vv

14112 Reputation

20 Badges

10 years, 135 days

MaplePrimes Activity


These are answers submitted by vv

 

Equations containing roots and parameters are difficult.
In general Maple will give generic results, which could be valid for some values of the parameters.
I said (only) could, because (mainly in the real case), this is not guaranteed. For your equation even the "obvious" solution alpha=1/2 is not general because for l=2 the denominator is 0.

 

To solve completely such equations in Maple, the best way is to convert them into polynomial equalities and inequalities and then use SolveTools:-SemiAlgebraic.

Let's do it for the numerator only and ignoring alpha=1/2.

 

restart;

f:=(6*alpha^4*l^2-7*alpha^3*l^2+6*alpha^3*l+2*alpha^2*l^2-6*alpha^2*l+alpha*l+3*alpha-2*sqrt(alpha^3*l^2*(alpha*l-l+1)*(9*alpha^4*l-13*alpha^3*l+9*alpha^3+6*alpha^2*l-12*alpha^2-alpha*l+6*alpha-1))-1);

6*alpha^4*l^2-7*alpha^3*l^2+6*alpha^3*l+2*alpha^2*l^2-6*alpha^2*l+alpha*l+3*alpha-2*(alpha^3*l^2*(alpha*l-l+1)*(9*alpha^4*l-13*alpha^3*l+9*alpha^3+6*alpha^2*l-12*alpha^2-alpha*l+6*alpha-1))^(1/2)-1

(1)

f1:=select(type,f,polynom);
f2:=f1-f;

6*alpha^4*l^2-7*alpha^3*l^2+6*alpha^3*l+2*alpha^2*l^2-6*alpha^2*l+alpha*l+3*alpha-1

 

2*(alpha^3*l^2*(alpha*l-l+1)*(9*alpha^4*l-13*alpha^3*l+9*alpha^3+6*alpha^2*l-12*alpha^2-alpha*l+6*alpha-1))^(1/2)

(2)

sys:=simplify([f1^2-f2^2, f1>=0])[];

(alpha*l+1)*(4*alpha^2*l-3*alpha*l+1)*(alpha^2*l-3*alpha+1)^2, 0 <= -1+6*alpha^4*l^2+(-7*l^2+6*l)*alpha^3+(2*l^2-6*l)*alpha^2+(l+3)*alpha

(3)

SolveTools:-SemiAlgebraic([sys, l>=0], parameters=[l]);

piecewise(l < 0, [], l = 0, [[alpha = 1/3]], l < 16/9, [[alpha = -(-3+sqrt(-4*l+9))/(2*l)], [alpha = (3+sqrt(-4*l+9))/(2*l)]], l = 16/9, [[alpha = 27/32-3*sqrt(17)*(1/32)], [alpha = 27/32+3*sqrt(17)*(1/32)]], l < 2, [[alpha = -(-3+sqrt(-4*l+9))/(2*l)], [alpha = (3+sqrt(-4*l+9))/(2*l)]], l = 2, [[alpha = 1], [alpha = 1/2]], l < 9/4, [[alpha = -(-3+sqrt(-4*l+9))/(2*l)], [alpha = (3+sqrt(-4*l+9))/(2*l)]], l = 9/4, [[alpha = 2/3]], l < 9/2, [], l = 9/2, [[alpha = 2/3]], 9/2 < l, [[alpha = (3*l+sqrt(9*l^2-16*l))/(8*l)]])

(4)

I have added l>=0  for easier visualization. You can omit l>=0  or solve the system

SolveTools:-SemiAlgebraic([sys, l<0], parameters=[l]);

but the solution is very large in this case and it is not listed here.

 

 

 

 

Here is a faster solution.
Note that in Acer's solution a,b  must be a bit larger not to miss solutions.

restart;

P:=isolve(u^2+v^2 = 225):

Q:=isolve(u^2+v^2 = 125):

NS:=0:
for p in [P] do for q in [Q] do
  NS:=NS+1;
  s:=eval([u,v],p); t:=eval([u,v],q);
  x-a=s[1],y-b=s[2],x+1=t[1],y+3=t[2];
  S[NS]:= eval([a,b,x,y],solve({%}))
od od:
S:=sort(convert(S,list)):NS;

192

(1)

nr:=0:NT:=0:
for i to NS-1 do
if S[i][[1,2]] = S[i+1][[1,2]] then eq:=true; nr:=nr+1 else eq:=false fi;
if eq=false then
   if nr=1 then NT:=NT+1;  lprint(NT=S[i-1],S[i])fi;
   nr:=0
fi;
od:

1 = [-21, -13, -12, -1], [-21, -13, -6, -13]
2 = [-21, 7, -12, -5], [-21, 7, -6, 7]
3 = [-15, -5, -6, 7], [-15, -5, -3, -14]
4 = [-15, -1, -6, -13], [-15, -1, -3, 8]
5 = [-11, -23, -11, -8], [-11, -23, 1, -14]
6 = [-11, -13, -11, 2], [-11, -13, 4, -13]
7 = [-11, 7, -11, -8], [-11, 7, 4, 7]
8 = [-11, 17, -11, 2], [-11, 17, 1, 8]
9 = [-8, -4, 1, 8], [-8, -4, 4, -13]
10 = [-8, -2, 1, -14], [-8, -2, 4, 7]
11 = [-6, -8, -6, 7], [-6, -8, 9, -8]
12 = [-6, 2, -6, -13], [-6, 2, 9, 2]
13 = [-5, -5, 4, 7], [-5, -5, 10, -5]
14 = [-5, -1, 4, -13], [-5, -1, 10, -1]
15 = [-3, -17, -12, -5], [-3, -17, 9, -8]
16 = [-3, -7, -3, 8], [-3, -7, 9, 2]
17 = [-3, 1, -3, -14], [-3, 1, 9, -8]
18 = [-3, 11, -12, -1], [-3, 11, 9, 2]
19 = [-2, -10, -11, 2], [-2, -10, 10, -1]
20 = [-2, 4, -11, -8], [-2, 4, 10, -5]
21 = [0, -10, -12, -1], [0, -10, 9, 2]
22 = [0, 4, -12, -5], [0, 4, 9, -8]
23 = [1, -17, -11, -8], [1, -17, 10, -5]
24 = [1, -7, -11, 2], [1, -7, 1, 8]
25 = [1, 1, -11, -8], [1, 1, 1, -14]
26 = [1, 11, -11, 2], [1, 11, 10, -1]
27 = [3, -5, -12, -5], [3, -5, -6, 7]
28 = [3, -1, -12, -1], [3, -1, -6, -13]
29 = [4, -8, -11, -8], [4, -8, 4, 7]
30 = [4, 2, -11, 2], [4, 2, 4, -13]
31 = [6, -4, -6, -13], [6, -4, -3, 8]
32 = [6, -2, -6, 7], [6, -2, -3, -14]
33 = [9, -23, -3, -14], [9, -23, 9, -8]
34 = [9, -13, -6, -13], [9, -13, 9, 2]
35 = [9, 7, -6, 7], [9, 7, 9, -8]
36 = [9, 17, -3, 8], [9, 17, 9, 2]
37 = [13, -5, 1, -14], [13, -5, 4, 7]
38 = [13, -1, 1, 8], [13, -1, 4, -13]
39 = [19, -13, 4, -13], [19, -13, 10, -1]
40 = [19, 7, 4, 7], [19, 7, 10, -5]

 

 


 

Download aisolve.mw

The inverse function is elementary

W:=solve(Y=vs, w):
Y1:=fsolve(W=0):
Y2:=fsolve(W=10):
plot([W,Y, Y=Y2 .. Y1]);

You don't have to compute this way the partial fractions. Simply use:

convert(Denom1, parfrac, s);


 

You must take the leading monomials of the Groebner basis for J, not of J itself.

solve has problems with so many variables and almost crashes Maple (and Windows).
Replace solve with LinearSolve this way:

V:=[indets(Eqns1)[]]:
AB:=GenerateMatrix(Eqns1,V,augmented):
Vsol:=LinearSolve(AB):
V=~Vsol;


 

The simplest way seems to be:

impdiff := (f,y,x) -> -diff(f,x)/diff(f,y):
impdiff( (lhs-rhs)(eqn), x, y);

If you simplify the result the expansion appears again. But in Acer's solution too.

 

In your procedure EEA you cannot use for example a*b.
You must use ED[`*`](a, b)

 

KroneckerDelta   is a tensor supposed to be used in Physics, being related with the spacetime dimension.
Use piecewise(m=0,1)  instead; it is even shorter!

The unpleasant fact is that the integral is difficult to manage with IntegrationTools:-Parts because it is transformed in terms of WhittakerM.
We must do part of the work by hand to obtain the final result 

(1 - (b+1)^(-a))*GAMMA(a)/b.

 

For programming the solution is to use neutral operators.

`&x` :=LinearAlgebra:-KroneckerProduct;
A := <a,b;c,d>;
B := <1,2;3,4>;
A &x B &x A;

 

 

It works if you correct  2x  to  2*x.

Let f be a superposition of two functions f1, f2 . i.e. f(x) = g(f1(x),f2(x)) .

If f1 has period T1 and f2 has period T2 then f will have generally as period the lcm of T1 and T2, provided that T1, T2 are commensurable (i.e. T1/T2 is rational).
In your example we must know Omega. E.g. for Omega=1 the function is not periodic.

CommonPeriod:=(T1::Not(0),T2::Not(0)) -> `if`(type(T2/T1,rational), abs(numer(T2/T1)*T1), infinity);

For example, the function    cos(4*x) + sin((3/2)*x)     will have the period
CommonPeriod( 2*Pi / 4,  2*Pi / (3/2));
      4*Pi

A convert and a correct assumption are needed.

simplify(convert(exp(I*t)^q, exp)) assuming t > -Pi, t <= Pi, q > 0, q < 1;

 

 

Why don't you use the monomial order lexdeg([x,y,z], [u,v,w]) ; it is used exactly to eliminate x,y,z.

Your monomial order can be obtained:

t2:=plex(u,v,w);  t1:=wdeg([1,1,1,0,0,0],[x,y,z,u,v,w]);

t:=prod(t1, t2);  # your order

 

 

First 62 63 64 65 66 67 68 Last Page 64 of 121