Kitonum

21475 Reputation

26 Badges

17 years, 49 days

MaplePrimes Activity


These are answers submitted by Kitonum

EM:=unapply([E01$a,E02$b,E03$c], a,b,c):

EM(1,3,2);

EM(2,2,1);

evalf(Int(sqrt(x^3+1), x=1..2));

2.129861293

I think I understand what you need. Use a double loop as follows:

L:=[0,1,2]:

M:=[]:

for i to nops(L) do

for j to nops(L) do

M:=[op(M), [L[i], L[j]]]:

od: od:

M;

If your polynomial is a quadratic form, then use the Sylvester criterion. For an arbitrary polynomial  the appropriate command in Maple is unknown to me.

Repetitive elements can easily remove from the list, making the set from the list.

L:=[0, 0, 1, 1, 2, 2]:

M:={op(L)}:

combinat[choose](M,2);

{{0,1},{0,2},{1,2}}

a:=Matrix([[4,3,4],[7,7,3],[7,3,1]]):

b:=Matrix([[6,3,5],[9,8,0],[8,8,1]]):

L:=[a,b,b,a]:

add(LinearAlgebra[DiagonalMatrix]([0$(2*i-2),L[i],0$(8-2*i)]),i=1..nops(L));

r:=25:

Sol:=dsolve({diff(x(t),t)=-10*x(t)+10*y(t), diff(y(t),t)=r*x(t)-y(t)-x(t)*z(t), diff(z(t),t)=(-8/3)*z(t)+x(t)*y(t), x(0)=-1, y(0)=-1, z(0)=1}, numeric):

plots[odeplot](Sol,[x(t), y(t), z(t)], 0..30, axes=normal, numpoints=10000);

 

It turns out a very interesting picture:

See  plots[matrixplot]  command.

f := (x, y) -> ((2*x^2+y^2*(x^2*(-2+sqrt(1/x^4+4/(x^2*y^2)+4/y^4+4))-1))/(4*x^2-2*y^2+4))^(1/2) ;

g := unapply(diff(f(x, y), x), x,y);

plot([g(.1, y), g(1, y), g(3, y)], y = 0 .. 10);

 

A:=Matrix([[2,2,8,5], [6,3,4,9], [5,5,7,4], [2,1,3,2]]);

interface(rtablesize=100):

B:=LinearAlgebra[DiagonalMatrix]([A, -A, A]);

Instead of L in fsolve command after comma write L=0..infinity

You have a rather complicated transcendental equation. Solve command does not solve such equations. Replace solve command by fsolve command.

A:=plot(x, x=0..1):

B:=plot(x^2, x=0..1):

C:=plot(x^5, x=0..1):

plots[display](array([A, B, C]), scaling=constrained, thickness=2);

The function

x->2*a/Pi*arcsin(sin(2*Pi*x/b))

gives a triangular signal between -a and a with the period b .

An example:

a:=1: b:=4:

plot(2*a/Pi*arcsin(sin(2*Pi*x/b)), x=0..8, thickness=2, scaling=constrained);

 

Dr:=[[1,5],[2,6],[3,4],[4,5],[5,7],[6,8],[7,4],[8,6],[9,5],[10,7]]:

Y:=proc(i) Dr[i,2] end; ty:=proc(i) Dr[i,1] end;

P[X](omega)=(1/2)*{(Sum('Y'(j)*cos(omega*('ty'(j)-1/(2*omega*tan((Sum(sin(2*omega*'ty'(j)),j=1..N[0]))/(Sum(cos(2*omega*'ty'(j)),j=1..N[0]))))))^2,j=1..N[0]))/(Sum(cos(omega*('ty'(j)-1/(2*omega*tan((Sum(sin(2*omega*'ty'(j)),j = 1..N[0]))/(Sum(cos(2*omega*'ty'(j)),j=1..N[0]))))))^2,j= 1..N[0]))+(Sum('Y'(j)*sin(omega*('ty'(j)-1/(2*omega*tan((Sum(sin(2*omega*'ty'(j)),j=1..N[0]))/(Sum(cos(2*omega*'ty'(j)),j=1..N[0]))))))^2,j=1..N[0]))/(Sum(sin(omega*('ty'(j)-1/(2*omega*tan((Sum(sin(2*omega*'ty'(j)),j=1..N[0]))/(Sum(cos(2*omega*'ty'(j)),j =1 .. N[0]))))))^2,j=1..N[0]))};

First 279 280 281 282 283 284 285 Last Page 281 of 290