Kitonum

21485 Reputation

26 Badges

17 years, 55 days

MaplePrimes Activity


These are answers submitted by Kitonum

3^((x+3)/(5*x-2))-4 >= 5*3^((9*x-7)/(5*x-2)):  #   The original inequality

convert((x+3)/(5*x-2), parfrac);

convert((9*x-7)/(5*x-2), parfrac);

# Change in the original inequality y=3^(17/5/(5*x-2))

solve(5*(3^(9/5))/y<=(3^(1/5))*y-4, y);  # Solution for y

solve(3^(17/5/(5*x-2))>=3*3^(4/5));  # The final result

restart;

with(RealDomain):

sys := {x = expand(a*(3*cos(t) - cos(3*t))), y = simplify(expand(a*(3*sin(t) - sin(3*t))))};

subs(sin(t)=solve(sys[2], sin(t)), subs(cos(t)=sqrt(1-sin(t)^2), sys[1]));

eq:=subs(y=abs(y), simplify(lhs(%)^2=rhs(%)^2)) ;

a:=1:   plots[implicitplot](eq, x=-4..4, y=-4..4, thickness=2, numpoints=10000);

The next procedure solves the problem:

Divs:=proc(n)

local L, M, Div, k, i, K, j, T, P;

uses numtheory;

 

if n=1 then return [1,1] else

 

L[1]:=[[n]];

M:=[];

Div:=divisors(n) minus {1, n};

for k in Div while n/k>=k do

M:=[op(M), [n/k, k]];

od;

L[2]:=M;

 

for i from 3 to bigomega(n) do

K:=[];

for j from 1 to nops(L[i-1]) do

Div:=divisors(L[i-1][j,1]) minus {1, L[i-1][j,1]};

for k in Div while L[i-1][j,1]/k>=k and k>=L[i-1][j,2] do

K:=[op(K),[L[i-1][j, 1]/k, k, op(L[i-1][j][2..nops(L[i-1][j])])]];

od; od;

L[i]:=K;

od;

 

L:=[seq(L[i], i=1..bigomega(n))];

 

M:=[]; T:=[seq(ithprime(k), k=1..bigomega(n))];

for i from 1 to nops(L) do

P[i]:=[seq(T[k], k=1..i)];

for j from 1 to nops(L[i]) do

M:=[op(M), mul(P[i][t]^(L[i][j,t]-1), t=1..nops(P[i]))];

od: od:

 

[n, min(M)]; fi;

 

end proc:

 

Example:

 

[seq(Divs(n), n=1..100)];

 

alpha:=Pi/2:

plot3d([r*cos(t), r*sin(t)*cos(alpha), r*sin(t)*sin(alpha)], t=0..Pi, r=0..1, scaling=constrained, axes=normal, view=[-1..1, -1..1, -1..1]);

Easy to prove that the formula

a(n)=-1/3*n^5+65/12*n^4-193/6*n^3+1057/12*n^2-108*n+48

gives the integer values ​​for each n.

The first 10 terms of the sequence:

1, 3, 6, 12, 33, 51, -22, -384, -1383, -3557

In Maple a function can be specified as follows:

 f:=x->f(x)

For your example:

f:=x->x^2+2*x:

f(x+1);

(x+1)^2+2*(x+1)

 

The natural domain and the range of the function  x->sqrt(x+1)  of real variable x  can be found as follows:

 

Domain:=solve(x+1>=0);

r:=convert(domain, list);

Range=minimize(sqrt(x+1), x=r[1]..r[2])..maximize(sqrt(x+1), x=r[1]..r[2]);

                                Domain:=RealRange(0, infinity)

                                            r:=[-1, infinity]

                                          Range=0..infinity

 

Thanks Aser. Your code is perfect!

 

Adjustment of Brian Bovril's  code:

 

restart;

with(combinat);

DartSum := proc (Darts, Total)

local L, N, S, x, n;

 L := choose([seq(10, i = 1 .. Darts), seq(20, i = 1 .. Darts), seq(30, i = 1 .. Darts), seq(40, i = 1 .. Darts), seq(50, i = 1 .. Darts)], Darts):

N := nops(L); n:=0;

 for x to N do

 S := add(i, i = L[x]);

if S <> Total

then next

else print(L[x]); n:=n+1;

 end if

 end do;

if n=0 then print("does not exist"); fi; 

 end proc;

The routine:

Darts:=proc(n::integer, L::list, Total::integer)  # n - the number of shots,  L -  the list of the numbers on the target,  Total - total amount of points  

local l, M, S, T, U, c;

l:=nops(L);

M:=[seq(floor(Total/L[i]), i=1..l)];

S:=seq([seq([k,L[i]], k=0..M[i])], i=1..l);

T:=combinat[cartprod]([S]):

U:=[];

while not T[finished] do

c:=T[nextvalue]();

if add(c[i,1], i=1..l)=n and add(c[i,1]*c[i,2], i=1..l)=Total then U:=[op(U), c]; fi;  od;

U; # List of all variants

end proc;

 

Examples:

We will use "a prime" sign instead "a dot" sign. Your second-order equation with the initial conditions  x''+2 x'+3 x=4 t, x(0)=1, x'(0)=2,  can be written as a system of first-order equations  {x'=y, y'=-3 x-2 y+4 t, x(0)=1, y(0)=2} . Then solve this system by  Euler method just as one first-order equation.

1) Find the equation of the tangent line at any point (x0, y0) of the circle.

2) Write down the condition that the tangent line passes through the point (4,1).

3) Solving the resulting system of two equations with two unknowns x0 and y0, find the point of contact, and then the  tangent line. Get two solutions.

Express   z   through  x  and  y , substitute into the formula for  L  and then find the minimum of the resulting function of two variables:

minimize(4*x+2*y+64/x/y, x>0, y>0, location);

           24, {[{x = 2, y = 4}, 24]}

Parametric representation of the surface:

plot3d([r*cos(t), r*sin(t), sqrt(25-r^2)],t=0..2*Pi,r=0..5, scaling=constrained, axes=normal, view=[-7.5..7.5, -7.5..7.5, -1..7.5]);

We have 64 points  with coordinates (x_i, y_j), where  x_i=1..8, y_j=1..8 . The right answer is 16 points (2 points in each row and each column):

4  4  8  8  2  2  6  6

3  3  7  7  1  1  5  5

For brevity,  only the second coordinates are specified. The first column contains  the points for which the first coordinates equal to 1 and so on.

Obviously, if the number of points is greater than 16, at least three points lie in one line.

 This problem was discussed at the Russian site  http://dxdy.ru/topic62965.html

I think the solving this problem in Maple is not easy - it takes too long time.

 

restart;

k:=2: M:=10*exp(-t/5)+3*(1-exp(-t/5)):

dsolve({diff(y(t),t)=k*(1-y(t)/M)*y(t), y(0)=1});

assign(%);

Limit('y(t)', t=infinity)=limit(y(t), t=infinity);

plot(y(t), t=0..20, thickness=2);

First 272 273 274 275 276 277 278 Last Page 274 of 290