Kitonum

21475 Reputation

26 Badges

17 years, 52 days

MaplePrimes Activity


These are answers submitted by Kitonum

The visualization shows that Maple returns the correct result, which can be simplified (see the last line of the code):


 

NULL

restart;
f := 1-4*(x-1)*(1+y)/(x^2*(1-y)):
solve(f>0, useassumptions) assuming  1<=x, x<=4, 0<y,y<1;
y:=x->solve(f, y);
A:=plot3d(f, x=1..4, y=0..1):
B:=plots:-spacecurve([x,y(x),0], x=1..4, color=red, thickness=3):
C:=plot3d(0, x=1..4, y=0..1, color=yellow, transparency=0.5):
plots:-display(A, B, C, view=[0..4,0..1,-5..5], axes=normal);
plots:-inequal([{0 < y, 1 <= x, x < 2, y < (x^2-4*x+4)/(x^2+4*x-4)}, {0 < y, 2 < x, x <= 4, y < (x^2-4*x+4)/(x^2+4*x-4)}], x=1..4, y=0..1, color=green, nolines); # Visualization of the answer
{y>0, 1 <= x, x < 2, y < (x^2-4*x+4)/(x^2+4*x-4)},{0 < y, 2 < x, x <= 4, y < (x^2-4*x+4)/(x^2+4*x-4)};  # This is the answer (the domain is the union of 2 flat regions)

{x = 1, 0 < y, y < 1}, {0 < y, 1 < x, x < 2, y < (x^2-4*x+4)/(x^2+4*x-4)}, {0 < y, 2 < x, x < 4, y < (x^2-4*x+4)/(x^2+4*x-4)}, {x = 4, 0 < y, y < 1/7}

 

proc (x) options operator, arrow; solve(f, y) end proc

 

 

 

{1 <= x, 0 < y, x < 2, y < (x^2-4*x+4)/(x^2+4*x-4)}, {x <= 4, 0 < y, 2 < x, y < (x^2-4*x+4)/(x^2+4*x-4)}

(1)

``


 

Download positive_function_new2.mw

This can be done in many ways. Here are 2 ways:


 

Example: Using a Formula

 

Height of a Cylinder:

ex6v := 600

ex6r := 4

ex6h := ex6v/(Pi*ex6r^2); plot3d([0, ex6h], x = -4 .. 4, y = -sqrt(4^2-x^2) .. sqrt(4^2-x^2), style = surface, filled); plots:-display(plottools:-cylinder([0, 0, 0], ex6r, ex6h, style = surface, strips = 100))

(75/2)/Pi

 

 

 

NULL


 

Download heightofcylinder-new.mw

Your matrix equation  S*A*inverse(S)=A  is equivalent to  S*A-A*S=0  provided that  det(S)<>0 .
The solution is below:


 

restart;
A:=Matrix([[1,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]):
S:=Matrix([[a,b,c,d],[e,f,g,h],[i,j,k,l],[m,n,o,p]]):
S.A-A.S;

Matrix(4, 4, {(1, 1) = 0, (1, 2) = -b, (1, 3) = -c, (1, 4) = -d, (2, 1) = e, (2, 2) = 0, (2, 3) = 0, (2, 4) = 0, (3, 1) = i, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (4, 1) = m, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0})

(1)

S:=<a,0,0,0; 0,f,g,h; 0,j,k,l; 0,n,o,p>;
LinearAlgebra:-Determinant(S);

Matrix(4, 4, {(1, 1) = a, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = f, (2, 3) = g, (2, 4) = h, (3, 1) = 0, (3, 2) = j, (3, 3) = k, (3, 4) = l, (4, 1) = 0, (4, 2) = n, (4, 3) = o, (4, 4) = p})

 

a*(f*k*p-f*l*o-g*j*p+g*l*n+h*j*o-h*k*n)

(2)

# Answer: S is any matrix above under the condition
%<>0;

a*(f*k*p-f*l*o-g*j*p+g*l*n+h*j*o-h*k*n) <> 0

(3)

S.A.S^(-1);  # Check

Matrix(4, 4, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0})

(4)

 


 

Download ME.mw

Let  k=theta/V  so  theta=k*V .

isolate(subs(theta = k*V, (1/3)*m*a^2*theta*s^2+(1/16)*m*g*a*sqrt(2)*(4+4*theta-Pi)+theta*B*s = (-K__m^2*s*theta+K__m*V)/(L*s+R)), k);
 ;

                 

In real domain use the  surd  function for this:

 

Example: Verifying Inverse Functions Graphically

 

NULL

"ex17f5(x):=2 x^(3)-1:"

"ex17g5(x):=surd((x+1)/(2),3):  plot([ex17f5(x),ex17g5(x)], x=-4..6, y=-4..6, scaling=constrained);"

 

NULL


The reason that the blue curve is not completely plotted in your document  is that Maple, for a negative number of the three possible values of the cubic root, returns the principal value of the cubic root (with the smallest argument). Compare:
 

simplify((-8)^(1/3)); 
surd(-8, 3)


Download inverseExample_new.mw

In fact, all your functions depend only on the variable  t . I made all the necessary simplifications and changes. In particular, I replaced  combine  with  simplify  with the option  size , because it turns out a more compact expression:

 

restartNULL

V__2six := proc (t) options operator, arrow; diff(x(t), t)-(l__1*sin(`&theta;__si`(t))-l__2c*sin(`&beta;__si`(t)+`&theta;__si`(t)))*cos(psi(t))*(diff(psi(t), t))-sin(psi(t))*(l__1*cos(`&theta;__si`(t))*(diff(`&theta;__si`(t), t))-`l__2&scy;`*cos(`&beta;__si`(t)+`&theta;__si`(t))*(diff(`&theta;__si`(t), t)+diff(`&beta;__si`(t), t))) end proc

proc (t) options operator, arrow; diff(x(t), t)-(l__1*sin(theta__si(t))-l__2c*sin(beta__si(t)+theta__si(t)))*cos(psi(t))*(diff(psi(t), t))-sin(psi(t))*(l__1*cos(theta__si(t))*(diff(theta__si(t), t))-`l__2с`*cos(beta__si(t)+theta__si(t))*(diff(theta__si(t), t)+diff(beta__si(t), t))) end proc

(1)

V__2siy := proc (t) options operator, arrow; -l__1*sin(`&theta;__si`(t))*(diff(`&theta;__si`(t), t))-`l__2&scy;`*sin(`&beta;__si`(t)+`&theta;__si`(t))*(diff(`&theta;__si`(t), t)+diff(`&beta;__si`(t), t)) end proc

proc (t) options operator, arrow; -l__1*sin(theta__si(t))*(diff(theta__si(t), t))-`l__2с`*sin(beta__si(t)+theta__si(t))*(diff(theta__si(t), t)+diff(beta__si(t), t)) end proc

(2)

V__2siz := proc (t) options operator, arrow; diff(z(t), t)+(l__1*sin(`&theta;__si`(t))+l__2c*sin(`&beta;__si`(t)+`&theta;__si`(t)))*sin(psi(t))*(diff(psi(t), t))-cos(psi(t))*(l__1*cos(`&theta;__si`(t))*(diff(`&theta;__si`(t), t))+`l__2&scy;`*cos(`&beta;__si`(t)+`&theta;__si`(t))*(diff(`&theta;__si`(t), t)+diff(`&beta;__si`(t), t))) end proc

proc (t) options operator, arrow; diff(z(t), t)+(l__1*sin(theta__si(t))+l__2c*sin(beta__si(t)+theta__si(t)))*sin(psi(t))*(diff(psi(t), t))-cos(psi(t))*(l__1*cos(theta__si(t))*(diff(theta__si(t), t))+`l__2с`*cos(beta__si(t)+theta__si(t))*(diff(theta__si(t), t)+diff(beta__si(t), t))) end proc

(3)

V__2si := proc (t) options operator, arrow; simplify((V__2six^2+V__2siy^2+V__2siz^2)(t), size) end proc

proc (t) options operator, arrow; simplify((V__2six^2+V__2siy^2+V__2siz^2)(t), size) end proc

(4)

V__2si(t)

(-`l__2с`*sin(psi(t))*(diff(theta__si(t), t)+diff(beta__si(t), t))*cos(beta__si(t)+theta__si(t))+l__1*cos(psi(t))*(diff(psi(t), t))*sin(theta__si(t))+l__1*sin(psi(t))*cos(theta__si(t))*(diff(theta__si(t), t))-l__2c*cos(psi(t))*(diff(psi(t), t))*sin(beta__si(t)+theta__si(t))-(diff(x(t), t)))^2+(`l__2с`*sin(beta__si(t)+theta__si(t))*(diff(theta__si(t), t)+diff(beta__si(t), t))+l__1*sin(theta__si(t))*(diff(theta__si(t), t)))^2+(`l__2с`*cos(psi(t))*(diff(theta__si(t), t)+diff(beta__si(t), t))*cos(beta__si(t)+theta__si(t))+l__1*cos(psi(t))*cos(theta__si(t))*(diff(theta__si(t), t))-l__1*sin(psi(t))*(diff(psi(t), t))*sin(theta__si(t))-l__2c*sin(psi(t))*(diff(psi(t), t))*sin(beta__si(t)+theta__si(t))-(diff(z(t), t)))^2

(5)

``

``


 

Download equations_new.mw

You must specify a sequence step, for example:

f := unapply(3*x^2-2*x^3-1.080674649*x^2*(x-1)^2-.8118769171*x^2*(x-1)^3+.4147046974*x^2*(x-1)^4+.4585681954*x^2*(x-1)^5, x):
ma := seq(f(x), x = 0..1, 0.1);

             ma := 0., 0.02517819625, 0.09374594496, 0.1954298021, 0.3207056009, 0.4607261850, 0.6065902371, 0.7481833253, 0.8728222816, 0.9639340323, 1.000

restart;	
f:=(x,y)->sin(x)*cos(y):
g:=(x,y)->sin(y)*cos(x):
v:=(x,y)->combine(f(x,y)-g(x,y)):
v(x,y);

                                

alpha:=1: dT:=Th-Tc: n:=1:
plot([[Th-273,subs(Tc=400,n*alpha*dT/2),Th=300..700],[Th-273,subs(Tc=500,n*alpha*dT/2),Th=300..700]]);

 

Eq1.mw

restart;
V:=Vector[row]([x,y,z]):
M:=Matrix([seq(seq([`if`(y<>0,eval(solve(x*'y'+'z'=0,x),['y'=y,'z'=z]),undefined),y,z], y=-1..5),z=0..5)]):
interface(rtablesize=50):
<V; M>;

                                           


PS. "undefined" means that if  y=0  then there is no unique value  x  satisfying this equation. However, this case splits into 2 subcase: if  z = 0 , then  x  can be any number, and if  z<>0 , then this  x  does not exist. Below is a version of the code that takes these options into account:

restart;
V:=Vector[row]([x,y,z]):
M:=Matrix([seq(seq([`if`(y<>0,eval(solve(x*'y'+'z'=0,x),['y'=y,'z'=z]),`if`(z<>0,`not exist`,any)),y,z], y=-1..5),z=0..5)]):
interface(rtablesize=50):
<V; M>;

 

Use the tgonometric form of complex numbers:

z1 := cos(alpha)+I*sin(alpha): 
z2 := cos(beta)+I*sin(beta):
is((z1^2+2*z1*z2+z2^2)/(z1+z2) = z1/z2+z2/z1);
is(z1/z2+z2/z1+2 = 2*(1+cos(alpha-beta)));

                                          false
                                           true

I simplified both of your procedures by making the following changes:
1. The parameter of the procedures is taken as a whole vector, and not its coordinates.
2. Used elementwise operators.
3. Used two-argument  arctan .

Now everything works as expected:
 

restart;
UV:=proc(V::Vector)
local r;
  r:=sqrt(add(V^~2));
  if r=0 then return <0,0,0> else V/r fi;
end proc:

PUV:=proc(V::Vector)
local r,inclination,azimuth;
  r:=sqrt(add(V^~2));
   if r = 0 then return <0,0,0> else
      inclination:=arccos(V[3]/r); azimuth:=arctan(V[2],V[1]);
      inclination:=inclination-(Pi/2);
      <sin(inclination)*cos(azimuth),sin(inclination)*sin(azimuth),
      cos(inclination)>
   fi;
end proc:
        

# Tests:

UV(<5,0,0>);
PUV(<5,0,0>);
PUV(<3,4,0>);
PUV(<2,2,1>);

Vector(3, {(1) = 1, (2) = 0, (3) = 0})

 

Vector(3, {(1) = 0, (2) = 0, (3) = 1})

 

Vector(3, {(1) = 0, (2) = 0, (3) = 1})

 

Vector[column](%id = 18446746539489454190)

(1)

plots:-fieldplot3d({PUV(<1, 0, 0>), UV(<1, 0, 0>)}, x = -1 .. 1, y = -1 .. 1, z = -1 .. 1, grid = [2, 2, 2], orientation = [160, 110, -100], arrows = `3-D`);
plots:-fieldplot3d(UV(<x, y, z>), x = -1 .. 1, y = -1 .. 1, z = -1 .. 1, grid = [4, 4, 4], orientation = [160, 110, -100], arrows = `3-D`);

 

 

plots:-fieldplot3d(PUV(<x, y, z>), x = -1 .. 1, y = -1 .. 1, z = -1 .. 1, grid = [4, 4, 4], orientation = [160, 110, -100], arrows = `3-D`);

 

 


 

Download PP.mw

According to Maple's help, in Maple there is no  Vector[col] , but there is  Vector[column]  (or Vector).
In Maple 2018.2, Vector[col] does not kill the session, but just an error message appears.

Apply the  simplify  command to this expression.

 It’s better to do all this programmatically:

g:=t->t*(cos(t)+I*sin(t));
D(g)(2*Pi);

                                    g := t -> t (cos(t) + I sin(t))
                                              1 + 2 I Pi

saw1.mw

restart;
f:=x->4*(x/2/Pi+1/2-floor(x/2/Pi+1/2)-1/2):
A:=plot(f(x), x=-3*Pi..3*Pi, scaling=constrained, color=red, size=[1000,300]);

   
 

a0:=1/Pi*int(f(x),x=-Pi..Pi);
a:=unapply(1/Pi*int(f(x)*cos(n*x),x=-Pi..Pi), n);
b:=unapply(1/Pi*int(f(x)*sin(n*x),x=-Pi..Pi),n);
g:=n->a0/2+add(a(k)*cos(k*x)+b(k)*sin(k*x), k=1..n);
F:=n->plots:-display(A,plot(g(n),x=-3*Pi..3*Pi, color=blue), plots:-textplot([1.2,2.5,N=n], font=[times,bold,18])):
plots:-display(A$5,seq(F(n)$5, n=1..5), seq(F(n), n=6..50), insequence, scaling=constrained, size=[1000,300], axes=none);

Edit.

First 58 59 60 61 62 63 64 Last Page 60 of 290