824), (32, 1) = HFloat(-6.88065220301507540), (32, 2) = HFloat(47.3433747388562125), (33, 1) = HFloat(-6.78309432763819054), (33, 2) = HFloat(46.0103686576373931), (34, 1) = HFloat(-6.67893047236180858), (34, 2) = HFloat(44.6081122546431318), (35, 1) = HFloat(-6.58454253768844210), (35, 2) = HFloat(43.3562004306285474), (36, 1) = HFloat(-6.48135159396984940), (36, 2) = HFloat(42.0079184846555052), (37, 1) = HFloat(-6.38425695778894474), (37, 2) = HFloat(40.7587369030765530), (38, 1) = HFloat(-6.28276508643216048), (38, 2) = HFloat(39.4731371312909118), (39, 1) = HFloat(-6.18353823115577938), (39, 2) = HFloat(38.2361450561651424), (40, 1) = HFloat(-6.07965690954773840), (40, 2) = HFloat(36.9622281378115574), (41, 1) = HFloat(-5.97960685025125560), (41, 2) = HFloat(35.7556980835717440), (42, 1) = HFloat(-5.87729121407035126), (42, 2) = HFloat(34.5425520149885444), (43, 1) = HFloat(-5.77582280301507468), (43, 2) = HFloat(33.3601290518289133), (44, 1) = HFloat(-5.68258387135678332), (44, 2) = HFloat(32.2917594550042466), (45, 1) = HFloat(-5.57572153366834122), (45, 2) = HFloat(31.0886706210128381), (46, 1) = HFloat(-5.48014258492462326), (46, 2) = HFloat(30.0319627511043308), (47, 1) = HFloat(-5.37823549045226112), (47, 2) = HFloat(28.9254169907602724), (48, 1) = HFloat(-5.28069739798994942), (48, 2) = HFloat(27.8857650091378240), (49, 1) = HFloat(-5.17239388140703492), (49, 2) = HFloat(26.7536584644169332), (50, 1) = HFloat(-5.07861099396984894), (50, 2) = HFloat(25.7922896280714156), (51, 1) = HFloat(-4.97216657788944706), (51, 2) = HFloat(24.7224404782808556), (52, 1) = HFloat(-4.87515404824120590), (52, 2) = HFloat(23.7671269940826200), (53, 1) = HFloat(-4.76903758693467328), (53, 2) = HFloat(22.7437195055956920), (54, 1) = HFloat(-4.67747702713567824), (54, 2) = HFloat(21.8787913393820226), (55, 1) = HFloat(-4.57320023718592950), (55, 2) = HFloat(20.9141604093974430), (56, 1) = HFloat(-4.47247400603015066), (56, 2) = HFloat(20.0030237346153825), (57, 1) = HFloat(-4.37181357688442152), (57, 2) = HFloat(19.1127539510309603), (58, 1) = HFloat(-4.27152345929648192), (58, 2) = HFloat(18.2459126633201834), (59, 1) = HFloat(-4.17517605326633134), (59, 2) = HFloat(17.4320950757686184), (60, 1) = HFloat(-4.07102195577889426), (60, 2) = HFloat(16.5732197644338122), (61, 1) = HFloat(-3.97175554874371796), (61, 2) = HFloat(15.7748421389765118), (62, 1) = HFloat(-3.86728232964824058), (62, 2) = HFloat(14.9558726172095238), (63, 1) = HFloat(-3.77270890854271368), (63, 2) = HFloat(14.2333325085975542), (64, 1) = HFloat(-3.66818757386934634), (64, 2) = HFloat(13.4556000770894820), (65, 1) = HFloat(-3.56807434874371854), (65, 2) = HFloat(12.7311545581629116), (66, 1) = HFloat(-3.46820480201005044), (66, 2) = HFloat(12.0284445486855738), (67, 1) = HFloat(-3.36389067336683300), (67, 2) = HFloat(11.3157604623643646), (68, 1) = HFloat(-3.26781355276381902), (68, 2) = HFloat(10.6786054156268922), (69, 1) = HFloat(-3.16941743919597928), (69, 2) = HFloat(10.0452069038795990), (70, 1) = HFloat(-3.06077643819095436), (70, 2) = HFloat(9.36835240458490580), (71, 1) = HFloat(-2.96241091055276406), (71, 2) = HFloat(8.77587840296205712), (72, 1) = HFloat(-2.86181373366834090), (72, 2) = HFloat(8.18997784621272906), (73, 1) = HFloat(-2.75950899597989886), (73, 2) = HFloat(7.61488989889398926), (74, 1) = HFloat(-2.66547103417085384), (74, 2) = HFloat(7.10473583400384090), (75, 1) = HFloat(-2.56522961206030064), (75, 2) = HFloat(6.58040296259104096), (76, 1) = HFloat(-2.46575123417085430), (76, 2) = HFloat(6.07992914881509084), (77, 1) = HFloat(-2.35934029145728540), (77, 2) = HFloat(5.56648661089374830), (78, 1) = HFloat(-2.26543724422110594), (78, 2) = HFloat(5.13220590750411887), (79, 1) = HFloat(-2.15709262110552746), (79, 2) = HFloat(4.65304857602791434), (80, 1) = HFloat(-2.05931995175879390), (80, 2) = HFloat(4.24079866371184089), (81, 1) = HFloat(-1.96257900603015046), (81, 2) = HFloat(3.85171635491029330), (82, 1) = HFloat(-1.85855141105527722), (82, 2) = HFloat(3.45421334753556186), (83, 1) = HFloat(-1.75410300301507506), (83, 2) = HFloat(3.07687734518650436), (84, 1) = HFloat(-1.65907041708542736), (84, 2) = HFloat(2.75251464884801368), (85, 1) = HFloat(-1.55815003216080328), (85, 2) = HFloat(2.42783152272271208), (86, 1) = HFloat(-1.45966159999999868), (86, 2) = HFloat(2.13061198651455630), (87, 1) = HFloat(-1.35289910050251194), (87, 2) = HFloat(1.83033597614050581), (88, 1) = HFloat(-1.26051985527638166), (88, 2) = HFloat(1.58891030554599010), (89, 1) = HFloat(-1.15441893366834058), (89, 2) = HFloat(1.33268307441194844), (90, 1) = HFloat(-1.05467848944723564), (90, 2) = HFloat(1.11234671610270275), (91, 1) = HFloat(-.955901429145727732), (91, 2) = HFloat(.913747542242844713), (92, 1) = HFloat(-.857045790954773068), (92, 2) = HFloat(.734527487793292578), (93, 1) = HFloat(-.756219297487437104), (93, 2) = HFloat(.571867625892392928), (94, 1) = HFloat(-.649344903517588890), (94, 2) = HFloat(.421648803724266830), (95, 1) = HFloat(-.551351549748742897), (95, 2) = HFloat(.303988531410340490), (96, 1) = HFloat(-.454619526633166516), (96, 2) = HFloat(.206678913996164394), (97, 1) = HFloat(-.351214585929648493), (97, 2) = HFloat(.123351685369734440), (98, 1) = HFloat(-.248034748743718226), (98, 2) = HFloat(0.615212365843594290e-1), (99, 1) = HFloat(-.155424717587939298), (99, 2) = HFloat(0.241568428372906860e-1), (100, 1) = HFloat(-0.457214572864312886e-1), (100, 2) = HFloat(0.209045165639496064e-2), (101, 1) = HFloat(0.460731437185923909e-1), (101, 2) = HFloat(0.212273457211406948e-2), (102, 1) = HFloat(.153437240201004243), (102, 2) = HFloat(0.235429866805006716e-1), (103, 1) = HFloat(.255905869346733538), (103, 2) = HFloat(0.654878139661074500e-1), (104, 1) = HFloat(.347398149748743278), (104, 2) = HFloat(.120685474448850263), (105, 1) = HFloat(.450290787939700010), (105, 2) = HFloat(.202761793703355897), (106, 1) = HFloat(.553865465326634165), (106, 2) = HFloat(.306766953681488986), (107, 1) = HFloat(.656947870351759278), (107, 2) = HFloat(.431580504359711903), (108, 1) = HFloat(.752518455276382170), (108, 2) = HFloat(.566284025531552438), (109, 1) = HFloat(.851476260301508248), (109, 2) = HFloat(.725011821857041828), (110, 1) = HFloat(.953818563819094578), (110, 2) = HFloat(.909769852685920144), (111, 1) = HFloat(1.05583265427135764), (111, 2) = HFloat(1.11478259382570033), (112, 1) = HFloat(1.16076668542713612), (112, 2) = HFloat(1.34737929799749990), (113, 1) = HFloat(1.25319263718592922), (113, 2) = HFloat(1.57049178589702398), (114, 1) = HFloat(1.35724236783919672), (114, 2) = HFloat(1.84210684505774935), (115, 1) = HFloat(1.46171933668341758), (115, 2) = HFloat(2.13662341923421018), (116, 1) = HFloat(1.56240225527638366), (116, 2) = HFloat(2.44110080729273004), (117, 1) = HFloat(1.65383199095477452), (117, 2) = HFloat(2.73516025430543319), (118, 1) = HFloat(1.76255078994974924), (118, 2) = HFloat(3.10658528715248483), (119, 1) = HFloat(1.85464987336683328), (119, 2) = HFloat(3.43972615277961058), (120, 1) = HFloat(1.96178300201005130), (120, 2) = HFloat(3.84859254697556884), (121, 1) = HFloat(2.05661397386934652), (121, 2) = HFloat(4.22966103751466527), (122, 1) = HFloat(2.16065857989949706), (122, 2) = HFloat(4.66844549889331172), (123, 1) = HFloat(2.25973364924623078), (123, 2) = HFloat(5.10639616553568754), (124, 1) = HFloat(2.36310809045226122), (124, 2) = HFloat(5.58427984716093206), (125, 1) = HFloat(2.45803809748743874), (125, 2) = HFloat(6.04195128869966780), (126, 1) = HFloat(2.56043293467336852), (126, 2) = HFloat(6.55581681296007802), (127, 1) = HFloat(2.66679239296482428), (127, 2) = HFloat(7.11178166717505356), (128, 1) = HFloat(2.75937861407035356), (128, 2) = HFloat(7.61417033578882485), (129, 1) = HFloat(2.85937426934673410), (129, 2) = HFloat(8.17602121220216914), (130, 1) = HFloat(2.96267956582914494), (130, 2) = HFloat(8.77747020978157088), (131, 1) = HFloat(3.06374364422110724), (131, 2) = HFloat(9.38652511750523110), (132, 1) = HFloat(3.16152833668341770), (132, 2) = HFloat(9.99526142365221836), (133, 1) = HFloat(3.27010156582914746), (133, 2) = HFloat(10.6935642508382430), (134, 1) = HFloat(3.36765944120602966), (134, 2) = HFloat(11.3411301119441088), (135, 1) = HFloat(3.47182329648241250), (135, 2) = HFloat(12.0535570019980050), (136, 1) = HFloat(3.56621123115577988), (136, 2) = HFloat(12.7178625452216228), (137, 1) = HFloat(3.66940217487437080), (137, 2) = HFloat(13.4645123209727622), (138, 1) = HFloat(3.76649681105527812), (138, 2) = HFloat(14.1864982276895795), (139, 1) = HFloat(3.86798868241206150), (139, 2) = HFloat(14.9613364472677954), (140, 1) = HFloat(3.96721553768844260), (140, 2) = HFloat(15.7387991224765980), (141, 1) = HFloat(4.07109685929648358), (141, 2) = HFloat(16.5738296377736916), (142, 1) = HFloat(4.17114691859296548), (142, 2) = HFloat(17.3984666164875926), (143, 1) = HFloat(4.27346255477386806), (143, 2) = HFloat(18.2624822070543935), (144, 1) = HFloat(4.37493096582914730), (144, 2) = HFloat(19.1400209557707548), (145, 1) = HFloat(4.46816989748743688), (145, 2) = HFloat(19.9645422328128924), (146, 1) = HFloat(4.57503223517587898), (146, 2) = HFloat(20.9309199528983996), (147, 1) = HFloat(4.67061118391960050), (147, 2) = HFloat(21.8146088313548532), (148, 1) = HFloat(4.77251827839195996), (148, 2) = HFloat(22.7769307175853584), (149, 1) = HFloat(4.87005637085427346), (149, 2) = HFloat(23.7174490552982960), (150, 1) = HFloat(4.97835988743718616), (150, 2) = HFloat(24.7840671688435920), (151, 1) = HFloat(5.07214277487437216), (151, 2) = HFloat(25.7266323287102950), (152, 1) = HFloat(5.17858719095477404), (152, 2) = HFloat(26.8177652943208572), (153, 1) = HFloat(5.27559972060301518), (153, 2) = HFloat(27.8319524120266132), (154, 1) = HFloat(5.38171618190954782), (154, 2) = HFloat(28.9628690626270818), (155, 1) = HFloat(5.47327674170854372), (155, 2) = HFloat(29.9567582913276916), (156, 1) = HFloat(5.57755353165829248), (156, 2) = HFloat(31.1091033985138914), (157, 1) = HFloat(5.67827976281407132), (157, 2) = HFloat(32.2428610647838241), (158, 1) = HFloat(5.77894019195979958), (158, 2) = HFloat(33.3961497422483618), (159, 1) = HFloat(5.87923030954773828), (159, 2) = HFloat(34.5653490327047948), (160, 1) = HFloat(5.97557771557789152), (160, 2) = HFloat(35.7075290349110902), (161, 1) = HFloat(6.07973181306532950), (161, 2) = HFloat(36.9631389187986414), (162, 1) = HFloat(6.17899822010050314), (162, 2) = HFloat(38.1800190040051888), (163, 1) = HFloat(6.28347143919598140), (163, 2) = HFloat(39.4820133271916164), (164, 1) = HFloat(6.37804486030150740), (164, 2) = HFloat(40.6794562400184746), (165, 1) = HFloat(6.48256619497487564), (165, 2) = HFloat(42.0236644722310402), (166, 1) = HFloat(6.58267942010050432), (166, 2) = HFloat(43.3316683478147127), (167, 1) = HFloat(6.68254896683417242), (167, 2) = HFloat(44.6564606941364630), (168, 1) = HFloat(6.78686309547738632), (168, 2) = HFloat(46.0615106767528886), (169, 1) = HFloat(6.88294021608040296), (169, 2) = HFloat(47.3748660181369417), (170, 1) = HFloat(6.98133632964824358), (170, 2) = HFloat(48.7390569476664126), (171, 1) = HFloat(7.08997733065326586), (171, 2) = HFloat(50.2677785491772085), (172, 1) = HFloat(7.18834285829145968), (172, 2) = HFloat(51.6722730483498296), (173, 1) = HFloat(7.28894003517588018), (173, 2) = HFloat(53.1286468363897626), (174, 1) = HFloat(7.39124477286432224), (174, 2) = HFloat(54.6304992923941698), (175, 1) = HFloat(7.48528273467336902), (175, 2) = HFloat(56.0294576179992276), (176, 1) = HFloat(7.58552415678392222), (176, 2) = HFloat(57.5401767331524354), (177, 1) = HFloat(7.68500253467336946), (177, 2) = HFloat(59.0592639579361105), (178, 1) = HFloat(7.79141347738693568), (178, 2) = HFloat(60.7061239756067792), (179, 1) = HFloat(7.88531652462311428), (179, 2) = HFloat(62.1782166934943490), (180, 1) = HFloat(7.99366114773869540), (180, 2) = HFloat(63.8986185448671194), (181, 1) = HFloat(8.09143381708542718), (181, 2) = HFloat(65.4713012162736448), (182, 1) = HFloat(8.18817476281407152), (182, 2) = HFloat(67.0462059463852711), (183, 1) = HFloat(8.29220235778894832), (183, 2) = HFloat(68.7606199425205916), (184, 1) = HFloat(8.39665076582914692), (184, 2) = HFloat(70.5037440832991962), (185, 1) = HFloat(8.49168335175879462), (185, 2) = HFloat(72.1086861465374796), (186, 1) = HFloat(8.59260373668341870), (186, 2) = HFloat(73.8328389756658510), (187, 1) = HFloat(8.69109216884422152), (187, 2) = HFloat(75.5350830873453560), (188, 1) = HFloat(8.79785466834171004), (188, 2) = HFloat(77.4022467652620208), (189, 1) = HFloat(8.89023391356784030), (189, 2) = HFloat(79.0362590379517513), (190, 1) = HFloat(8.99633483517587962), (190, 2) = HFloat(80.9340404665990150), (191, 1) = HFloat(9.09607527939698812), (191, 2) = HFloat(82.7385854884569910), (192, 1) = HFloat(9.19485233969849602), (192, 2) = HFloat(84.5453095488589100), (193, 1) = HFloat(9.29370797788944714), (193, 2) = HFloat(86.3730079782859548), (194, 1) = HFloat(9.39453447135678486), (194, 2) = HFloat(88.2572779335109061), (195, 1) = HFloat(9.50140886532663487), (195, 2) = HFloat(90.2767704261075750), (196, 1) = HFloat(9.59940221909547730), (196, 2) = HFloat(92.1485229639751680), (197, 1) = HFloat(9.69613424221105546), (197, 2) = HFloat(94.0150192429777576), (198, 1) = HFloat(9.79953918291457526), (198, 2) = HFloat(96.0309681974780602), (199, 1) = HFloat(9.90271902010050198), (199, 2) = HFloat(98.0638439910602529), (200, 1) = HFloat(10.), (200, 2) = HFloat(100.)}, datatype = float[8], storage = rectangular, order = Fortran_order, shape = []), COLOUR(RGB, .47058824, 0., 0.54901961e-1, _ATTRIBUTE("source" = "mathdefault"))), AXESLABELS(x, ""), VIEW(-10. .. 10., DEFAULT, _ATTRIBUTE("source" = "mathdefault")))

Whoa!  much longer and a lot of HFloat's.  I don't know if we need the HFloats in there, do we?  Isn't that a bit excessive?

Indeed if we enter M12's lprint output in Maple17 we can replicate M12's output in M17.  But how can we do it more simply (as a plot command)?  It appears the underlying default controlling the plot structure immediately uses Matrix.  Anyone?  Any insight?

Regarding the girl probability, would it make a difference if the boy was older or younger than the sibling? 

Outside of the original question - an interesting thought - I would like to think there are most likely other factors at play, since it is the male who is the only one to contribute an X or a Y chromosome hence determine the sex of the child.   Wouldn't his interactions with other people, that is if he hung around more females cause him to have a higher male Y chromosome probability and thus have a boy and similarily hanging around more guys cause him to have a higher X chromosome contribution hence a girl?  That would make a ladies man more likely to have a boy as their first child. 

First 79 80 81 82 83 84 85 Last Page 81 of 162