janhardo

700 Reputation

12 Badges

11 years, 65 days

MaplePrimes Activity


These are replies submitted by janhardo

now a3,a8 ,.....?

The countour must be around the path .. to be continued 

restart:

PlotParametricCurveWithContourLite := proc(r::procedure, a::numeric, b)
    local xfunc, yfunc, i, t, step, ytvals, ymax, A, B, M, p, s, contour, path, txt, labeltxt, totalPlot, N, e, n;
    
    uses plots, plottools, CurveFitting;   

    N := 30:        # aantal punten voor de contour
    e := 0.2:       # rimpelamplitude

    # Coördinaten
    xfunc := t -> r(t)[1]:
    yfunc := t -> r(t)[2]:

    step := (b - a)/100:
    ytvals := [seq(yfunc(a + i*step), i = 0 .. 100)]:
    ymax := max(ytvals) * 1.1:

    # Willekeurige contour
    A := [1, 1]:
    B := [N+2, 1]:
    M := seq([n+1, A[2] + rand(-e .. e)()], n=1..N):
    p := [A, M, B]:
    s := unapply(Spline(p, t, endpoints='periodic'), t):

    contour := plot(s(1 + t*(N+1)/(2*Pi)), t=0..2*Pi, coords=polar, color=red, thickness=2):

    # Curve tekenen
    path := plot([xfunc(t), yfunc(t), t = a .. b], color = black, thickness = 1, linestyle = dash):
    labeltxt := cat("Curve: r(t) = [x(t), y(t)],  t 2 [", a, ", ", b, "]"):
    txt := textplot([0, ymax, labeltxt], align = {above}, font = [Times, Bold, 12]):

    totalPlot := display([contour, path, txt], scaling = constrained):
    return totalPlot;
end proc:

r := t -> [t, t^2]:  # Parabool
PlotParametricCurveWithContourLite(r, 0, 2);

 

r := t -> [t*cos(t), t*sin(t)]:
PlotParametricCurveWithContourLite(r, 0, Pi);

 

Download pad_generator_mprimes_25-4-2025_versieA.mw


 

ChaoticCircle := proc(r::positive, factor_x::positive, factor_y::positive, k::positive, delta::numeric, n::posint)
    local i, j, N, t, theta, x_vals, y_vals, points, plot, freqs, phases, wobblefactor;
    uses plots, plottools, RandomTools;

    N := 500;
    theta := [seq(2*Pi*i/N, i = 0..N)];

    # Generate random frequencies and phases
    freqs := [seq(rand(3..7)(), i=1..n)];
    phases := [seq(rand(0.0..evalf(2*Pi))(), i=1..n)];

    # Function to compute wobble factor at t
    wobblefactor := t -> 1 + delta * add(sin(freqs[j]*t + phases[j]), j=1..n);

    # Coordinates with random contour wobble
    x_vals := [seq(k*factor_x*r*wobblefactor(t)*cos(t), t in theta)];
    y_vals := [seq(k*factor_y*r*wobblefactor(t)*sin(t), t in theta)];

    points := [seq([x_vals[i], y_vals[i]], i=1..N+1)];

    # Plot the chaotic shape
    plot := plottools[curve](points, color=orange, thickness=3):
    plots[display](plot,
      axes = none,
        title=sprintf("Chaotic Circle  �� (n=%d waves)", n));
end proc:

ChaoticCircle(1, 5, 2, 4, 0.07, 5);

 


 

Download chaotic_circle_proc_24-42025.mw

@salim-barzani 
it's ai style , so ?
i tried different versions to get for r2 , as close as the paper 
Probably it can be better , but how you can derive r2 is clear

restart:

# Step 1: Define parameters
assume(a, real): assume(b, real): assume(lambda > 0):
assume(k1, real): assume(k2, real):
assume(r1, real): assume(r2, real):
assume(s1, real): assume(s2, real):

# Step 2: Condition A_12 = 0 → set numerator equal to 0
numerator := -(k1 - k2)^2 + 3*(s1 - s2)^2 + lambda*(r1 - r2)^2 + (a^4 - 6*a^2*b^2 + b^4):
eq := numerator = 0:

# Step 3: Solve the equation for r2
sol := solve(eq, r2):

# Step 4: Look at the difference r2 - r1 (for ± structure)
expr := sol[1] - r1:
expr_simplified := simplify(expr):

# Step 5: Rewrite the result in the same form as equation (14)
A := (a^4 - 6*a^2*b^2 + b^4):
factorized_expr := simplify(sqrt(3)/(4*lambda) * sqrt(-lambda*(k2 - k1)^2*A + 4*lambda*(r1 + s1 - s2))):

# Step 6: Display the final solution
r2_final := r1 + factorized_expr;
r2_alternate := r1 - factorized_expr;

# Display both ± solutions
[r2_final, r2_alternate];

# Replace expanded terms by original factor form
A := a^4 - 6*a^2*b^2 + b^4:
DeltaK := (k1 - k2)^2:
expr_compact := simplify(sqrt(3)/(4*lambda) * sqrt(-lambda*DeltaK*A + 4*lambda*(r1 + s1 - s2))):

# Show the final clean formula
r2_nice := [r1 + expr_compact, r1 - expr_compact];


A := (a^4 - 6*a^2*b^2 + b^4):
DeltaK := (k1 - k2)^2:
B := 4*(r1 + s1 - s2):
r2_compact := [r1 + sqrt(3)/(4*sqrt(lambda))*sqrt(-DeltaK*A + B),
               r1 - sqrt(3)/(4*sqrt(lambda))*sqrt(-DeltaK*A + B)];

 

Warning, solve may be ignoring assumptions on the input variables.

 

r1+(1/4)*3^(1/2)*(-(k1-k2)^2*a^4+6*b^2*(k1-k2)^2*a^2-(k1-k2)^2*b^4+4*r1+4*s1-4*s2)^(1/2)/lambda^(1/2)

 

r1-(1/4)*3^(1/2)*(-(k1-k2)^2*a^4+6*b^2*(k1-k2)^2*a^2-(k1-k2)^2*b^4+4*r1+4*s1-4*s2)^(1/2)/lambda^(1/2)

 

[r1+(1/4)*3^(1/2)*(-(k1-k2)^2*a^4+6*b^2*(k1-k2)^2*a^2-(k1-k2)^2*b^4+4*r1+4*s1-4*s2)^(1/2)/lambda^(1/2), r1-(1/4)*3^(1/2)*(-(k1-k2)^2*a^4+6*b^2*(k1-k2)^2*a^2-(k1-k2)^2*b^4+4*r1+4*s1-4*s2)^(1/2)/lambda^(1/2)]

 

[r1+(1/4)*3^(1/2)*(-(k1-k2)^2*a^4+6*b^2*(k1-k2)^2*a^2-(k1-k2)^2*b^4+4*r1+4*s1-4*s2)^(1/2)/lambda^(1/2), r1-(1/4)*3^(1/2)*(-(k1-k2)^2*a^4+6*b^2*(k1-k2)^2*a^2-(k1-k2)^2*b^4+4*r1+4*s1-4*s2)^(1/2)/lambda^(1/2)]

 

[r1+(1/4)*3^(1/2)*(-(a^4-6*a^2*b^2+b^4)*(k1-k2)^2+4*r1+4*s1-4*s2)^(1/2)/lambda^(1/2), r1-(1/4)*3^(1/2)*(-(a^4-6*a^2*b^2+b^4)*(k1-k2)^2+4*r1+4*s1-4*s2)^(1/2)/lambda^(1/2)]

(1)

restart:

# Parameters definition
assume(a, real): assume(b, real): assume(lambda > 0):
assume(k1, real): assume(k2, real):
assume(r1, real): assume(s1, real): assume(s2, real):

# Compact terms as in the paper
DeltaK := (k2 - k1)^2:
A := a^4 - 6*a^2*b^2 + b^4:
B := 4*lambda*(r1 + s1 - s2):

# Root term as it appears in equation (14)
Root := -lambda*DeltaK*A + B:

# Final solution in ± form
r2_nice := [ + sqrt(3)/(4*lambda)*sqrt(Root),
             - sqrt(3)/(4*lambda)*sqrt(Root) ];

 

[(1/4)*3^(1/2)*(-(a^4-6*a^2*b^2+b^4)*(k2-k1)^2*lambda+4*lambda*(r1+s1-s2))^(1/2)/lambda, -(1/4)*3^(1/2)*(-(a^4-6*a^2*b^2+b^4)*(k2-k1)^2*lambda+4*lambda*(r1+s1-s2))^(1/2)/lambda]

(2)

restart;

# Simplification assuming lambda > 0
assume(lambda > 0):

DeltaK := (k2 - k1)^2:
A := a^4 - 6*a^2*b^2 + b^4:
B := 4*(r1 + s1 - s2):  # No lambda in this term anymore

# Extract lambda from the square root
r2_nice := r1 + sqrt(3)/(4*sqrt(lambda)) * sqrt(-DeltaK*A + B),
            r1 - sqrt(3)/(4*sqrt(lambda)) * sqrt(-DeltaK*A + B);

r1+(1/4)*3^(1/2)*(-(a^4-6*a^2*b^2+b^4)*(k2-k1)^2+4*r1+4*s1-4*s2)^(1/2)/lambda^(1/2), r1-(1/4)*3^(1/2)*(-(a^4-6*a^2*b^2+b^4)*(k2-k1)^2+4*r1+4*s1-4*s2)^(1/2)/lambda^(1/2)

(3)
 

 

Download berekinhg_mprimes_vraag_formule_bereekn_in_pde_engelse_versie19-14-2025.mw

a equation for A12 = 0 , and solve this 

assume : Lambda > 0 


 

restart;
with(PDEtools): with(plots):

# --------------------------
# 1. Basisparameters
# --------------------------
k[2] := 1: l[2] := 1: r[2] := 0.5:

# Tijdwaarden die je wil onderzoeken
timeList := [-5, -2, 0, 2, 5]:

# G-functie (geëxtraheerd uit lumpoplossing)
t_expr := (tval) -> exp(-(1/k[2])*(tval*k[2]^4 + tval*k[2]^2 + tval*k[2]*l[2] + tval*k[2]*r[2] - tval*l[2]^2 - x*k[2]^2 - y*k[2]*l[2])) +
                    exp(-1) +
                    exp(-(1/k[2])*(tval*k[2]^4 + tval*k[2]^2 + tval*k[2]*l[2] + tval*k[2]*r[2] - tval*l[2]^2 - x*k[2]^2 - y*k[2]*l[2])):

# --------------------------
# 2. Tijdsafhankelijke plot
# --------------------------
plotsList := []:

for T in timeList do
    fxy := t_expr(T):
    fx := diff(fxy, x): fxx := diff(fxy, x$2):
    u := unapply(2*fxx/fxy - 2*(fx/fxy)^2, x, y):
    P := plot3d(u(x, y), x = -20 .. 20, y = -20 .. 20,
                title = cat("Tijdsontwikkeling bij t = ", T),
                labels = ["x", "y", "u(x,y)"],
                axes = boxed, grid = [60,60], color = gold):
    plotsList := [op(plotsList), P]:
end do:

display(plotsList, insequence = true);

# --------------------------
# 3. Contouroppervlak op t = 0
# --------------------------
fxy0 := t_expr(0):
fx0 := diff(fxy0, x): fxx0 := diff(fxy0, x$2):
u0 := unapply(2*fxx0/fxy0 - 2*(fx0/fxy0)^2, x, y):

contourplot3d(u0(x, y), x = -20 .. 20, y = -20 .. 20, contours = 25,
              title = "Contourplot van Lump bij t = 0",
              labels = ["x", "y", "u(x,y)"]);

 

 

restart;
with(PDEtools): with(plots):

# ---------------------------------------------------
# Stap 1: Genereer lump-functie als functie van t, x, y
# ---------------------------------------------------
Lump := proc(k2, l2, r2, tval)
    local G, fxy, fx, fxx, u;
    G := exp(-(1/k2)*(tval*k2^4 + tval*k2^2 + tval*k2*l2 + tval*k2*r2 - tval*l2^2 - x*k2^2 - y*k2*l2)) +
         exp(-1) +
         exp(-(1/k2)*(tval*k2^4 + tval*k2^2 + tval*k2*l2 + tval*k2*r2 - tval*l2^2 - x*k2^2 - y*k2*l2)):
    fx := diff(G, x): fxx := diff(G, x$2):
    u := unapply(2*fxx/G - 2*(fx/G)^2, x, y):
    return u:
end proc:

# ---------------------------------------------------
# Stap 2: Parameterwaarden om te variëren
# ---------------------------------------------------
Kvals := [0.5, 1, 2];     # k[2]: invloed op scherpte
Lvals := [-1, 0, 1];      # l[2]: invloed op y-positie
Rvals := [0, 0.5, 1];     # r[2]: invloed op z-as (indirect hier)

# ---------------------------------------------------
# Stap 3: Genereer alle plots automatisch
# ---------------------------------------------------
plotsList := []:
for k2 in Kvals do
  for l2 in Lvals do
    for r2 in Rvals do
        u := Lump(k2, l2, r2, 0):
        P := plot3d(u(x, y), x = -15 .. 15, y = -15 .. 15, color = gold,
                    title = cat("Lump: k[2]=", k2, ", l[2]=", l2, ", r[2]=", r2),
                    labels = ["x", "y", "u(x,y)"], axes = boxed, grid = [60, 60]):
        plotsList := [op(plotsList), P]:
    od:
  od:
od:

display(plotsList, insequence = false);

[.5, 1, 2]

 

[-1, 0, 1]

 

[0, .5, 1]

 

 

# Stap 1: Stel parameterwaarden in
k2_val := 1: l2_val := 1: r2_val := 0.5: tval := 0:

# Stap 2: Genereer lump-oplossing
ulump := Lump(k2_val, l2_val, r2_val, tval):

# Stap 3: Originele PDE
pde := diff(diff(u(x, y, z, t), t) + 6*u(x, y, z, t)*diff(u(x, y, z, t), x) + diff(u(x, y, z, t), x $ 3), x)
       - lambda*diff(u(x, y, z, t), y $ 2) + diff(alpha*diff(u(x, y, z, t), x) + beta*diff(u(x, y, z, t), y) + delta*diff(u(x, y, z, t), z), x):

# Stap 4: Substitueer lump en evalueer op z = 0
subcheck := eval(pde, u(x, y, z, t) = ulump(x, y)):
subcheck := eval(subcheck, z = 0):

# Stap 5: Controleer of het resultaat ~0
simplify(subcheck);

32*(8*(2*beta+4*alpha-lambda+16)*exp(-3+10*x+5*y)+32*(-112-2*beta-4*alpha+lambda)*exp(-2+10*x+6*y)+32*(40+2*beta+4*alpha-lambda)*exp(-2+11*x+6*y)+32*(2*beta+4*alpha-lambda+16)*exp(-1+12*x+7*y)+2*(40+2*beta+4*alpha-lambda)*exp(-6+3*x+2*y)+2*(-112-2*beta-4*alpha+lambda)*exp(-6+4*x+2*y)+2*(2*beta+4*alpha-lambda+16)*exp(-5+4*x+3*y)+8*(-2*beta-4*alpha+lambda-136)*exp(-5+5*x+3*y)+12*(-2*beta-4*alpha+lambda+112)*exp(-5+6*x+3*y)+8*(-112-2*beta-4*alpha+lambda)*exp(-4+6*x+4*y)+48*(-2*beta-4*alpha+lambda+88)*exp(-4+7*x+4*y)+8*(-112-2*beta-4*alpha+lambda)*exp(-4+8*x+4*y)+48*(-2*beta-4*alpha+lambda+112)*exp(-3+8*x+5*y)+32*(-2*beta-4*alpha+lambda-136)*exp(-3+9*x+5*y)+(beta+2*alpha-(1/2)*lambda+8)*exp(-7+2*x+y))/((2*exp(2*x+y)+exp(-1))^6*(2*exp(x+y)+exp(-1))^2)

(1)

 

restart:
with(PDEtools): with(plots):

# 1. Lump-oplossing als functie
Lump := proc(k2, l2, r2, tval)
    local G, fx, fxx, u;
    G := exp(-(1/k2)*(tval*k2^4 + tval*k2^2 + tval*k2*l2 + tval*k2*r2 - tval*l2^2 - x*k2^2 - y*k2*l2)) +
         exp(-1) +
         exp(-(1/k2)*(tval*k2^4 + tval*k2^2 + tval*k2*l2 + tval*k2*r2 - tval*l2^2 - x*k2^2 - y*k2*l2)):
    fx := diff(G, x): fxx := diff(G, x$2):
    u := unapply(2*fxx/G - 2*(fx/G)^2, x, y):
    return u:
end proc:

# �� 2. Originele PDE
pde := diff(diff(u(x, y, z, t), t) + 6*u(x, y, z, t)*diff(u(x, y, z, t), x) + diff(u(x, y, z, t), x $ 3), x)
       - lambda*diff(u(x, y, z, t), y $ 2) + diff(alpha*diff(u(x, y, z, t), x) + beta*diff(u(x, y, z, t), y) + delta*diff(u(x, y, z, t), z), x):

# �� 3. Vaste lump parameters
k2_val := 1: l2_val := 1: r2_val := 0.5: tval := 0:
ulump := Lump(k2_val, l2_val, r2_val, tval):

# �� 4. Testen over alpha, beta, lambda
Avals := [0, 1, 2]:
Bvals := [0, 1, 2]:
Lvals := [0, 1, 2]:
plotsList := []:

for a in Avals do
  for b in Bvals do
    for lam in Lvals do
        alpha := a: beta := b: lambda := lam:
        check := eval(pde, u(x, y, z, t) = ulump(x, y)):
        check := eval(check, z = 0):
        check := simplify(check):
        P := plot3d(check, x = -5 .. 5, y = -5 .. 5,
                    title = cat("Residue voor α=", a, ", β=", b, ", λ=", lam),
                    axes = boxed, labels = ["x", "y", "Residue"]):
        plotsList := [op(plotsList), P]:
    od:
  od:
od:

# �� 5. Alles tonen
display(plotsList, insequence = false, title = "Residuanalyse van Lump-substitutie");

 

 

restart;
with(plots):

# Parameters voor de lumps
k1 := 1: l1 := 1: r1 := 0.5: eta1 := 0:
k2 := 1.2: l2 := -1: r2 := 0.3: eta2 := 0:
t := 0:

# Definieer de fasen (theta1 en theta2)
theta1 := t*k1^4 + t*k1^2 + t*k1*l1 + t*k1*r1 - t*l1^2 + x*k1^2 + y*k1*l1 + eta1:
theta2 := t*k2^4 + t*k2^2 + t*k2*l2 + t*k2*r2 - t*l2^2 + x*k2^2 + y*k2*l2 + eta2:

# F-functie van Hirota (twee lumps + interactie)
b := 1: # Interactiecoëfficiënt
F := 1 + exp(theta1) + exp(theta2) + b*exp(theta1 + theta2):

# Lump-oplossing via Hirota's formule
fx := diff(F, x):
fxx := diff(F, x$2):
u := unapply(2*fxx/F - 2*(fx/F)^2, x, y):

# 3D-plot
P3D := plot3d(u(x, y), x = -10 .. 10, y = -10 .. 10,
              title = "3D-plot van tweelump-oplossing",
              axes = boxed, grid = [60, 60], color = gold,
              labels = ["x", "y", "u(x,y)"]);

# Contourplot
Pcontour := contourplot(u(x, y), x = -10 .. 10, y = -10 .. 10,
                        contours = 20, coloring = [blue, white, red],
                        title = "Contourplot van tweelump-oplossing",
                        axes = boxed);

# Toon beide plots
#display([P3D, Pcontour], title = "2-Lump Solution Visualisatie");

 

 

Error, (in plots:-display) cannot display 2-D and 3-D plots together

 


 

Download kp_onderzoek__vb_19-4-2025_A.mw

@salim-barzani 

I can give you my e-mail address , which in itself is not a problem

Have no expectation that I will have your solutions to your issues soon , probably never ?

It's just my interest in the pde equations and applications.

@salim-barzani 
What country do you live , why is deepseek not suported there?
Finding the auxilary function seems to be  similar to finding a sequence development for an function solotion for a ode ?

@acer 
Thanks, probably there something wrong under the hood of the forum code for maple Primes...

deepseek ai is free for now : good ..did you tried it ?
DeepSeek - Into the Unknown

@salim-barzani 

The code for the bilinear procedure is quite complicated to create and was not done by me.

The operation is clearly analysable using ai though.

I'm just brushing up on the bilinear form if it exists for a pde ..what can be done with it ?

Did find another package : PDEBellII A Maple package for finding bilinear forms, bilinear Bäcklund transformations, Lax pairs and conservation laws of the KdV-type equations

This is then specifically for KdV pde

If you show the problem here, maybe someone else can help too

@salim-barzani 
using the bilinear form for this type pde  , for parameters A,A1,etc  and given ansatz 
note : the bilinear procedure accept no integrals in the pde expression in general, but it can be tricked 

restart:
with(PDEtools):

# Zorg dat f als functie wordt herkend
declare(f(x,y,z,t), 'function'):

# �� Hoofdroutine: controleer of een f(x,y,z,t) voldoet aan Hirota-bilineaire vorm
CheckHirotaForm := proc(f_expr::algebraic, vars::list)
    description "Onderzoekt of een functie f(x,y,z,t) voldoet aan de Hirota-bilineaire PDE";

    local x, y, z, t, f;
    local A, B, A1, B1, C1;
    local D_op, Dff, BilinearPDE, Result;

    # Variabelen extraheren
    (x, y, z, t) := op(vars):

    # Zet expressie om naar functionele vorm
    f := unapply(f_expr, x, y, z, t):

    # Stel Hirota-operator op voor f*f
    D_op := A*convert(Diff(f(x,y,z,t)*f(x,y,z,t), x,x,x,x), D) +
            A1*convert(Diff(f(x,y,z,t)*f(x,y,z,t), x, y), D) +
            B1*convert(Diff(f(x,y,z,t)*f(x,y,z,t), x, z), D) +
            C1*convert(Diff(f(x,y,z,t)*f(x,y,z,t), t, x), D) +
            convert(Diff(f(x,y,z,t)*f(x,y,z,t), t, t), D) +
            convert(Diff(f(x,y,z,t)*f(x,y,z,t), x, x), D):

    # Stel volledige Hirota PDE op
    BilinearPDE := convert(Diff(3*A*D_op / (B*f(x,y,z,t)^2), x$2), D):

    # Vereenvoudig resultaat
    Result := simplify(BilinearPDE):

    # Toon uitkomst
    print("Bilineaire vergelijking na substitutie:");
    print(Result);

    # Controleer of nul
    if Result = 0 then
        print(" Geldige oplossingsfunctie!");
    else
        print(" Niet een exacte oplossing.");
    end if;

    return Result;
end proc:

# Subprocedure: test klassieke 1-soliton oplossing
Test1Soliton := proc()
    description "Genereert en test een klassieke 1-soliton-ansatz";

    local f_expr;

    # Stel 1-soliton-ansatz op
    f_expr := 1 + exp(k*x + l*y + m*z + omega*t + delta):

    print("➡️ Test van 1-soliton functie: f(x,y,z,t) = 1 + exp(kx + ly + mz + ωt + δ):");
    return CheckHirotaForm(f_expr, [x, y, z, t]);
end proc:

# Gebruik:
# Test1Soliton();

f(x, y, z, t)*`will now be displayed as`*f

(1)

# Stel waarden in voor de parameters (optioneel symbolisch of numeriek)
A := 1: B := 6:
A1 := 0: B1 := 0: C1 := 0:

# Voer de test uit
Test1Soliton();

"➡️ Test van 1-soliton functie: f(x,y,z,t) = 1 + exp(kx + ly + mz + ωt + δ):"

 

"Bilineaire vergelijking na substitutie:"

 

6*A*(4*(7*k^4*A+k^2+(A1*l+B1*m+C1*omega)*k+omega^2)*exp(2*k*x+2*l*y+2*m*z+2*omega*t+2*delta)+3*(-5*k^4*A-k^2+(-A1*l-B1*m-C1*omega)*k-omega^2)*exp(3*k*x+3*l*y+3*m*z+3*omega*t+3*delta)+(k^4*A+k^2+(A1*l+B1*m+C1*omega)*k+omega^2)*exp(k*x+l*y+m*z+omega*t+delta))*k^2/(B*(1+exp(k*x+l*y+m*z+omega*t+delta))^4)

 

"❌ Niet een exacte oplossing."

 

6*A*(4*(7*k^4*A+k^2+(A1*l+B1*m+C1*omega)*k+omega^2)*exp(2*k*x+2*l*y+2*m*z+2*omega*t+2*delta)+3*(-5*k^4*A-k^2+(-A1*l-B1*m-C1*omega)*k-omega^2)*exp(3*k*x+3*l*y+3*m*z+3*omega*t+3*delta)+(k^4*A+k^2+(A1*l+B1*m+C1*omega)*k+omega^2)*exp(k*x+l*y+m*z+omega*t+delta))*k^2/(B*(1+exp(k*x+l*y+m*z+omega*t+delta))^4)

(2)
 

 

Download CheckHirotaForm_16-4-2025mprimes.mw

First 8 9 10 11 12 13 14 Last Page 10 of 75