acer

32440 Reputation

29 Badges

19 years, 360 days
Ontario, Canada

Social Networks and Content at Maplesoft.com

MaplePrimes Activity


These are questions asked by acer

Did you intend on doing the diffetentiation elememtwise, ie. on each of the Matrix entriez?

Did you try,

   diff~(V, x)

or,

  map(diff, V, x)

?

Has anyone else noticed that Mapleprimes response/loading/refreshing time has become relatively much slower in the past few weeks?

How could one simplify the following expression, preferably over z in large parts of the complex plane, and with few calls under different assumptions, and preferably gracefully.

expr := 2*Pi*(-z)^(1/2)-z^(1/2)*(2*ln(-z^(1/2))-ln(z));

I am curious whether anyone here can come up with a way to simplify the expression x1 to 15*Pi/32 in fewer exact, symbolic steps. The following was performed in Maple 2016.2 for Linux.

restart;

x1 := arcsin(1/2*(2+(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2));

arcsin((1/2)*(2+(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2))

x2 := evalc(convert(x1,expln));

arctan((2+(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2)/(2-(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2))

x3 := convert(x2, expln);

((1/2)*I)*(ln(1-I*(2+(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2)/(2-(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2))-ln(1+I*(2+(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2)/(2-(2+(2+2^(1/2))^(1/2))^(1/2))^(1/2)))

# non-Pro wolframalpha can simplify x3 to 15*Pi/32 (but not x2 or x1).
#

x4 := combine(x3);

((1/2)*I)*ln(-(I*2^(1/2)*((2+2^(1/2))*(2+(2+2^(1/2))^(1/2)))^(1/2)+I*(2*2^(1/2)+4)^(1/2)+I*2^(1/2)+(-1+I))/(I*2^(1/2)*((2+2^(1/2))*(2+(2+2^(1/2))^(1/2)))^(1/2)+I*(2*2^(1/2)+4)^(1/2)+I*2^(1/2)+1+I))

x5 := simplify(x4);

((1/2)*I)*(-ln(2)+ln(-(2+(2+2^(1/2))^(1/2))^(1/2)*(I*2^(1/2)*(2+2^(1/2))^(1/2)-I*2^(1/2)+1-I)))

x6 := expand(x5);

-((1/2)*I)*ln(2)+((1/4)*I)*ln(2+(2+2^(1/2))^(1/2))+((1/2)*I)*ln(-I*2^(1/2)*(2+2^(1/2))^(1/2)+I*2^(1/2)+(-1+I))

x7 := combine(x6);

-((1/4)*I)*(ln(-(1/2)*(2+2^(1/2))^(1/2)*(I*2^(1/2)+(-1-I)))+(2*I)*Pi)

simplify(x7,constant);

(15/32)*Pi

# It's a pity that last step worked while this next is inadequate.
simplify(x7);

-((1/4)*I)*ln(-(2+2^(1/2))^(1/2)*(I*2^(1/2)+(-1-I)))+((1/4)*I)*ln(2)+(1/2)*Pi

# Another way, using x7
simplify(evalc(x7));

(15/32)*Pi

# Another way, using x7
simplify(combine(expand(x7)));

(15/32)*Pi

 

Download simplify_example.mw

I'd like to be able to get a quicker low accuracy computation of the argument of the complex-valued JacobiTheta1 function.

I only need as much accuracy as to get a decent plot, which means... I don't know... about 1e-3 relative accuracy?

If I can get a formula or approach that is "evalhf'able" then I can construct a procedure which does this action and writes results inplace to a float[8] Matrix.

The naive approach in the code below takes about 6min...

1 2 3 Page 1 of 3