Kitonum

21500 Reputation

26 Badges

17 years, 60 days

MaplePrimes Activity


These are answers submitted by Kitonum

In the previous answer, the asymptote  y=-x  is omitted. To automatically find all asymptotes (inclined and vertical), use  Student:-Calculus1:-Asymptotes  command:

y:=sqrt(1+x^2):
Student:-Calculus1:-Asymptotes(y,x);
plot([y,x,-x], x=-5..5, -1..5, color=[red,black$2], thickness=[2,1$2], linestyle=[1,3$2], scaling=constrained); # The plotting for a visualization

                  

 

 

It seems that the natural parameterization and calculation of the arc length in this example can only be done numerically:

restart;
r:= t-><cos(2*t), sin(3*t), 4*t>:
L:=unapply(int(sqrt(add(diff(r(t),t)^~2)), t=0..t),t);
f:=s->fsolve(s=L(t),t=0..infinity);
f(1);  # Example
g:=s->r(f(s));
g(1);  # Example

L:=unapply(int(sqrt(add(diff(r(t),t)^~2)), t=t1..t2),t1,t2);
evalf(L(1,3));  # Example

                  

 

restart;
a:= plots:-display(plottools :- arrow( [1, -2], [4, -1], 0.001, 0.05, 0.1)):
b:= plots:-display(plottools :- arrow( [-1, 3], [2, 1], 0.001, 0.05, 0.1)):
c:= plots:-display(plottools :- arrow( [0, 2], [-3, 0], 0.001, 0.05, 0.1)):
plots:-display([plot([[0,0]])$5,a$10,plots:-display([a,b])$10,plots:-display([a,b,c])$10], insequence);

     

 

Replace the last line with
dsx := dsolve(sys_ode, numeric);

Example of use:
dsx(0.1);

See this help page  rtable_indexing

From Fig. 2 it is clearly seen that  f(0)=1  and  D(f)(0)<0 , which contradicts your initial conditions.

 Jayaprakash J   For movable boundary conditions you can use the  Explore  command.

 

Download BVP_new.mw

restart;
  rnge:=-1..1:
  fcns:=[[[0,0]]$5, x$10, [x,x^2]$10, [x,x^2,(1-x)]$10]:
  plots:-display( [ seq
                    ( plot
                      ( fcns[j], x=rnge),
                      j=1..35
                    )
                  ],
                  insequence=true, scaling=constrained
                );

               


Here is a more complicated option:

restart;
with(plots):
A:=animate(plot, [x, x=-1..a, color=red, thickness=2], a=-1..1):
B:=animate(plot, [x^2, x=-1..a, thickness=2, color=green], a=-1..1):
C:=animate(plot, [1-x, x=-1..a, color=blue, thickness=2], a=-1..1):
display([A, display(op([1,-1,1],A),B), display(op([1,-1,1],A),op([1,-1,1],B),C)], insequence, scaling=constrained);

                

See this post   https://mapleprimes.com/posts/207840-Combinations-Of-Multiple-Animations

Edit.

 


 

NULL

restart

n := 4; C := [seq(cos(2*Pi*K*l/n), l = 0 .. n-1)]; S := [seq(sin(2*Pi*K*l/n), l = 0 .. n-1)]

[1, cos((1/2)*Pi*K), cos(Pi*K), cos((3/2)*Pi*K)]

 

[0, sin((1/2)*Pi*K), sin(Pi*K), sin((3/2)*Pi*K)]

(1)

a := true; for c in C do for s in S do if int(c*s, K = -Pi .. Pi) <> 0 then a := false; break end if end do end do; a

true

(2)

NULL

NULL


 

Download orthogonal-new1.mw

 I think the easiest way to create the same animation is the using a procedure that creates an one frame, and then using the plots:-animate command:

restart;

OneFrame:=proc(a)
local f, Point, Points1, Points2, Curve;
uses plots;
f:=x->x^2-x+2;
Point:=plot([[2,f(2)]],style=point, color=black, symbol=solidcircle, symbolsize=30);
Points1:=plot([[2-a,f(2-a)],[2+a,f(2+a)]], x=-3..5, style=point, color=red, symbol=solidbox, symbolsize=30);
Points2:=plot([[2-a,0],[2+a,0],[0,f(2-a)],[0,f(2+a)]], x=-3..5, style=point, color=red, symbol=diamond, symbolsize=30);
Curve:=plot(f, -3..5, 0..8, color=blue, thickness=3);
display(Point,Points1,Points2,Curve, gridlines, scaling=constrained);
end proc:

plots:-animate(OneFrame, [a], a=1..0.05);

          

 

This can be done in many ways. Here is a simple procedure with a for-loop that solves the problem:

P:=proc(A::Matrix, j::posint, a::numeric)
local i, m, n;
m,n:=upperbound(A);
for i from 1 to m do
if A[i,j]>a then return i fi;
od;
end proc:

Example:
A:=<1,2,1.1; 3,4,2.1; 5,6,3.1>;
P(A,3,2);

To draw this circle centered at point  H  and radius  R , you do not need to know any angles. Simply write the appropriate parametric equations and use  plot3d  command:

restart; 
with(geom3d):
 a := 3:
 b := 4:
 h := 5:
 point(A, 0, 0, 0):
 point(B, a, 0, 0):
 point(C, a, b, 0):
 point(DD, 0, b, 0):
 point(S, 0, 0, h):
 sphere(s, [A, B, C, S], [x,y,z], 'centername' = m); 
detail(s); 
plane(p, [S, A, B], [x, y, z]); 
n:=coordinates(projection(H, m, p)); 
R := distance(H, S);
S1:=plot3d(n+r*~([cos(t),0,sin(t)]), r=0..R, t=0..2*Pi, style=surface,  color=pink):
S2:=plots:-spacecurve(n+[R*cos(t),0,R*sin(t)], t=0..2*Pi, color="VioletRed", thickness=2):
S3:=plottools:-sphere([3/2, 2, 5/2], 5*sqrt(2)*(1/2), color="LightGreen", transparency=0.7):
plots:-display(S1,S2,S3, axes=normal, orientation=[20,70], lightmodel=light1);

             

 

T := (f,k) -> 1/k!*diff(f,[x$k]);


Examples of use:

T(sin(3*x), 5);
T(sin(3*x), k);

In my opinion, Maple simplifies the expression quite well. But what is your main goal? If you want a simple way to calculate this expression for specific parameters values  a, b, c, d  and a specific  n , then here is a simple procedure for this:

restart;
Sol:=proc(a,b,c,d,n0)
simplify(rsolve({f(n+1)-((a-1)*(b-1)+(c+d))*f(n)-c*d*f(n-1)=0, f(0)=a,f(1)=a*(b - 1)+c},f));
simplify(eval(%,n=n0));
end proc:	


Examples of use:

Sol(2,1,4,3,100); ``;
seq(Sol(2,1,4,3,k), k=1..20); ``;
Sol(2,1,4,3,n);

First 79 80 81 82 83 84 85 Last Page 81 of 290