janhardo

700 Reputation

12 Badges

11 years, 65 days

MaplePrimes Activity


These are replies submitted by janhardo

@salim-barzani 

Outline here , how you think you will find a function as a solution of the pde that will satisfy the ode test?

I have a variant of this : 4 dogs starting on the vertices of a square.
The dogs also chase each other and have maple code of it and a differential equation was constructed from this, with a plot of the dogs' trajectories
This seems like an analogous example to me ?..no my example is 2D and this spatial 

sirmodel_met_explore_mogelijk.mw

In 2000 when  start to study for B Ed math for secondary education , i choosed this Sir model  as a assigment to work on.
Note: this example of the sir model is not made by me  

It has not been wise of the member to comply not with the friendly request to stop deleting done questions, but simply join a previously done question or come up with an entirely new question separate from the existing one and post it.

Then there would have been nothing wrong and he could have asked any question, provided the proper procedure is followed.
Now again, why has the member's last post been deleted ? , that does not become clear now... Were there several questions under one posted question ?

Yes, duplicate questions , that is a problem, but well had the member complied with request not to delete done questions again, then duplicate questions could have started being asked by him again and that is a danger if you start asking a lot of questions and would need moderation again .

@salim-barzani    Well for this kind of practice they have the wrong one in front of them  
Follow the two points  i earlier made for posting question, otherwise you are a shooting duck :-)


Should these tips not help and happen again , I want to hold the moderators accountable. 
Going to discuss this undesirable behaviour at Maple headquarters themselves that someone from their maple primes moderators is making it impossible for forum users to familiarize themselves with the software
You cannot afford everything to a forum user should you be a moderator and think you are Jesus. 

@mmcdara 

"Do you have any idea where your last question aboiur the Wiener process and the 2D representation of T2 is now?"

Surely this deletion of a question is not automated ?
Interestingly, I was looking at the questions on Maple primes late last night and shortly after, the question had been removed ?

Note that also that you don't put two not really related questions together, because that way you put two loosely related questions together and that is not the intention either.
Possibly this was the reason for the removal.

I can't think of anything else for it, unless there must be a sick mind, but I don't think so and the questions are not automatically deleted either.
That leaves only one possibility ...
I would find it so user-friendly for forum users that the reason for the deletion of the question is stated and who is responsible for it 

if not , I find that weak behaviour to guide users on the forum in this way and you are not a good moderator in my own, but a stubborn pusher.

---------------------------------------------------------------

1) Do not ask multiple questions on the same topic and start posting them as separate questions on mapleprimes.
Instead, ask 1 question and connect related follow-up questions to the existing question.
2) No asking multiple questions with different topics and posting them as 1 question.
Instead ask these as separate questions and post them on mapleprimes forum.

@salim-barzani 

The question now is who will help you, if you delete the questions with the help again, because that is not the intention on a forum as a place where people want to gain new knowledge for themselves as well as others.



What does this mean ?

factor(x^2-4);
                        (x - 2) (x + 2)

expression:=x^2-4;
factor(expression);

Factoring a curious product.. has nothing to do with a equation

 

collect((x-2)*(x+2),x);
                              2    
                             x  - 4


 

@salim-barzani 

The 2D mode does not seem to work error-free , but it does seem easier to work with.
Use the 1D mode , then you can be sure you won't encounter any error surprises, which can occur in 2D mode 

@salim-barzani 

"i think it is usless, instead of this ask question there is a lot people which can help a lot "
Yes, if they will ...

I did not tried yet  to make a procedure out of the code of @mmcdara
"Currently, the equations are simple, but improvements are needed to extend this method to higher dimensions, such as (2+1) and (3+1). Right now, it’s only applicable to (1+1) dimensions"

So i try first to make code for (1+1) dimensions , what accepts th ewandted pdes 

@salim-barzani 
KdV and SK equation, first place i  restored the code  to be readable, don't know further at the moment if the right answer appearing.

with(DEtools):

# === Hirota Bilinear Method ===
# This script provides tools to work with Hirota bilinear forms.
# It includes functions for handling bilinear derivatives, converting
# expressions to bilinear form, and printing results.

# === Bilinear Derivative / Hirota Operator ===
BD := proc(FF, DD)
    local f, g, x, m, opt;
    # Parse input arguments
    if nargs = 1 then
        return ‘*‘(FF[]);
    fi;
    f, g := FF[];
    x, m := DD[];
    opt := args[3..-1];
    
    # Handle case where m = 0 (base case)
    if m = 0 then
        return procname(FF, opt);
    fi;
    
    # Recursive definition of the Hirota operator
    procname([diff(f, x), g], [x, m-1], opt)
    - procname([f, diff(g, x)], [x, m-1], opt);
end:

# === Display Bilinear Derivative ===
‘print/BD‘ := proc(FF, DD)
    local f, g, x, m, i;
    f, g := FF[];
    f := cat(f, ‘ ‘, g);
    g := product(D[args[i][1]]^args[i][2], i=2..nargs);
    if g <> 1 then
        f := ‘‘(g) * ‘‘(f);
    fi;
    f;
end:

# === Collect Terms ===
getFnumer := proc(df, f, pow::posint := 1)
    local i, g, fdenom;
    # Ensure the expression is a sum
    if type(df, ‘+‘) then
        g := [op(df)];
        fdenom := map(denom, g);
        
        # Locate the term with denominator f^pow
        for i to nops(fdenom) while fdenom[i] <> f^pow do od;
        if i > nops(fdenom) then
            lprint(fdenom);
            error "No term(s) or numer=0 when denom=%1", op(0, f)^pow;
        fi;
        
        g := numer(g[i]);
        if not type(expand(g), ‘+‘) then
            lprint(g);
            error "Expected more than 1 term about Hirota D-operator";
        fi;
        
        return g;
    fi;
    
    lprint(df);
    error "Expected 1st argument to be type ‘+‘.";
end:

# === Extract Variable Powers ===
getvarpow := proc(df::function)
    local i, f, var, dif, pow;
    if op(0, df) <> diff then
        lprint(df);
        error "Expected diff function";
    fi;
    
    f := convert(df, D);
    var := [op(f)];
    dif := [op(op([0, 0], f))];
    pow := [0$nops(var)];
    f := op(op(0, f))(var[]);
    
    for i to nops(var) do
        dif := selectremove(member, dif, {i});
        pow[i] := nops(dif[1]);
        dif := dif[2];
    od;
    
    pow := zip((x, y) -> [x, y], var, pow);
    pow := remove(has, pow, {0});
    [[f, f], pow[]];
end:

# === Convert to Hirota Bilinear Form ===
HBF := proc(df)
    local i, c, f;
    
    if type(df, ‘+‘) then
        f := [op(df)];
        return map(procname, f);
    fi;
    
    if type(df, ‘*‘) then
        f := [op(df)];
        f := selectremove(hasfun, f, diff);
        c := f[2];
        f := f[1];
        if nops(f) <> 1 then
            lprint(df);
            error "Need only one diff function factor.";
        fi;
        f := f[];
        c := ‘*‘(c[]);
        f := getvarpow(f);
        f := [c, f];
        return f;
    fi;
    
    if op(0, df) = diff then
        f := getvarpow(df);
        f := [1, f];
        return f;
    fi;
    
    lprint(df);
    error "Unexpected type.";
end:

# === Print Hirota Bilinear Form ===
printHBF := proc(PL::list)
    local j, DD, f, C, tmp, gcdC;
    C := map2(op, 1, PL);
    gcdC := 1;
    
    if nops(C) > 1 then
        tmp := [seq(cat(_Z, i), i=1..nops(C))];
        gcdC := tmp *~ C;
        gcdC := ‘+‘(gcdC[]);
        gcdC := factor(gcdC);
        tmp := selectremove(has, gcdC, tmp);
        gcdC := tmp[2];
        if gcdC = 0 then
            gcdC := 1;
        fi;
        gcdC := gcdC * content(tmp[1]);
    fi;
    
    if gcdC <> 1 then
        C := C /~ gcdC;
    fi;
    
    DD := map2(op, 2, PL);
    f := op(0, DD[1][1][1]);
    DD := map(z -> product(D[z[i][1]]^z[i][2], i=2..nops(z)), DD);
    DD := zip(‘*‘, C, DD);
    DD := ‘+‘(DD[]);
    gcdC * ‘‘(DD) * cat(f, ‘ ‘, f);
end:

# === Print Hirota Bilinear Transform ===
printHBT := proc(uf, u, f, i, j, PL, alpha := 1)
    local DD, g, C, tmp, pl;
    pl := printHBF(PL);
    if j > 0 then
        print(u = 2 * alpha * ’diff’(ln(f), x$j));
    else
        print(u = 2 * alpha * ln(f));
    fi;
    
    if i > 0 then
        print(’diff’(pl/f^2, x$i) = 0);
    else
        print(pl/f^2 = 0);
    fi;
    
    NULL;
end:

# === Guess Differential Order ===
guessdifforder := proc(PL::list, x::name)
    local L, minorder, maxorder, tmp;
    L := map2(op, 2, PL);
    L := map(z -> z[2..-1], L);
    tmp := map(z -> map2(op, 2, z), L);
    tmp := map(z -> ‘+‘(z[]), tmp);
    tmp := selectremove(type, tmp, even);
    
    minorder := 0;
    if nops(tmp[1]) < nops(tmp[2]) then
        minorder := 1;
    fi;
    
    tmp := map(z -> select(has, z, {x}), L);
    tmp := map(z -> map2(op, 2, z), tmp);
    if has(tmp, {[]}) then
        maxorder := 0;
    else
        tmp := map(op, tmp);
        maxorder := min(tmp[]);
    fi;
    
    if type(maxorder - minorder, odd) then
        maxorder := maxorder - 1;
    fi;
    
    [minorder, maxorder];
end:

# === Guess Alpha Value ===
guessalpha := proc(Res, uf, u, f, i, j, PL, alpha)
    local tmp, res, pl, flag, k;
    flag := 1;
    tmp := [op(Res)];
    tmp := map(numer, tmp);
    tmp := gcd(tmp[1], tmp[-1]);
    
    if type(tmp, ‘*‘) then
        tmp := remove(has, tmp, f);
    fi;
    
    if tmp <> 0 and has(tmp, {alpha}) then
        tmp := solve(tmp/alpha^difforder(uf), {alpha});
        
        if tmp <> NULL and has(tmp, {alpha}) then
            lprint(tmp);
            for k to nops([tmp]) while flag = 1 do
                res := collect(expand(subs(tmp[k], Res)), f, factor);
                if res = 0 then
                    pl := subs(tmp[k], PL);
                    printHBT(uf, u, f, i, j, pl, rhs(tmp[k]));
                    flag := 0;
                fi;
            od;
        fi;
    fi;
    
    PL;
end:

Error, missing operator or `;`

 

 

 

## Hirota Bilinear Method
 ## Bilinear Derivative / Hirota Operator

 

 

BD := proc(FF, DD)
    local f, g, x, m, opt;

    # If only one argument is provided, return the product of elements in FF
    if nargs = 1 then
        return ‘*‘(FF[]);
    fi;

    # Extract elements from FF into f and g, and from DD into x and m
    f, g := FF[];
    x, m := DD[];

    # Capture any additional arguments passed to the procedure
    opt := args[3..-1];

    # If m (derivative order) is zero, recursively call the procedure with FF and optional arguments
    if m = 0 then
        return procname(FF, opt);
    fi;

    # Compute the difference of two recursive calls:
    # 1. Differentiate f with respect to x, and keep g unchanged, reducing m by 1
    # 2. Keep f unchanged and differentiate g with respect to x, reducing m by 1
    return procname([diff(f, x), g], [x, m-1], opt) - procname([f, diff(g, x)], [x, m-1], opt);
end:

 

#restart;

# Inladen van pakketten
with(PDEtools):
with(DEtools):
NULL;

# Declaraties
declare(u(x, t));
declare(f(x, t));
alpha := 1;

# Definities
KdV := diff(u(x, t), t) + 6 * u(x, t) * diff(u(x, t), x) + diff(u(x, t), x, x, x);
Hirota := u(x, t) = 2 * alpha * diff(ln(f(x, t)), x);

# Substitutie van Hirota-transformatie
KdV_Hirota := simplify(subs(Hirota, KdV));
KdV_Hirota := expand(KdV_Hirota / (f(x, t)^2));

# Berekening van bilineaire termen met BD
BD := proc(FF, DD)
    local f, g, x, m, opt;

    # Controle op invoer
    if nargs = 1 then
        return mul(FF[]);
    fi;

    # Ontleden van invoer
    f, g := op(FF);
    x, m := op(DD);
    opt := args[3 .. -1];

    # Basisgeval
    if m = 0 then
        return procname(FF, opt);
    fi;

    # Recursieve berekening
    procname([diff(f, x), g], [x, m-1], opt)
    - procname([f, diff(g, x)], [x, m-1], opt);
end:

# Debugging
debug_msg := proc(msg, val)
    print("[DEBUG]:", msg, val);
end:

# Voorbeeldberekening
try
    # FF en DD instellen
    FF := [f(x, t), f(x, t)];
    DD := [x, 2];

    # Bilineaire afgeleide berekenen
    BD_result := BD(FF, DD);
    debug_msg("Bilineaire afgeleide van de tweede orde", BD_result);

    # Hergebruiken van BD in KdV-Hirota
    Hirota_Bilinear := simplify(KdV_Hirota + BD_result);
    debug_msg("Herschreven KdV-vergelijking met bilineaire termen", Hirota_Bilinear);

    # Resultaat printen
    print("Bilineaire afgeleide:", BD_result);
    print("Herschreven vergelijking:", Hirota_Bilinear);

catch:
    debug_msg("Fout opgetreden", lasterror());
end try;

u(x, t)*`will now be displayed as`*u

 

f(x, t)*`will now be displayed as`*f

 

1

 

diff(u(x, t), t)+6*u(x, t)*(diff(u(x, t), x))+diff(diff(diff(u(x, t), x), x), x)

 

u(x, t) = 2*(diff(f(x, t), x))/f(x, t)

 

diff(2*(diff(f(x, t), x))/f(x, t), t)+12*(diff(f(x, t), x))*(diff(2*(diff(f(x, t), x))/f(x, t), x))/f(x, t)+diff(diff(diff(2*(diff(f(x, t), x))/f(x, t), x), x), x)

 

2*(diff(diff(f(x, t), t), x))/f(x, t)^3-2*(diff(f(x, t), x))*(diff(f(x, t), t))/f(x, t)^4+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))/f(x, t)^4-24*(diff(f(x, t), x))^3/f(x, t)^5+2*(diff(diff(diff(diff(f(x, t), x), x), x), x))/f(x, t)^3-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))/f(x, t)^4+24*(diff(diff(f(x, t), x), x))*(diff(f(x, t), x))^2/f(x, t)^5-6*(diff(diff(f(x, t), x), x))^2/f(x, t)^4-12*(diff(f(x, t), x))^4/f(x, t)^6

 

[f(x, t), f(x, t)]

 

[x, 2]

 

2*(diff(diff(f(x, t), x), x))*f(x, t)-2*(diff(f(x, t), x))^2

 

"[DEBUG]:", "Bilineaire afgeleide van de tweede orde", 2*(diff(diff(f(x, t), x), x))*f(x, t)-2*(diff(f(x, t), x))^2

 

(2*(diff(diff(diff(diff(f(x, t), x), x), x), x))*f(x, t)^3-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))*f(x, t)^2-6*(diff(diff(f(x, t), x), x))^2*f(x, t)^2+(2*f(x, t)^7+24*f(x, t)^2*(diff(f(x, t), x))+24*f(x, t)*(diff(f(x, t), x))^2)*(diff(diff(f(x, t), x), x))-2*(diff(f(x, t), x))^2*f(x, t)^6+2*(diff(diff(f(x, t), t), x))*f(x, t)^3-2*(diff(f(x, t), x))*(diff(f(x, t), t))*f(x, t)^2-24*(diff(f(x, t), x))^3*f(x, t)-12*(diff(f(x, t), x))^4)/f(x, t)^6

 

"[DEBUG]:", "Herschreven KdV-vergelijking met bilineaire termen", (2*(diff(diff(diff(diff(f(x, t), x), x), x), x))*f(x, t)^3-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))*f(x, t)^2-6*(diff(diff(f(x, t), x), x))^2*f(x, t)^2+(2*f(x, t)^7+24*f(x, t)^2*(diff(f(x, t), x))+24*f(x, t)*(diff(f(x, t), x))^2)*(diff(diff(f(x, t), x), x))-2*(diff(f(x, t), x))^2*f(x, t)^6+2*(diff(diff(f(x, t), t), x))*f(x, t)^3-2*(diff(f(x, t), x))*(diff(f(x, t), t))*f(x, t)^2-24*(diff(f(x, t), x))^3*f(x, t)-12*(diff(f(x, t), x))^4)/f(x, t)^6

 

"Bilineaire afgeleide:", 2*(diff(diff(f(x, t), x), x))*f(x, t)-2*(diff(f(x, t), x))^2

 

"Herschreven vergelijking:", (2*(diff(diff(diff(diff(f(x, t), x), x), x), x))*f(x, t)^3-8*(diff(diff(diff(f(x, t), x), x), x))*(diff(f(x, t), x))*f(x, t)^2-6*(diff(diff(f(x, t), x), x))^2*f(x, t)^2+(2*f(x, t)^7+24*f(x, t)^2*(diff(f(x, t), x))+24*f(x, t)*(diff(f(x, t), x))^2)*(diff(diff(f(x, t), x), x))-2*(diff(f(x, t), x))^2*f(x, t)^6+2*(diff(diff(f(x, t), t), x))*f(x, t)^3-2*(diff(f(x, t), x))*(diff(f(x, t), t))*f(x, t)^2-24*(diff(f(x, t), x))^3*f(x, t)-12*(diff(f(x, t), x))^4)/f(x, t)^6

(1)

 

 

#restart;
with(PDEtools):
with(DEtools):
NULL;

# Declare variables
declare(u(x, t));  # Original function u(x, t)
declare(f(x, t));  # Auxiliary function f(x, t)
alpha := 1;        # Set alpha value for Hirota transformation

# Define the SK equation
SK := diff(u(x, t), t)
     + 45 * u(x, t)^2 * diff(u(x, t), x)
     + 15 * diff(u(x, t), x, x) * diff(u(x, t), x)
     + 15 * u(x, t) * diff(u(x, t), x, x, x)
     + diff(u(x, t), x, x, x, x, x) = 0;

# Hirota transformation
Hirota := u(x, t) = 2 * diff(diff(ln(f(x, t)), x), x);

# Substitute Hirota transformation into SK equation
SK_Hirota := subs(Hirota, SK);

# Simplify and normalize by f(x, t)^2
SK_Hirota := simplify(SK_Hirota / f(x, t)^2);

# Debugging output
debug_msg := proc(msg, val)
    print("[DEBUG]:", msg, val);
end:

debug_msg("Transformed SK Equation", SK_Hirota);

# Example: Compute bilinear derivative for the second-order term
FF := [f(x, t), f(x, t)];  # Input functions for BD
DD := [x, 2];             # Second-order derivative
try
    BD_result := BD(FF, DD);
    debug_msg("Bilinear derivative for second order", BD_result);
catch:
    debug_msg("Error in BD computation", lasterror());
end try;

# Combine SK_Hirota with bilinear derivative results
try
    SK_Bilinear := simplify(SK_Hirota + BD_result);
    debug_msg("Rewritten SK Equation with bilinear terms", SK_Bilinear);

    # Print final result
    print("Bilinear derivative result:", BD_result);
    print("Rewritten SK Equation:", SK_Bilinear);
catch:
    debug_msg("Error combining bilinear terms with SK equation", lasterror());
end try;

u(x, t)*`will now be displayed as`*u

 

f(x, t)*`will now be displayed as`*f

 

1

 

diff(u(x, t), t)+45*u(x, t)^2*(diff(u(x, t), x))+15*(diff(diff(u(x, t), x), x))*(diff(u(x, t), x))+15*u(x, t)*(diff(diff(diff(u(x, t), x), x), x))+diff(diff(diff(diff(diff(u(x, t), x), x), x), x), x) = 0

 

u(x, t) = 2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2

 

diff(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2, t)+45*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)^2*(diff(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2, x))+15*(diff(diff(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2, x), x))*(diff(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2, x))+15*(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2)*(diff(diff(diff(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2, x), x), x))+diff(diff(diff(diff(diff(2*(diff(diff(f(x, t), x), x))/f(x, t)-2*(diff(f(x, t), x))^2/f(x, t)^2, x), x), x), x), x) = 0

 

(-2*(diff(diff(f(x, t), x), x))*f(x, t)*(diff(f(x, t), t))+18*(diff(diff(f(x, t), x), x))*f(x, t)*(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x))-60*(diff(diff(diff(diff(f(x, t), x), x), x), x))*(diff(f(x, t), x))*(diff(diff(f(x, t), x), x))+2*f(x, t)^2*(diff(diff(diff(f(x, t), t), x), x))+2*f(x, t)^2*(diff(diff(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x), x), x))-4*f(x, t)*(diff(f(x, t), x))*(diff(diff(f(x, t), t), x))-14*f(x, t)*(diff(f(x, t), x))*(diff(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x), x))-10*f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))*(diff(diff(diff(f(x, t), x), x), x))+4*(diff(f(x, t), x))^2*(diff(f(x, t), t))+24*(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x))*(diff(f(x, t), x))^2+40*(diff(diff(diff(f(x, t), x), x), x))^2*(diff(f(x, t), x)))/f(x, t)^5 = 0

 

"[DEBUG]:", "Transformed SK Equation", (-2*(diff(diff(f(x, t), x), x))*f(x, t)*(diff(f(x, t), t))+18*(diff(diff(f(x, t), x), x))*f(x, t)*(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x))-60*(diff(diff(diff(diff(f(x, t), x), x), x), x))*(diff(f(x, t), x))*(diff(diff(f(x, t), x), x))+2*f(x, t)^2*(diff(diff(diff(f(x, t), t), x), x))+2*f(x, t)^2*(diff(diff(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x), x), x))-4*f(x, t)*(diff(f(x, t), x))*(diff(diff(f(x, t), t), x))-14*f(x, t)*(diff(f(x, t), x))*(diff(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x), x))-10*f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))*(diff(diff(diff(f(x, t), x), x), x))+4*(diff(f(x, t), x))^2*(diff(f(x, t), t))+24*(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x))*(diff(f(x, t), x))^2+40*(diff(diff(diff(f(x, t), x), x), x))^2*(diff(f(x, t), x)))/f(x, t)^5 = 0

 

[f(x, t), f(x, t)]

 

[x, 2]

 

2*(diff(diff(f(x, t), x), x))*f(x, t)-2*(diff(f(x, t), x))^2

 

"[DEBUG]:", "Bilinear derivative for second order", 2*(diff(diff(f(x, t), x), x))*f(x, t)-2*(diff(f(x, t), x))^2

 

(-2*(diff(diff(f(x, t), x), x))*f(x, t)*(diff(f(x, t), t))+18*(diff(diff(f(x, t), x), x))*f(x, t)*(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x))-60*(diff(diff(diff(diff(f(x, t), x), x), x), x))*(diff(f(x, t), x))*(diff(diff(f(x, t), x), x))+2*f(x, t)^2*(diff(diff(diff(f(x, t), t), x), x))+2*f(x, t)^2*(diff(diff(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x), x), x))-4*f(x, t)*(diff(f(x, t), x))*(diff(diff(f(x, t), t), x))-14*f(x, t)*(diff(f(x, t), x))*(diff(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x), x))-10*f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))*(diff(diff(diff(f(x, t), x), x), x))+4*(diff(f(x, t), x))^2*(diff(f(x, t), t))+24*(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x))*(diff(f(x, t), x))^2+40*(diff(diff(diff(f(x, t), x), x), x))^2*(diff(f(x, t), x)))/f(x, t)^5+2*(diff(diff(f(x, t), x), x))*f(x, t)-2*(diff(f(x, t), x))^2 = 2*(diff(diff(f(x, t), x), x))*f(x, t)-2*(diff(f(x, t), x))^2

 

"[DEBUG]:", "Rewritten SK Equation with bilinear terms", (-2*(diff(diff(f(x, t), x), x))*f(x, t)*(diff(f(x, t), t))+18*(diff(diff(f(x, t), x), x))*f(x, t)*(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x))-60*(diff(diff(diff(diff(f(x, t), x), x), x), x))*(diff(f(x, t), x))*(diff(diff(f(x, t), x), x))+2*f(x, t)^2*(diff(diff(diff(f(x, t), t), x), x))+2*f(x, t)^2*(diff(diff(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x), x), x))-4*f(x, t)*(diff(f(x, t), x))*(diff(diff(f(x, t), t), x))-14*f(x, t)*(diff(f(x, t), x))*(diff(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x), x))-10*f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))*(diff(diff(diff(f(x, t), x), x), x))+4*(diff(f(x, t), x))^2*(diff(f(x, t), t))+24*(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x))*(diff(f(x, t), x))^2+40*(diff(diff(diff(f(x, t), x), x), x))^2*(diff(f(x, t), x)))/f(x, t)^5+2*(diff(diff(f(x, t), x), x))*f(x, t)-2*(diff(f(x, t), x))^2 = 2*(diff(diff(f(x, t), x), x))*f(x, t)-2*(diff(f(x, t), x))^2

 

"Bilinear derivative result:", 2*(diff(diff(f(x, t), x), x))*f(x, t)-2*(diff(f(x, t), x))^2

 

"Rewritten SK Equation:", (-2*(diff(diff(f(x, t), x), x))*f(x, t)*(diff(f(x, t), t))+18*(diff(diff(f(x, t), x), x))*f(x, t)*(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x))-60*(diff(diff(diff(diff(f(x, t), x), x), x), x))*(diff(f(x, t), x))*(diff(diff(f(x, t), x), x))+2*f(x, t)^2*(diff(diff(diff(f(x, t), t), x), x))+2*f(x, t)^2*(diff(diff(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x), x), x))-4*f(x, t)*(diff(f(x, t), x))*(diff(diff(f(x, t), t), x))-14*f(x, t)*(diff(f(x, t), x))*(diff(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x), x))-10*f(x, t)*(diff(diff(diff(diff(f(x, t), x), x), x), x))*(diff(diff(diff(f(x, t), x), x), x))+4*(diff(f(x, t), x))^2*(diff(f(x, t), t))+24*(diff(diff(diff(diff(diff(f(x, t), x), x), x), x), x))*(diff(f(x, t), x))^2+40*(diff(diff(diff(f(x, t), x), x), x))^2*(diff(f(x, t), x)))/f(x, t)^5+2*(diff(diff(f(x, t), x), x))*f(x, t)-2*(diff(f(x, t), x))^2 = 2*(diff(diff(f(x, t), x), x))*f(x, t)-2*(diff(f(x, t), x))^2

(2)

Download BD_berekening_22-12-2024_laatste_poging.mw

@salim-barzani  indeed its "mission impossible" as it seems 

First 18 19 20 21 22 23 24 Last Page 20 of 75