djc

586 Reputation

13 Badges

19 years, 15 days
Technical professional in industry or government
Budapest, Hungary

MaplePrimes Activity


These are replies submitted by djc

Thanks for your idea. Of course, it works in Maple 12 too.

 


Thanks for the idea. I have a lot of library path definitons in my maple.ini, After deleting them the example works.

I don't know which is the problematic.


Thanks for the idea. I have a lot of library path definitons in my maple.ini, After deleting them the example works.

I don't know which is the problematic.

 

You can try it with piecewise and undefined:

f :=  (m, n) -> piecewise(And(And(m::integer, n::integer), (m+n)::nonnegint), m+n, undefined);

f(3, 2);

f(2, -3);

p := seq(seq([x, y, f(x, y)], x = -10 .. 10), y = -10 .. 10):

with(plots):

pointplot3d([p], axes = normal, color = red);

 

 

You can try it with piecewise and undefined:

f :=  (m, n) -> piecewise(And(And(m::integer, n::integer), (m+n)::nonnegint), m+n, undefined);

f(3, 2);

f(2, -3);

p := seq(seq([x, y, f(x, y)], x = -10 .. 10), y = -10 .. 10):

with(plots):

pointplot3d([p], axes = normal, color = red);

 

 Thanks, it was helpful. 

IntegrationTools[Change] with third argument: it was new for me.

 

Here is  another solution to my second problem:

restart;
a1:=Int(1/(2*A),x=-A..A);
constants:=constants,K;
IntegrationTools[Change](a1,x=K*log[10](u))  assuming 1 < K;

 

 Thanks, it was helpful. 

IntegrationTools[Change] with third argument: it was new for me.

 

Here is  another solution to my second problem:

restart;
a1:=Int(1/(2*A),x=-A..A);
constants:=constants,K;
IntegrationTools[Change](a1,x=K*log[10](u))  assuming 1 < K;

 

 

Thanks for your answer. It works perfectly. I have checked the used and the other methods for the numerical integration in the help. I will check the referenced link on J0 too.

Later, I realized, that I used incorrect values for Lo and Wo. Instead of  Lo:=29.379;Wo:=34.477 the correct values are Lo:=29.379E-3;Wo:=34.477E-3  ( I forgot about the mm - > m conversion).

With the corrected Lo, Wo Maple can integrate my original function with the default method fast.


ko:=2*Pi/v*f;v:=2.998*10^8;f:=2.525*10^9;Lo:=29.379E-3;Wo:=34.477E-3;

evalf(eval(1/(120*Pi^2)*Int((sin(ko*W/2*cos(theta))/cos(theta))^2*sin(theta)^3*BesselJ(0,ko*L*sin(theta)),theta=0..Pi),[L=Lo,W=Wo]));

 

djc

 

 

Thanks for your answer. It works perfectly. I have checked the used and the other methods for the numerical integration in the help. I will check the referenced link on J0 too.

Later, I realized, that I used incorrect values for Lo and Wo. Instead of  Lo:=29.379;Wo:=34.477 the correct values are Lo:=29.379E-3;Wo:=34.477E-3  ( I forgot about the mm - > m conversion).

With the corrected Lo, Wo Maple can integrate my original function with the default method fast.


ko:=2*Pi/v*f;v:=2.998*10^8;f:=2.525*10^9;Lo:=29.379E-3;Wo:=34.477E-3;

evalf(eval(1/(120*Pi^2)*Int((sin(ko*W/2*cos(theta))/cos(theta))^2*sin(theta)^3*BesselJ(0,ko*L*sin(theta)),theta=0..Pi),[L=Lo,W=Wo]));

 

djc

 

 

sqrt(a+I*b); evalc(%);

 

sqrt(a+I*b); evalc(%);

Just  a little improvement : displaying piecewises instead of min:

f3:=unapply(piecewise(f1(x)<f2(x),f1(x),f2(x)),x);

Try this:

restart;

f1:=x->piecewise(x>0,x,1);

f2:=x->piecewise(x>0,x+1,-1);

f3:=unapply(combine(min(f1(x),f2(x))),x); # it displays the minimum function of f1 and f2 correctly.
 

with(plots):p1:=plot(f1,color=red):
p2:=plot(f2,color=green):
p3:=plot(f3,color=blue,symbol=circle,style=point):
display(p1,p2,p3);

 

Alec is correct, I don't use RealDomains here, I just wanted to say that mysqrt works on real numbers correctly.

 

 

 

 

You can try this ( in real domain):

restart;

# Defining a new sqrt funtion in real domain:

mysqrt:=x->piecewise(x>=0,sqrt(x),undefined);

# Your function:

f:=x->mysqrt(4 - x^2);

limit(f(x),x=-2,left);

limit(f(x),x=-2,right);

limit(f(x),x=-2);

limit(f(x),x=2,left);

limit(f(x),x=2,right);

limit(f(x),x=2);

plot(f(x),x=-3..3);

 

3 4 5 6 7 8 9 Page 5 of 9