vv

13922 Reputation

20 Badges

10 years, 10 days

MaplePrimes Activity


These are answers submitted by vv

You post so many almost identical questions.
Here, the answer of your question why simplify does not work on this example? - MaplePrimes
applies ad litteram (but for x>0 now).

You have syntax erors. Use:

s := Maximize(TRC(tau1, lambda), C3 union C5, tau1 = 0 .. 1, lambda = 0 .. 1, assume = nonnegative);

 

What polynomials are congruent to u(x) modulo  p(x).

Answer: the equivalent class   < rem(u(x), p(x), x) > 
i.e.  rem(u(x), p(x), x) + A(x)*p(x),  where A(x) is an arbitrary polynomial,

Your example: 

rem(x^2+x+1, x+1, x) + A(x)*(x+1);  # for A(x)=x ==>  x^2+x+1

                               1 + A(x)*(x + 1)

 

In the last loop:
-  Insert a space between from and 1
and
-  replace sum with add.

Li is in the sense of Cauchy principal value, so, you must use:

int(1/ln(x),x=0..X, CPV);
#                           Ei(ln(X))

convert(%, Li);
#                             Li(X)

 

Just use := for assignments, instead of =.
So, 

n1 := 423; x := 16;   etc

 

Use

map(eval~, M);

 

The integral is + infinity for any real A,B.
Just evaluate:

integral assuming B>0;
and
integral assuming B<0;

Or, compute asympt(integrand, p, 1);

  lim   (x ln(x)) =   lim   ln(x) / (1/x) =    lim   (1/x) / (-1/x^2) = 0
x -> 0+             x -> 0+                  x -> 0+     

Example

restart;

F:=[x^2+y^2+z^2, x*y+y*z+z*x, x*y*z-1];

[x^2+y^2+z^2, x*y+x*z+y*z, x*y*z-1]

(1)

G,A := Groebner:-Basis(F, tdeg(x,y,z), output=extended);

[x*y+x*z+y*z, x^2+y^2+z^2, x*z^2+y*z^2+1, y^3+y^2*z+y*z^2+z^3-1, z^4-x-y-2*z, y^2*z^2+y+z], [[0, 1, 0], [1, 0, 0], [0, z, -1], [y+z, -x, 1], [z^2, -x*z-y*z, x+2*z+y], [0, y*z, -y-z]]

(2)

nops(G);

6

(3)

Matrix(A) . <F> = <G>: simplify(%);

(Vector(6, {(1) = (y+z)*x+y*z, (2) = x^2+y^2+z^2, (3) = 1+(x+y)*z^2, (4) = y^3+y^2*z+y*z^2+z^3-1, (5) = z^4-x-y-2*z, (6) = y^2*z^2+y+z})) = (Vector(6, {(1) = (y+z)*x+y*z, (2) = x^2+y^2+z^2, (3) = 1+(x+y)*z^2, (4) = y^3+y^2*z+y*z^2+z^3-1, (5) = z^4-x-y-2*z, (6) = y^2*z^2+y+z}))

(4)

#############

for i to nops(F) do
  Groebner[NormalForm](F[i], G, tdeg(x,y,z), R[i]);
od;

0

 

0

 

0

(5)

B:=Matrix([seq(R[i], i=1..nops(F))]):
B . <G> = <F>:  simplify(%);

(Vector(3, {(1) = x^2+y^2+z^2, (2) = (y+z)*x+y*z, (3) = x*y*z-1})) = (Vector(3, {(1) = x^2+y^2+z^2, (2) = (y+z)*x+y*z, (3) = x*y*z-1}))

(6)

 


Download groeb1vv.mw

f := (x, y) -> piecewise([x, y] = [0, 0], 0, (x^3*y - x*y^3)/(y^2 + x^2)):
f(0,0);
#                               0

fx0:=limit((f(x,0)-f(0,0))/x, x=0);
#                            fx0 := 0

fy0:=limit((f(0,y)-f(0,0))/y, y=0);
#                            fy0 := 0

limit(( f(x,y)- fx0*x - fy0*y )/(x^2+y^2), [x=0,y=0]); 
#                            -1/4 .. 1/4

 ==> f has partial derivatives (both are zero) at (0,0)

 but it is not differentiable at (0,0).

restart;
phi := (p__1, p__2, q__1, q__2, xi) -> p__1*exp(q__1*xi) - p__2*exp(q__2*xi):
xi:=2:   # <----
for p__1 in [0,1,-1,I,-I] do
for p__2 in [0,1,-1,I,-I] do
for q__1 in [0,1,-1,I,-I] do
for q__2 in [0,1,-1,I,-I] do
  result1 := evalf(phi(p__1, p__2, q__1, q__2, xi));
  print('phi'(p__1, p__2, q__1, q__2, xi)=result1);
od od od od:

 

Don't use the dot (.) operator for usual multiplication; it is reserved for noncommutative multiplication  (usually dot product) . Use * instead.
For example,

simplify(v . ( 2/v + 1));
is not simplified if v is a name.

1. Use
showstat(DEtools:-odeadvisor);
or better:
showstat(DEtools[odeadvisor]);
because DEtools is a table-based package.

2.

stopat(DEtools[odeadvisor]);
 #                    [DEtools[odeadvisor]]
ode:=y(x)*(2*x^2*y(x)^3+3)+x*(x^2*y(x)^3-1)*diff(y(x),x)=0;
DEtools[odeadvisor](ode);

 

If possible, don't use floats in symbolic computation (here limit)

Compare:

limit(n*(1/3 - 1/(3+1/n)),n=infinity);
#                               1/9
limit(n*(1/3. - 1/(3+1/n)),n=infinity);
#                        -Float(infinity)

So, replace in W:  3.6  with 36/10  etc.

5 6 7 8 9 10 11 Last Page 7 of 120