janhardo

700 Reputation

12 Badges

11 years, 65 days

MaplePrimes Activity


These are answers submitted by janhardo

restart; with(PDEtools); with(LinearAlgebra); with(plots); with(SolveTools); undeclare(prime); ModulationInstabilityAnalysis_CompleteAllSteps := proc (a_value::positive, l_range::range, show_details::boolean := true, show_plots::boolean := true) local a, phi, w, eq1, eq19, Pfun, eq21_1, eq21_2, M, det_eq, msols, G, G_plot, G_3d_plot, Overlay_plot, a_param, G_formula, plot1, plot2, plot3; description 2; a := 'a'; Pfun := r1*exp(I*(l*x-m*t))+r2*(modulename = Typesetting)(-I*(l*x-m*t)); phi := a*t; w := (sqrt(a)+Pfun)*(modulename = Typesetting)(I*phi); eq1 := I*(diff(w, t))+diff(w, `$`(x, 2))+abs(w)^2*w = 0; eq19 := eval(Typesetting, abs(w)^2 = a+sqrt(a)*(Pfun+conjugate(Pfun))); eq19 := simplify(expand(eq19/(modulename = Typesetting)(I*phi))); eq21_1 := (-m-l^2+a)*r2+a*r1 = 0; eq21_2 := (m-l^2+a)*r1+a*r2 = 0; M := Matrix([[-m-l^2+a, a], [a, m-l^2+a]]); det_eq := simplify(Determinant(M) = 0); msols := solve(det_eq, m); G := 2*Im(msols[1]); G_formula := "G(l) = 2 * Im( &plusmn; sqrt(l^4 - 2*a*l^2) )"; if show_details then print("? Eq. (1): NLSE:Fdo-Fj"); Typesetting; print("? Eq. (18): Steady-state veld w:Fdo-Fj"); protected, _syslib; print("? Eq. (19): Gelinieariseerde vergelijking:Fdo-Fj"); eq19; print("? Eq. (20): Perturbatie-ansatz:Fdo-Fj"); Pfun; print("? Eq. (21): Lineair systeem:Fdo-Fj"); eq21_1; print(); print("? Eq. (22): Matrix:Fdo-Fj"); M; print("? Eq. (23): Dispersierelatie:Fdo-Fj"); det_eq; print("? Eq. (24): m-oplossingen:Fdo-Fj"); msols; print("? Eq. (25): Instabiliteit als: l^4 - 2*a*l^2 < 0Fdo-Fj"); "? Eq. (26): Groei G(l):Fdo-Fj"; G_formula; print("G(l) =", G) end if; if show_plots then G_plot := print(plot(eval(G, a = a_value), l = l_range, labels = ["Wave number l", "Growth rate G(l)"], title = cat("G(l) for a = ", a_value), thickness = 2, color = blue)); G_3d_plot := print(plot3d(2*Im(sqrt(l^4-2*a_param*l^2)), l = l_range, a_param = .1 .. 2*a_value, labels = ["l", "a", "G(l)"], title = "3D MI Gain Spectrum")); plot1 := plot(2*Im(sqrt(l^4+(-2)*1.0*l^2)), l = l_range, color = red, thickness = 2); plot2 := plot(2*Im(sqrt(l^4+(-2)*.5*l^2)), l = l_range, color = blue, thickness = 2); plot3 := plot(2*Im(sqrt(l^4+(-2)*.3*l^2)), l = l_range, color = green, thickness = 2); Overlay_plot := print(display([plot1, plot2, SolveTools], labels = ["Wave number l", "Growth rate G(l)"], legend = ["a = 1", "a = 0.5", "a = 0.3"], title = "Overlay G(l) for a = 1, 0.5, 0.3")); print("? Explore G(l) versus a:Fdo-%(e"); return ['eq1_nlse' = Typesetting, 'steady_state_eq18' = w, 'linearized_eq19' = eq19, 'ansatz_eq20' = Pfun, 'eq21_system' = [eq21_1, ], 'matrix_eq22' = M, 'dispersion_eq23' = det_eq, 'm_solutions_eq24' = msols, 'growth_rate_eq26' = G, 'stability_condition_eq25' = "l^4 - 2*a*l^2 < 0"]; ;  end if;  end proc

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

NULL

a := 1.0; l_range := -3 .. 3; result := ModulationInstabilityAnalysis_CompleteAllSteps(a, l_range, show_details = true, show_plots = true)

"? Eq. (1): NLSE:6""

 

I*((-I*r1*m*exp(I*(l*x-m*t))+I*r2*m*exp(-I*(l*x-m*t)))*exp(I*a*t)+I*(sqrt(a)+r1*exp(I*(l*x-m*t))+r2*exp(-I*(l*x-m*t)))*a*exp(I*a*t))+(-r1*l^2*exp(I*(l*x-m*t))-r2*l^2*exp(-I*(l*x-m*t)))*exp(I*a*t)+abs(sqrt(a)+r1*exp(I*(l*x-m*t))+r2*exp(-I*(l*x-m*t)))^2*(exp(-Im(a*t)))^2*(sqrt(a)+r1*exp(I*(l*x-m*t))+r2*exp(-I*(l*x-m*t)))*exp(I*a*t) = 0

 

"? Eq. (18): Steady-state veld w:6""

 

(sqrt(a)+r1*exp(I*(l*x-m*t))+r2*exp(-I*(l*x-m*t)))*exp(I*a*t)

 

"? Eq. (19): Gelinieariseerde vergelijking:6""

 

(exp(-2*Im(a*t))*sqrt(a)+r2*exp(-I*l*x+I*m*t-2*Im(a*t))+r1*exp(I*l*x-I*m*t-2*Im(a*t)))*abs(sqrt(a)+r1*exp(I*(l*x-m*t))+r2*exp(-I*(l*x-m*t)))^2-r2*(l^2+a+m)*exp(-I*(l*x-m*t))-r1*(l^2+a-m)*exp(I*(l*x-m*t))-a^(3/2) = 0

 

"? Eq. (20): Perturbatie-ansatz:6""

 

r1*exp(I*(l*x-m*t))+r2*exp(-I*(l*x-m*t))

 

"? Eq. (21): Lineair systeem:6""

 

(-l^2+a-m)*r2+r1*a = 0

 

(-l^2+a+m)*r1+r2*a = 0

 

"? Eq. (22): Matrix:6""

 

Matrix(2, 2, {(1, 1) = -l^2+a-m, (1, 2) = a, (2, 1) = a, (2, 2) = -l^2+a+m})

 

"? Eq. (23): Dispersierelatie:6""

 

l^4-2*a*l^2-m^2 = 0

 

"? Eq. (24): m-oplossingen:6""

 

sqrt(l^2-2*a)*l, -sqrt(l^2-2*a)*l

 

"? Eq. (25): Instabiliteit als: l^4 - 2*a*l^2 < 06""

 

"? Eq. (26): Groei G(l):6""

 

"G(l) = 2 * Im( &plusmn; sqrt(l^4 - 2*a*l^2) )"

 

"G(l) =", 2*Im(sqrt(l^2-2*a)*l)

 

 

 

 

"? Explore G(l) versus a:6""

 

"?? Explore 3D G(l,a):"

 

[eq1_nlse = (I*((-I*r1*m*exp(I*(l*x-m*t))+I*r2*m*exp(-I*(l*x-m*t)))*exp(I*a*t)+I*(a^(1/2)+r1*exp(I*(l*x-m*t))+r2*exp(-I*(l*x-m*t)))*a*exp(I*a*t))+(-r1*l^2*exp(I*(l*x-m*t))-r2*l^2*exp(-I*(l*x-m*t)))*exp(I*a*t)+abs(a^(1/2)+r1*exp(I*(l*x-m*t))+r2*exp(-I*(l*x-m*t)))^2*(exp(-Im(a*t)))^2*(a^(1/2)+r1*exp(I*(l*x-m*t))+r2*exp(-I*(l*x-m*t)))*exp(I*a*t) = 0), steady_state_eq18 = (a^(1/2)+r1*exp(I*(l*x-m*t))+r2*exp(-I*(l*x-m*t)))*exp(I*a*t), linearized_eq19 = ((exp(-2*Im(a*t))*a^(1/2)+r2*exp(-I*l*x+I*m*t-2*Im(a*t))+r1*exp(I*l*x-I*m*t-2*Im(a*t)))*abs(a^(1/2)+r1*exp(I*(l*x-m*t))+r2*exp(-I*(l*x-m*t)))^2-r2*(l^2+a+m)*exp(-I*(l*x-m*t))-r1*(l^2+a-m)*exp(I*(l*x-m*t))-a^(3/2) = 0), ansatz_eq20 = r1*exp(I*(l*x-m*t))+r2*exp(-I*(l*x-m*t)), eq21_system = [(-l^2+a-m)*r2+r1*a = 0, (-l^2+a+m)*r1+r2*a = 0], matrix_eq22 = Matrix(%id = 36893490539730111892), dispersion_eq23 = (l^4-2*a*l^2-m^2 = 0), m_solutions_eq24 = ((l^2-2*a)^(1/2)*l, -(l^2-2*a)^(1/2)*l), growth_rate_eq26 = 2*Im((l^2-2*a)^(1/2)*l), stability_condition_eq25 = "l^4 - 2*a*l^2 < 0"]

(2)

Download ModulationInstabilityAnalysis_CompleteAllSteps_mprimes-4-5-2025.mw

Comparing A2 and A2  , shows that they are equal and simplify and is  is not neccessary 

restart;

 

A := -x*(x - 4*exp(x/2) + 2);
B := x*sqrt((-8*x - 16)*exp(x/2) + x^2 + 4*x + 16*exp(x) + 4);

-x*(x-4*exp((1/2)*x)+2)

 

x*((-8*x-16)*exp((1/2)*x)+x^2+4*x+16*exp(x)+4)^(1/2)

(1)

simplify(A-B) assuming x::real;
 

0

(2)

 

A2 := expand(A^2);
B2 := expand(B^2);

x^4-8*x^3*exp((1/2)*x)+4*x^3+16*x^2*(exp((1/2)*x))^2-16*x^2*exp((1/2)*x)+4*x^2

 

-8*x^3*exp((1/2)*x)-16*x^2*exp((1/2)*x)+x^4+4*x^3+16*x^2*exp(x)+4*x^2

(3)

A2 := expand(A^2)assuming x::real;
B2 := expand(B^2)assuming x::real;

x^4-8*x^3*(exp(x))^(1/2)+4*x^3+16*x^2*exp(x)-16*x^2*(exp(x))^(1/2)+4*x^2

 

x^4-8*x^3*(exp(x))^(1/2)+4*x^3+16*x^2*exp(x)-16*x^2*(exp(x))^(1/2)+4*x^2

(4)

 

 

simplify(A2 - B2);

0

(5)

is(simplify(A2) = simplify(B2)) ;

true

(6)

solve ( x^4 - 8*x^3*exp(x/2) + 4*x^3 + 16*x^2*exp(x/2)^2 - 16*x^2*exp(x/2) + 4*x^2, x) assuming x::real;

0, -2-2*LambertW(-2*exp(-1))

(7)

solve( -8*x^3*exp(x/2) - 16*x^2*exp(x/2) + x^4 + 4*x^3 + 16*x^2*exp(x) + 4*x^2,x)assuming x::real;

0, -2-2*LambertW(-2*exp(-1))

(8)

 

NULL

Download gelijkheid_expressie_mpries_3-5-2025_A.mw

see under

restart;
with(DEtools):

# Step 1: Define the nonlinear ODE in Q(zeta)
ode := (diff(Q(zeta), zeta))^2 - r^2*Q(zeta)^2*(a - b*Q(zeta) - l*Q(zeta)^2) = 0;
printf("Step 1: Define the nonlinear ODE involving Q(zeta).\n");

# Step 2: Apply substitution Q = 1/u to transform the ODE
ode_u := simplify(eval(ode, Q(zeta) = 1/u(zeta)) * u(zeta)^4);
printf("Step 2: Substitute Q = 1/u to transform the ODE into a simpler rational form.\n");

# Step 3: Solve the transformed ODE for u(zeta)
u_sol := dsolve(ode_u, u(zeta));
printf("Step 3: Solve the transformed ODE in terms of u(zeta).\n");

# Step 4: Choose the specific solution involving tanh and revert back to Q(zeta)
u_specific := b/(2*a) + sqrt(4*a*l + b^2)/(2*a)*tanh(r*sqrt(a)*zeta/2);
Q_sol := 1/u_specific;
printf("Step 4: Choose the specific solution using tanh and convert back to Q(zeta).\n");

# Step 5: Define the exponential form of Q(zeta) as shown in the image
Q_exp := 4*a/((4*a*l + b^2)*exp(r*sqrt(a)*zeta) - exp(-r*sqrt(a)*zeta) + 2*b);
printf("Step 5: Define the exponential expression for Q(zeta).\n");

# Verify equivalence of hyperbolic and exponential forms
verify_exp := simplify(Q_sol - Q_exp);
printf("Step 6: Verify if the expression using tanh equals the exponential form. Difference = %a\n", verify_exp);

# Step 6: Define the hyperbolic version (sech² and tanh form) of the solution
Q_hyp := a*b*sech(r*sqrt(a)*zeta/2)^2/(b^2 + a*l*(1 - tanh(r*sqrt(a)*zeta/2))^2);
printf("Step 7: Define the hyperbolic solution (sech²/tanh form).\n");

# Check equivalence with exponential form
verify_hyp := simplify(Q_exp - Q_hyp);
printf("Step 8: Verify if exponential form equals the hyperbolic form. Difference = %a\n", verify_hyp);

# Step 9: Validate that both expressions satisfy the original ODE
ode_check_exp := simplify(eval(ode, Q = unapply(Q_exp, zeta)));
ode_check_hyp := simplify(eval(ode, Q = unapply(Q_hyp, zeta)));
printf("Step 9: Substitute Q_exp into ODE → Result = %a\n", ode_check_exp);
printf("Step 10: Substitute Q_hyp into ODE → Result = %a\n", ode_check_hyp);

?

 

# --------------------------------------
# 🚧 Fix to remove the extra U'(xi) term
# --------------------------------------

# This is the condition needed to remove the extra real part involving dU/dxi:
FixCond := 3*delta[3]*(b[1]*d[1]^2 + b[2]*d[2]^2 + b[3]*d[3]^2)
           - 2*delta[1]*(b[1]*d[1] + b[2]*d[2] + b[3]*d[3])
           - b[4];

# Set this condition to zero to eliminate the extra U'(xi) term
FixCondSol := solve(FixCond = 0, b[4]);

# Substitute this condition directly back into your main reduced ODE
FixedODE := subs(b[4] = FixCondSol, Q);

# ✅ Now continue analysis with FixedODE instead of Q

@Paras31 
look promising,, 

CORRECT ?

restart;
with(PDEtools):
with(LinearAlgebra):
with(SolveTools):
undeclare(prime):
alias(F=F(x,y,z,t), G=G(x,y,z,t)):

ND := proc(F, G, U)
  local v, w, f, g, a, i, newv;
  v := [op(F)];
  newv := [];
  for i from 1 to nops(v) do
    if v[i] in U then
      newv := [op(newv), -v[i]];
    else
      newv := [op(newv), v[i]];
    end if;
  end do;
  f := op(0, F);
  g := op(0, G);
  a := diff(f(op(newv))*g(op(v)), U);
  convert(subs(newv=~v, a), diff);
end proc:

 

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

ND(sin(x)*cos(y)*exp(z-t), cos(x)*sin(y)*exp(z+t), [x,y,z,t]);

16*sin(x)*cos(y)*(exp(z-t))^2*cos(x)*sin(y)

(2)

 

ND := proc(F, G, U)
  local v, w, f, g, a, i, newv, result;
  
  v := [op(F)];     # Haal variabelenlijst uit F
  newv := [];       # Maak lege lijst
  
  for i from 1 to nops(v) do
    if v[i] in U then
      newv := [op(newv), -v[i]];  # Spiegelen
    else
      newv := [op(newv), v[i]];   # Anders normaal houden
    end if;
  end do;
  
  f := op(0, F);    # Functienaam F
  g := op(0, G);    # Functienaam G
  
  a := diff(f(op(newv)) * g(op(v)), U);  # Differentieer aangepast product
  result := convert(subs(newv=~v, a), diff);  # Zet gespiegelde terug
  
  return simplify(result);  # >>> AUTOMATISCH VEREENVOUDIGEN! <<<
end proc:

ND(sin(x)*cos(y)*exp(z-t), cos(x)*sin(y)*exp(z+t), [x,y,z,t]);

4*sin(2*y)*sin(2*x)*exp(2*z-2*t)

(3)

ND(F, G, [x]);
ND(F, G, [t]);

-(diff(F, x))*G+F*(diff(G, x))

 

-(diff(F, t))*G+F*(diff(G, t))

(4)

ND(F(x,y,z,t), G(x,y,z,t), [x]);
ND(F(x,y,z,t), G(x,y,z,t), [y]);
ND(F(x,y,z,t), G(x,y,z,t), [z]);
ND(F(x,y,z,t), G(x,y,z,t), [t]);
ND(F(x,y,z,t), G(x,y,z,t), [x,y]);
ND(F(x,y,z,t), G(x,y,z,t), [x,y,z]);
ND(F(x,y,z,t), G(x,y,z,t), [x$2, y, z, t]);

-(diff(F(x, y, z, t), x))*G(x, y, z, t)+F(x, y, z, t)*(diff(G(x, y, z, t), x))

 

-(diff(F(x, y, z, t), y))*G(x, y, z, t)+F(x, y, z, t)*(diff(G(x, y, z, t), y))

 

-(diff(F(x, y, z, t), z))*G(x, y, z, t)+F(x, y, z, t)*(diff(G(x, y, z, t), z))

 

-(diff(F(x, y, z, t), t))*G(x, y, z, t)+F(x, y, z, t)*(diff(G(x, y, z, t), t))

 

(diff(diff(F(x, y, z, t), x), y))*G(x, y, z, t)-(diff(F(x, y, z, t), x))*(diff(G(x, y, z, t), y))-(diff(F(x, y, z, t), y))*(diff(G(x, y, z, t), x))+F(x, y, z, t)*(diff(diff(G(x, y, z, t), x), y))

 

-(diff(diff(diff(F(x, y, z, t), x), y), z))*G(x, y, z, t)+(diff(diff(F(x, y, z, t), x), y))*(diff(G(x, y, z, t), z))+(diff(diff(F(x, y, z, t), x), z))*(diff(G(x, y, z, t), y))-(diff(F(x, y, z, t), x))*(diff(diff(G(x, y, z, t), y), z))+(diff(diff(F(x, y, z, t), y), z))*(diff(G(x, y, z, t), x))-(diff(F(x, y, z, t), y))*(diff(diff(G(x, y, z, t), x), z))-(diff(F(x, y, z, t), z))*(diff(diff(G(x, y, z, t), x), y))+F(x, y, z, t)*(diff(diff(diff(G(x, y, z, t), x), y), z))

 

-(diff(diff(diff(diff(diff(F(x, y, z, t), t), x), x), y), z))*G(x, y, z, t)+(diff(diff(diff(diff(F(x, y, z, t), x), x), y), z))*(diff(G(x, y, z, t), t))+(diff(diff(diff(diff(F(x, y, z, t), t), x), x), y))*(diff(G(x, y, z, t), z))-(diff(diff(diff(F(x, y, z, t), x), x), y))*(diff(diff(G(x, y, z, t), t), z))+(diff(diff(diff(diff(F(x, y, z, t), t), x), x), z))*(diff(G(x, y, z, t), y))-(diff(diff(diff(F(x, y, z, t), x), x), z))*(diff(diff(G(x, y, z, t), t), y))-(diff(diff(diff(F(x, y, z, t), t), x), x))*(diff(diff(G(x, y, z, t), y), z))+(diff(diff(F(x, y, z, t), x), x))*(diff(diff(diff(G(x, y, z, t), t), y), z))+2*(diff(diff(diff(diff(F(x, y, z, t), t), x), y), z))*(diff(G(x, y, z, t), x))-2*(diff(diff(diff(F(x, y, z, t), x), y), z))*(diff(diff(G(x, y, z, t), t), x))-2*(diff(diff(diff(F(x, y, z, t), t), x), y))*(diff(diff(G(x, y, z, t), x), z))+2*(diff(diff(F(x, y, z, t), x), y))*(diff(diff(diff(G(x, y, z, t), t), x), z))-2*(diff(diff(diff(F(x, y, z, t), t), x), z))*(diff(diff(G(x, y, z, t), x), y))+2*(diff(diff(F(x, y, z, t), x), z))*(diff(diff(diff(G(x, y, z, t), t), x), y))+2*(diff(diff(F(x, y, z, t), t), x))*(diff(diff(diff(G(x, y, z, t), x), y), z))-2*(diff(F(x, y, z, t), x))*(diff(diff(diff(diff(G(x, y, z, t), t), x), y), z))-(diff(diff(diff(F(x, y, z, t), t), y), z))*(diff(diff(G(x, y, z, t), x), x))+(diff(diff(F(x, y, z, t), y), z))*(diff(diff(diff(G(x, y, z, t), t), x), x))+(diff(diff(F(x, y, z, t), t), y))*(diff(diff(diff(G(x, y, z, t), x), x), z))-(diff(F(x, y, z, t), y))*(diff(diff(diff(diff(G(x, y, z, t), t), x), x), z))+(diff(diff(F(x, y, z, t), t), z))*(diff(diff(diff(G(x, y, z, t), x), x), y))-(diff(F(x, y, z, t), z))*(diff(diff(diff(diff(G(x, y, z, t), t), x), x), y))-(diff(F(x, y, z, t), t))*(diff(diff(diff(diff(G(x, y, z, t), x), x), y), z))+F(x, y, z, t)*(diff(diff(diff(diff(diff(G(x, y, z, t), t), x), x), y), z))

(5)

ND(F(x,y,t), G(x,y,t), [x]);
ND(F(x,y,z,t), G(x,y,z,t), [y]);
ND(F(x,y,z,t), G(x,y,z,t), [z]);
ND(F(x,y,z,t), G(x,y,z,t), [t]);
ND(F(x,y,z,t), G(x,y,z,t), [x,y]);
ND(F(x,y,z,t), G(x,y,z,t), [x,y,z]);
ND(F(x,y,t), G(x,y,t), [x$2, y, t]);

-(diff(F(x, y, t), x))*G(x, y, t)+F(x, y, t)*(diff(G(x, y, t), x))

 

-(diff(F(x, y, z, t), y))*G(x, y, z, t)+F(x, y, z, t)*(diff(G(x, y, z, t), y))

 

-(diff(F(x, y, z, t), z))*G(x, y, z, t)+F(x, y, z, t)*(diff(G(x, y, z, t), z))

 

-(diff(F(x, y, z, t), t))*G(x, y, z, t)+F(x, y, z, t)*(diff(G(x, y, z, t), t))

 

(diff(diff(F(x, y, z, t), x), y))*G(x, y, z, t)-(diff(F(x, y, z, t), x))*(diff(G(x, y, z, t), y))-(diff(F(x, y, z, t), y))*(diff(G(x, y, z, t), x))+F(x, y, z, t)*(diff(diff(G(x, y, z, t), x), y))

 

-(diff(diff(diff(F(x, y, z, t), x), y), z))*G(x, y, z, t)+(diff(diff(F(x, y, z, t), x), y))*(diff(G(x, y, z, t), z))+(diff(diff(F(x, y, z, t), x), z))*(diff(G(x, y, z, t), y))-(diff(F(x, y, z, t), x))*(diff(diff(G(x, y, z, t), y), z))+(diff(diff(F(x, y, z, t), y), z))*(diff(G(x, y, z, t), x))-(diff(F(x, y, z, t), y))*(diff(diff(G(x, y, z, t), x), z))-(diff(F(x, y, z, t), z))*(diff(diff(G(x, y, z, t), x), y))+F(x, y, z, t)*(diff(diff(diff(G(x, y, z, t), x), y), z))

 

(diff(diff(diff(diff(F(x, y, t), t), x), x), y))*G(x, y, t)-(diff(diff(diff(F(x, y, t), x), x), y))*(diff(G(x, y, t), t))-(diff(diff(diff(F(x, y, t), t), x), x))*(diff(G(x, y, t), y))+(diff(diff(F(x, y, t), x), x))*(diff(diff(G(x, y, t), t), y))-2*(diff(diff(diff(F(x, y, t), t), x), y))*(diff(G(x, y, t), x))+2*(diff(diff(F(x, y, t), x), y))*(diff(diff(G(x, y, t), t), x))+2*(diff(diff(F(x, y, t), t), x))*(diff(diff(G(x, y, t), x), y))-2*(diff(F(x, y, t), x))*(diff(diff(diff(G(x, y, t), t), x), y))+(diff(diff(F(x, y, t), t), y))*(diff(diff(G(x, y, t), x), x))-(diff(F(x, y, t), y))*(diff(diff(diff(G(x, y, t), t), x), x))-(diff(F(x, y, t), t))*(diff(diff(diff(G(x, y, t), x), x), y))+F(x, y, t)*(diff(diff(diff(diff(G(x, y, t), t), x), x), y))

(6)
 

 

Download aanpassoing_ND_pro_mprimes27-4-2025.mw

@salim-barzani 

restart;

# Definities
g := a1*x + a2*y + a3*z + a4*t + a5:
h := a6*x + a7*y + a8*z + a9*t + a10:
f := g^2 + h^2 + a11:

# Afgeleiden
fx := diff(f, x): fy := diff(f, y): fz := diff(f, z): ft := diff(f, t):
fxx := diff(fx, x): fxy := diff(fx, y): fxz := diff(fx, z): fyy := diff(fy, y):
fxxx := diff(fxx, x): fxxy := diff(fxx, y): fxxxy := diff(fxxx, y):
fxxxx := diff(fxxx, x): fxxxxx := diff(fxxxx, x): fxxxxxx := diff(fxxxxx, x):

# PDE
PDE := 9*(f*diff(f, x, t) - fx*ft)
    -5*(f*diff(f, x, x, x, y) - 3*fx*diff(f, x, x, y) + 3*fxx*fxy - fxxx*fy)
    + (f*diff(f, x, x, x, x, x, x) - 6*fx*diff(f, x, x, x, x, x) + 15*fxx*diff(f, x, x, x, x) - 10*(fxxx)^2)
    -5*(f*fyy - fy^2)
    +alpha*(f*fxx - fx^2)
    +beta*(f*fxy - fx*fy)
    +gamma*(f*fxz - fx*fz):

PDE := expand(PDE): PDE := simplify(PDE):

# Coëfficiënten pakken
coeff1 := coeff(PDE, x, 1):
coeff2 := coeff(PDE, y, 1):
coeff3 := coeff(PDE, z, 1):
coeff4 := coeff(PDE, t, 1):
coeff_const := eval(PDE, {x=0, y=0, z=0, t=0}):

# Stelsel van vergelijkingen
Eqns := {coeff1=0, coeff2=0, coeff3=0, coeff4=0, coeff_const=0}:
# Stelsel
##Eqns := {coeff_x=0, coeff_y=0, coeff_z=0, coeff_t=0, coeff_const=0}:

# Oplossen
Sol := solve(Eqns, {a4, a9, a11}):
Sol;

{a11 = -3*(a1^2+a6^2)*(a1^3*a2+a1^2*a6*a7+a1*a2*a6^2+a6^3*a7)/(a1^2*a7^2-2*a1*a2*a6*a7+a2^2*a6^2), a4 = -(1/9)*(a1^3*alpha+a1^2*a2*beta+a1^2*a3*gamma+a1*a6^2*alpha+a2*a6^2*beta+a3*a6^2*gamma-5*a1*a2^2+5*a1*a7^2-10*a2*a6*a7)/(a1^2+a6^2), a9 = -(1/9)*(a1^2*a6*alpha+a1^2*a7*beta+a1^2*a8*gamma+a6^3*alpha+a6^2*a7*beta+a6^2*a8*gamma-10*a1*a2*a7+5*a2^2*a6-5*a6*a7^2)/(a1^2+a6^2)}

(1)
 

 

Download solve_a4-a9-a11_pde_6_orde_mprimes_27-4-2025.mw

DrawCleanDomain := proc(outerPolygon::list,
                        path1Pts::list, path2Pts::list,
                        z0::list, z::list,
                        path1Color::string := "red",
                        path2Color::string := "green",
                        outerColor::string := "LightBlue",
                        outerTransparency::numeric := 0.4)

    uses plots, plottools;

    local outer, curve1, curve2, pt1, pt2, label1, label2, finalPlot;
    local z0Label, z0Coords, zLabel, zCoords;

    # Labels en coördinaten splitsen
    z0Label := z0[1]; z0Coords := z0[2];
    zLabel := z[1]; zCoords := z[2];

    # Buitenste domein
    outer := polygon(outerPolygon, color = outerColor, transparency = outerTransparency);

    # Paden
    curve1 := pointplot(path1Pts, color = path1Color, linestyle = dot, thickness = 2, connect = true);
    curve2 := pointplot(path2Pts, color = path2Color, linestyle = dot, thickness = 2, connect = true);

    # Begin- en eindpunt
    pt1 := pointplot([z0Coords], symbol = solidcircle, symbolsize = 15, color = black);
    pt2 := pointplot([zCoords], symbol = solidcircle, symbolsize = 15, color = black);

    # Labels bij punten
    label1 := textplot([z0Coords[1], z0Coords[2] - 0.1, z0Label], font = [Helvetica, Bold, 14]);
    label2 := textplot([zCoords[1], zCoords[2] - 0.1, zLabel], font = [Helvetica, Bold, 14]);

    # Alles tonen in één plot
    finalPlot := display([outer, curve1, curve2, pt1, pt2, label1, label2],
                         scaling = constrained, axes = none,
                         title = "Domain with Two Paths and Custom Points");

    return finalPlot;
end proc:

outerPolygon := [[-1, 0], [-0.7, 1.2], [0, 1.5], [0.7, 1.2], [1.2, 0], [0.7, -1.2], [0, -1.4], [-0.7, -1.2], [-1, 0]];
path1 := [[-0.8, 0.6], [-0.3, 1.0], [0.4, 0.5], [0.9, -0.4]];
path2 := [[-0.8, 0.6], [-0.7, 0.0], [0.2, -0.6], [0.9, -0.4]];
a0 := ["a_0", [-0.8, 0.6]];
z := ["z", [0.9, -0.4]];

DrawCleanDomain(outerPolygon, path1, path2, a0, z);


example ; fig1 := [[0, 0], [4, 0], [4, 3], [0, 3], [5, 5],[8,1],[8,8],[-5,8]]
feature : a last point in the list will not be connected to another point to draw a line 

restart:

 

DrawOrderedLines := proc(shape1::list, isolated1::list, shape2::list, isolated2::list)
  local i, p1, p2, allplots, colorlist, polyline, isolateplot, j:
  uses plots, plottools;
  colorlist := [blue, red]:
  allplots := []:

  for i from 1 to 2 do
    if i = 1 then
      polyline := shape1:
      isolateplot := isolated1:
    else
      polyline := shape2:
      isolateplot := isolated2:
    end if:

    # Verbind punten in exacte volgorde
    if nops(polyline) >= 2 then
      for j from 1 to nops(polyline) - 1 do
        p1 := polyline[j]:
        p2 := polyline[j+1]:
        allplots := [op(allplots), line(p1, p2, color=colorlist[i], thickness=2)]:
      end do:
    end if:

    # Teken losse geïsoleerde punten
    if nops(isolateplot) > 0 then
      allplots := [op(allplots), pointplot(isolateplot, color=colorlist[i], symbol=solidcircle, symbolsize=15)]:
    end if:
  end do:

  return display(allplots, scaling=constrained, title="");
end proc:

fig1 := [[0, 0], [4, 0], [4, 3], [0, 3], [5, 5],[8,1],[8,8],[-5,8]]:
isolated1 := [[0,3],[2, 1],[-5,8]]:
fig2 := [[6, 6], [8, 6], [8, 8], [6, 8], [9, 9]]:
isolated2 := [[7, 7]]:

DrawOrderedLines(fig1, isolated1, fig2, isolated2);

 

Download punten_tekeken_-laatste_punt_niet_in_lijst_mprimes_23-4-2025.mw

restart:
with(DEtools):

ExactODEGroupingInteractive := proc(ODE, x, y)
  local lhs_expr, M, N, M_orig, N_orig, dM_dy, dN_dx, matched,
        intM, u_partial, du_dy, gprime, g, u_final, terms,
        dx_term, dy_term, ODE_classical, advice;

  print("�� STEP 0: Start by reading the differential equation in differential form:");
  lhs_expr := lhs(ODE);
  print("   → Equation provided: ", ODE);

  print("\n�� STEP 0B: Try to classify the ODE using Maple’s odeadvisor");

  # Extract M and N
  terms := [op(lhs_expr)];
  dx_term := select(t -> has(t, Dx), terms)[1];
  dy_term := select(t -> has(t, Dy), terms)[1];
  M := simplify(dx_term / Dx);
  N := simplify(dy_term / Dy);

  # Save for later
  M_orig := M:
  N_orig := N:

  # Substitute y = y(x)
  M := subs(y = y(x), M):
  N := subs(y = y(x), N):

  print("   We now rewrite the ODE in the form:");
  print("     M(x,y)*dy/dx + N(x,y) = 0");
  ODE_classical := M + N*diff(y(x), x) = 0;
  print("   → Rewritten ODE: ", ODE_classical);

  print("   Ask Maple’s odeadvisor for classification:");
  advice := odeadvisor(ODE_classical, y(x));
  print("�� Maple's odeadvisor says: ", advice);

  if member(_exact, advice) then
    print(" Great! Maple recognizes this ODE as exact.");
  else
    print("⚠️ Maple did NOT classify this as exact.");
    print("   → We will verify exactness ourselves using partial derivatives.");
  end if;

  print("\n�� STEP 1: Extract the functions M(x, y) and N(x, y) from the equation:");
  print("   → M(x, y) = ", M_orig);
  print("   → N(x, y) = ", N_orig);

  print("\n�� STEP 2: Check if the ODE is exact by comparing partial derivatives:");
  print("   → Compute ∂M/∂y and ∂N/∂x:");
  dM_dy := diff(M_orig, y):
  dN_dx := diff(N_orig, x):
  print("     ∂M/∂y = ", dM_dy);
  print("     ∂N/∂x = ", dN_dx);
  matched := simplify(dM_dy - dN_dx);
  if matched <> 0 then
    return " This equation is NOT exact. Grouping method is not applicable.";
  else
    print(" Yes! The equation is exact.");
  end if;

  print("\n�� STEP 3: Integrate M(x, y) with respect to x (treat y as constant):");
  print("   → ∫ M(x, y) dx = ");
  intM := int(M_orig, x):
  print("     = ", intM, " + g(y)");

  print("\n�� STEP 4: Differentiate that result with respect to y:");
  print("   → ∂/∂y of the integral:");
  du_dy := diff(intM, y):
  print("     ∂(partial result)/∂y = ", du_dy);

  print("\n�� STEP 5: Now solve for g'(y):");
  print("   → g'(y) = N(x, y) - ∂/∂y(previous result)");
  gprime := simplify(N_orig - du_dy):
  print("     g'(y) = ", gprime);

  print("\n�� STEP 6: Integrate g'(y) with respect to y:");
  print("   → ∫ g'(y) dy = ");
  g := int(gprime, y):
  print("     g(y) = ", g);

  print("\n�� STEP 7: Add both parts to find the general solution u(x, y):");
  u_final := simplify(intM + g):
  print("     u(x, y) = ", u_final);

  print("\n�� FINAL RESULT: The general solution to the ODE is:");
  return u_final = 'C';

end proc:

# Example call
ExactODEGroupingInteractive(
  (6*x*y^2 + 4*x^3*y)*Dx + (6*x^2*y + x^4 + exp(y))*Dy = 0,
  x, y);

"?? STEP 0: Start by reading the differential equation in differential form:"

 

"   &rarr; Equation provided: ", (4*x^3*y+6*x*y^2)*Dx+(6*x^2*y+x^4+exp(y))*Dy = 0

 

"
?? STEP 0B: Try to classify the ODE using Maple&rsquo;s odeadvisor"

 

"   We now rewrite the ODE in the form:"

 

"     M(x,y)*dy/dx + N(x,y) = 0"

 

"   &rarr; Rewritten ODE: ", 4*x^3*y(x)+6*x*y(x)^2+(6*x^2*y(x)+x^4+exp(y(x)))*(diff(y(x), x)) = 0

 

"   Ask Maple&rsquo;s odeadvisor for classification:"

 

"?? Maple's odeadvisor says: ", [_exact]

 

"✅ Great! Maple recognizes this ODE as exact."

 

"
?? STEP 1: Extract the functions M(x, y) and N(x, y) from the equation:"

 

"   &rarr; M(x, y) = ", 4*x^3*y+6*x*y^2

 

"   &rarr; N(x, y) = ", 6*x^2*y+x^4+exp(y)

 

"
?? STEP 2: Check if the ODE is exact by comparing partial derivatives:"

 

"   &rarr; Compute &PartialD;M/&PartialD;y and &PartialD;N/&PartialD;x:"

 

"     &PartialD;M/&PartialD;y = ", 4*x^3+12*x*y

 

"     &PartialD;N/&PartialD;x = ", 4*x^3+12*x*y

 

"✅ Yes! The equation is exact."

 

"
?? STEP 3: Integrate M(x, y) with respect to x (treat y as constant):"

 

"   &rarr; &int; M(x, y) dx = "

 

"     = ", (1/4)*y*(2*x^2+3*y)^2, " + g(y)"

 

"
?? STEP 4: Differentiate that result with respect to y:"

 

"   &rarr; &PartialD;/&PartialD;y of the integral:"

 

"     &PartialD;(partial result)/&PartialD;y = ", (1/4)*(2*x^2+3*y)^2+(3/2)*y*(2*x^2+3*y)

 

"
?? STEP 5: Now solve for g'(y):"

 

"   &rarr; g'(y) = N(x, y) - &PartialD;/&PartialD;y(previous result)"

 

"     g'(y) = ", exp(y)-(27/4)*y^2

 

"
?? STEP 6: Integrate g'(y) with respect to y:"

 

"   &rarr; &int; g'(y) dy = "

 

"     g(y) = ", -(9/4)*y^3+exp(y)

 

"
?? STEP 7: Add both parts to find the general solution u(x, y):"

 

"     u(x, y) = ", x^4*y+3*x^2*y^2+exp(y)

 

"
?? FINAL RESULT: The general solution to the ODE is:"

 

x^4*y+3*x^2*y^2+exp(y) = C

(1)

a little chance in de differential form , the first 6 is now a 3

ExactODEGroupingInteractive(
  (3*x*y^2 + 4*x^3*y)*Dx + (6*x^2*y + x^4 + exp(y))*Dy = 0,
  x, y);

"?? STEP 0: Start by reading the differential equation in differential form:"

 

"   &rarr; Equation provided: ", (4*x^3*y+3*x*y^2)*Dx+(6*x^2*y+x^4+exp(y))*Dy = 0

 

"
?? STEP 0B: Try to classify the ODE using Maple&rsquo;s odeadvisor"

 

"   We now rewrite the ODE in the form:"

 

"     M(x,y)*dy/dx + N(x,y) = 0"

 

"   &rarr; Rewritten ODE: ", x*y(x)*(4*x^2+3*y(x))+(6*x^2*y(x)+x^4+exp(y(x)))*(diff(y(x), x)) = 0

 

"   Ask Maple&rsquo;s odeadvisor for classification:"

 

"?? Maple's odeadvisor says: ", [`x=_G(y,y')`]

 

"⚠️ Maple did NOT classify this as exact."

 

"   &rarr; We will verify exactness ourselves using partial derivatives."

 

"
?? STEP 1: Extract the functions M(x, y) and N(x, y) from the equation:"

 

"   &rarr; M(x, y) = ", x*y*(4*x^2+3*y)

 

"   &rarr; N(x, y) = ", 6*x^2*y+x^4+exp(y)

 

"
?? STEP 2: Check if the ODE is exact by comparing partial derivatives:"

 

"   &rarr; Compute &PartialD;M/&PartialD;y and &PartialD;N/&PartialD;x:"

 

"     &PartialD;M/&PartialD;y = ", x*(4*x^2+3*y)+3*x*y

 

"     &PartialD;N/&PartialD;x = ", 4*x^3+12*x*y

 

"❌ This equation is NOT exact. Grouping method is not applicable."

(2)
 

 

Download 14-04_-2025mprimes-why_directly_not_find_ode_answer.mw

 
 

complex_map_plot := proc(f, zcurveLijst, t_range,
                         {kleurenset := ["blue","red","green","magenta","orange","cyan"],
                          lijnstijl := solid, resolutie := 200,
                          domein_naam := "Krommes in z-vlak", toon_label := false})
    local i, t, zcurve, ReZ, ImZ, ReW, ImW, zplots, wplots, kleur, zplot, wplot, annotatie, labeltekst;
    uses plots, plottools, InertForm;

    zplots := [];  wplots := [];

    for i to nops(zcurveLijst) do
        zcurve := zcurveLijst[i];
        kleur := kleurenset[i mod nops(kleurenset) + 1];

        ReZ := t -> Re(zcurve(t));
        ImZ := t -> Im(zcurve(t));
        ReW := t -> Re(f(zcurve(t)));
        ImW := t -> Im(f(zcurve(t)));

        zplot := plot([ReZ(t), ImZ(t), t = t_range],
                      color = kleur, linestyle = lijnstijl, thickness = 2,
                      scaling = constrained, axes = boxed, numpoints = resolutie,
                      labels = ["Re(z)", "Im(z)"]);

        if toon_label then
            labeltekst := typeset("z(t) = ", InertForm:-Display(zcurve(t)));
            annotatie := textplot([ReZ((rhs(t_range) + lhs(t_range))/2),
                                   ImZ((rhs(t_range) + lhs(t_range))/2),
                                   labeltekst], font = [TIMES, BOLD, 12]);
            zplot := display(zplot, annotatie);
        end if;

        wplot := plot([ReW(t), ImW(t), t = t_range],
                      color = kleur, linestyle = lijnstijl, thickness = 2,
                      scaling = constrained, axes = boxed, numpoints = resolutie,
                      labels = ["Re(w)", "Im(w)"]);

        zplots := [op(zplots), zplot];
        wplots := [op(wplots), wplot];
    end do;

    display(Array([display(zplots, title = cat("z-vlak: ", domein_naam)),
                   display(wplots, title = "w-vlak: Beeld onder f(z)")]), insequence = false);
end proc:

f := z -> exp(z);
zcurves := [t -> -1 + I*t, t -> 0 + I*t, t -> 1 + I*t, t -> 2 + I*t];
complex_map_plot(f, zcurves, -Pi..Pi, toon_label = false, domein_naam = "Verticale lijnen Re(z) = -1,0,1,2");

proc (z) options operator, arrow; exp(z) end proc

 

[proc (t) options operator, arrow; -1+I*t end proc, proc (t) options operator, arrow; I*t end proc, proc (t) options operator, arrow; 1+I*t end proc, proc (t) options operator, arrow; 2+I*t end proc]

 

 

 

 

 

f := z -> exp(z);
z_driehoek := proc(t) piecewise(
  t <= 1, 2*t,
  t <= 2, 2 + (t-1)*(-1+I),
  t <= 3, 1 + I + (t-2)*(-1 - I)
) end proc;

complex_map_plot(f, [z_driehoek], 0..3, toon_label=true, domein_naam="Driehoek");

proc (z) options operator, arrow; exp(z) end proc

 

proc (t) piecewise(t <= 1, 2*t, t <= 2, 2+(-1+I)*(t-1), t <= 3, 1+I+(-1-I)*(t-2)) end proc

 

 

 

 

 

zcurves := [
    t -> t - 2*I,
    t -> t - I,
    t -> t,
    t -> t + I,
    t -> t + 2*I
];

[proc (t) options operator, arrow; t-2*I end proc, proc (t) options operator, arrow; t-I end proc, proc (t) options operator, arrow; t end proc, proc (t) options operator, arrow; t+I end proc, proc (t) options operator, arrow; t+2*I end proc]

(1)

f := z -> exp(z);
complex_map_plot(f, zcurves, -2..2, domein_naam = "Horizontale lijnen Im(z) = -2..2", toon_label = false);

proc (z) options operator, arrow; exp(z) end proc

 

 

 

 

 

Download 10-4-2025-_exploring_th_emapping_of_verticl_lines_mprimes_versie_2.mw

In  Maple do... 
? FunctionAdvisor ;
using Maple's help info 
FunctionAdvisor
provide information on mathematical functions in general
FunctionAdvisor(topics) ;    

1 2 3 4 5 6 Page 3 of 6