Preben Alsholm

MaplePrimes Activity


These are replies submitted by Preben Alsholm

But the variable names have nothing to do with it though.

restart;
with(RandomTools):
s := evalf(Generate(list(rational(denominator = 30), 10)));
s1 := evalf(Generate(list(rational(denominator = 30), 10)));
restart;
with(RandomTools):
s1 := evalf(Generate(list(rational(denominator = 30), 10)));
s := evalf(Generate(list(rational(denominator = 30), 10)));

A version not using identify:

interface(displayprecision=5);
evalindets(k,numeric,evalf[18]):
evalindets(%,`^`,x->op(1,x)^convert(op(2,x),rational));

A version not using identify:

interface(displayprecision=5);
evalindets(k,numeric,evalf[18]):
evalindets(%,`^`,x->op(1,x)^convert(op(2,x),rational));

@Axel Vogt Maple agrees:

sum(2*k-1,k=1..n);
expand(%);

@Axel Vogt Maple agrees:

sum(2*k-1,k=1..n);
expand(%);

Did you try the code in my comment? It reproduces the graphs on the top of page 5 rather exactly. It uses equtions 13 and 14. By r^2 is meant the inner product of r with r, i.e. <x,y>.<x,y> = x^2 + y^2.

Did you try the code in my comment? It reproduces the graphs on the top of page 5 rather exactly. It uses equtions 13 and 14. By r^2 is meant the inner product of r with r, i.e. <x,y>.<x,y> = x^2 + y^2.

@kagestodder r = (x, y) :

V2:=unapply(V(x,y)-11/2000*(x^2+y^2),x,y);
p1:=plot(V(x,0),x=-15..15,-5..0,caption="Gravitational potential"):
p2:=plot(V2(x,0),x=-15..15,-5..0,caption="Pseudo-potential"):
plots:-display(Array([p1,p2]));

@kagestodder r = (x, y) :

V2:=unapply(V(x,y)-11/2000*(x^2+y^2),x,y);
p1:=plot(V(x,0),x=-15..15,-5..0,caption="Gravitational potential"):
p2:=plot(V2(x,0),x=-15..15,-5..0,caption="Pseudo-potential"):
plots:-display(Array([p1,p2]));

@williamov I confess to not knowing much about this. However, I tried to work backwards hoping to gain some insight:

restart;
Sum(HermiteH(n,x)*z^n/n!,n=0..infinity);
Heven:=convert(HermiteH(2*k,x),hypergeom) assuming k::nonnegint;
Hodd:=convert(HermiteH(2*k+1,x),hypergeom) assuming k::nonnegint;
G1:=Sum(Heven*z^(2*k)/(2*k)!,k=0..infinity)+Sum(Hodd*z^(2*k+1)/(2*k+1)!,k=0..infinity);
G2:=exp(2*x*z-z^2);
#Small test:
evalf(eval(G1,{z=1.2345,x=.567}));
evalf(eval(G2,{z=1.2345,x=.567}));

@williamov I confess to not knowing much about this. However, I tried to work backwards hoping to gain some insight:

restart;
Sum(HermiteH(n,x)*z^n/n!,n=0..infinity);
Heven:=convert(HermiteH(2*k,x),hypergeom) assuming k::nonnegint;
Hodd:=convert(HermiteH(2*k+1,x),hypergeom) assuming k::nonnegint;
G1:=Sum(Heven*z^(2*k)/(2*k)!,k=0..infinity)+Sum(Hodd*z^(2*k+1)/(2*k+1)!,k=0..infinity);
G2:=exp(2*x*z-z^2);
#Small test:
evalf(eval(G1,{z=1.2345,x=.567}));
evalf(eval(G2,{z=1.2345,x=.567}));

williamov wrote P(0) = 1, which changes the constants, but not the approach:

restart;
test4 := diff(P(x),x$2)-2*x*diff(P(x),x)+2*n*P(x)=0;
#test4 := {diff(P(x),x$2)-2*x*diff(P(x),x)+2*n*P(x), P(0) = 1, (D(P))(0) = 1};
res:=dsolve(test4);
series(rhs(res),x=0,2);
convert(%,polynom) assuming x>0;
solve(identity(%=1+x,x),{_C1,_C2});
eval(res,%);
convert(%,hypergeom);

williamov wrote P(0) = 1, which changes the constants, but not the approach:

restart;
test4 := diff(P(x),x$2)-2*x*diff(P(x),x)+2*n*P(x)=0;
#test4 := {diff(P(x),x$2)-2*x*diff(P(x),x)+2*n*P(x), P(0) = 1, (D(P))(0) = 1};
res:=dsolve(test4);
series(rhs(res),x=0,2);
convert(%,polynom) assuming x>0;
solve(identity(%=1+x,x),{_C1,_C2});
eval(res,%);
convert(%,hypergeom);

I suggested infinity as default so that the two argument version will act as before.  It should also be safe to overwrite the library version of applyrule with infinity as default.

I suggested infinity as default so that the two argument version will act as before.  It should also be safe to overwrite the library version of applyrule with infinity as default.

First 187 188 189 190 191 192 193 Last Page 189 of 231