vv

14092 Reputation

20 Badges

10 years, 88 days

MaplePrimes Activity


These are replies submitted by vv

The code looks to me as unnecessarily complicated, almost obfuscated.
Please compare with the similar general solution in the provided link.

@Preben Alsholm 


 

restart;

r:=solve([7/18-(1/2)*cos(15625*Pi*x)=0, 6/125<=x, x<=7/125],x,explicit, allsolutions);

Warning, returning only the first 100 solutions, increase _MaxSols to see more solutions

 

{x = (1/15625)*(750*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(752*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(754*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(756*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(758*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(760*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(762*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(764*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(766*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(768*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(770*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(772*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(774*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(776*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(778*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(780*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(782*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(784*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(786*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(788*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(790*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(792*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(794*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(796*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(798*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(800*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(802*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(804*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(806*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(808*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(810*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(812*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(814*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(816*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(818*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(820*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(822*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(824*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(826*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(828*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(830*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(832*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(834*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(836*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(838*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(840*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(842*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(844*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(846*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(848*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(850*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(852*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(854*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(856*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(858*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(860*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(862*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(864*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(866*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(868*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(870*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(872*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(874*Pi+arccos(7/9))/Pi}, {x = (1/15625)*(752*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(754*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(756*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(758*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(760*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(762*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(764*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(766*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(768*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(770*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(772*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(774*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(776*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(778*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(780*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(782*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(784*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(786*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(788*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(790*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(792*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(794*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(796*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(798*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(800*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(802*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(804*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(806*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(808*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(810*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(812*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(814*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(816*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(818*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(820*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(822*Pi-arccos(7/9))/Pi}, {x = (1/15625)*(824*Pi-arccos(7/9))/Pi}

(1)

evalf(r);

{x = 0.4801384620e-1}, {x = 0.4814184621e-1}, {x = 0.4826984620e-1}, {x = 0.4839784620e-1}, {x = 0.4852584621e-1}, {x = 0.4865384620e-1}, {x = 0.4878184620e-1}, {x = 0.4890984621e-1}, {x = 0.4903784621e-1}, {x = 0.4916584620e-1}, {x = 0.4929384621e-1}, {x = 0.4942184621e-1}, {x = 0.4954984620e-1}, {x = 0.4967784621e-1}, {x = 0.4980584621e-1}, {x = 0.4993384620e-1}, {x = 0.5006184620e-1}, {x = 0.5018984621e-1}, {x = 0.5031784620e-1}, {x = 0.5044584620e-1}, {x = 0.5057384621e-1}, {x = 0.5070184621e-1}, {x = 0.5082984620e-1}, {x = 0.5095784621e-1}, {x = 0.5108584621e-1}, {x = 0.5121384620e-1}, {x = 0.5134184621e-1}, {x = 0.5146984621e-1}, {x = 0.5159784620e-1}, {x = 0.5172584620e-1}, {x = 0.5185384621e-1}, {x = 0.5198184620e-1}, {x = 0.5210984620e-1}, {x = 0.5223784621e-1}, {x = 0.5236584621e-1}, {x = 0.5249384620e-1}, {x = 0.5262184621e-1}, {x = 0.5274984621e-1}, {x = 0.5287784620e-1}, {x = 0.5300584621e-1}, {x = 0.5313384621e-1}, {x = 0.5326184620e-1}, {x = 0.5338984620e-1}, {x = 0.5351784621e-1}, {x = 0.5364584620e-1}, {x = 0.5377384620e-1}, {x = 0.5390184621e-1}, {x = 0.5402984621e-1}, {x = 0.5415784620e-1}, {x = 0.5428584621e-1}, {x = 0.5441384621e-1}, {x = 0.5454184620e-1}, {x = 0.5466984621e-1}, {x = 0.5479784621e-1}, {x = 0.5492584620e-1}, {x = 0.5505384620e-1}, {x = 0.5518184621e-1}, {x = 0.5530984620e-1}, {x = 0.5543784620e-1}, {x = 0.5556584621e-1}, {x = 0.5569384621e-1}, {x = 0.5582184620e-1}, {x = 0.5594984621e-1}, {x = 0.4811415380e-1}, {x = 0.4824215379e-1}, {x = 0.4837015379e-1}, {x = 0.4849815380e-1}, {x = 0.4862615379e-1}, {x = 0.4875415379e-1}, {x = 0.4888215380e-1}, {x = 0.4901015380e-1}, {x = 0.4913815379e-1}, {x = 0.4926615380e-1}, {x = 0.4939415380e-1}, {x = 0.4952215379e-1}, {x = 0.4965015380e-1}, {x = 0.4977815380e-1}, {x = 0.4990615379e-1}, {x = 0.5003415379e-1}, {x = 0.5016215380e-1}, {x = 0.5029015379e-1}, {x = 0.5041815379e-1}, {x = 0.5054615380e-1}, {x = 0.5067415380e-1}, {x = 0.5080215379e-1}, {x = 0.5093015380e-1}, {x = 0.5105815380e-1}, {x = 0.5118615379e-1}, {x = 0.5131415380e-1}, {x = 0.5144215380e-1}, {x = 0.5157015379e-1}, {x = 0.5169815379e-1}, {x = 0.5182615380e-1}, {x = 0.5195415379e-1}, {x = 0.5208215379e-1}, {x = 0.5221015380e-1}, {x = 0.5233815380e-1}, {x = 0.5246615379e-1}, {x = 0.5259415380e-1}, {x = 0.5272215380e-1}

(2)

 


 

 

@J4James 

691-694

@taro 

Actually remove expects the result of the procedure to be Boolean-"evaluable", i.e. creates a Boolen context.
This is not a problem because evalb(evalb(u)) = evalb(u).

@J4James 

See e.g.

Burden R.L.,Faires J.D. - Numerical Analysis, 9th Ed., Brooks/Cole 2011
(pseudocode provided, Maple oriented).

(probably) if one asks for a function f : N ^2 -> Z, defined in Maple by an expression having at most 5 characters such that a[i+1] = f(a[i], i).

The answer for f(x,y) is  2*x-y.  Proof?
[f is probably still unique if more characters are allowed, e.g. 7].

@rlopez 

 

@Preben Alsholm 

restart;
with(VectorCalculus);
int(1,[x=0..1,y=0..1]);

produces an error because VectorCalculus wants us to use:
int(1,[x,y]=Rectangle(0..1,0..1));
or
int(1,[x,y]=Region(0..1,0..1));

 

 

 

@taro 

Right click on the plot, choose Export in the context menu then "Encapsulated postscript".
You can also use:
p:=plot3d(x^2+y^2, x=-1..1,y=-1..1);
plottools:-exportplot("d:/temp/fig.eps",p); # choose an existent directory


In this case the plot is different but also wrong.

Not sure whether it's a bug or just a "generic" result.
Note that if n,p are numeric, the result is correct.

@gkokovidis 

In Maple 2016.1 ==> error

Please set

infolevel[int]:=5;

run it again and post the results.

This is indeed interesting; if the method is general enough you deserve congratulations!
Maybe you will show us the code or the algorithm.

@one man 

For a good simulation you will probably need to use ELO ratings, see

https://en.wikipedia.org/wiki/Elo_rating_system

and update the ratings after each game or competition.

See also http://www.mapleprimes.com/posts/204346-Eurocup-Simulation-In-Maple

@Mac Dude 

mseries works in your example, but as mentioned in the answer,  x=0  cannot be replaced with x.
In your example you must use:

map(vvmseries,TM,[x=0,xp=0,y=0,yp=0,dl=0,dp=0,dkQ1=0],3);

On the other side, iterated series does not always work;
An example:

restart;
(* Test case for mtaylor *)

vvmseries:=proc(f,X::list(name=anything),n::posint)
local t;
  eval( f, `=`~(lhs~(X), rhs~(X)+t*~(lhs~(X)-rhs~(X))) );
  eval(convert(series(%, t, n), polynom),t=1);
end proc:
mymseries:=proc(f,vars,norder)
      local i,fs:=f;
          for i from 1 to numelems(vars) do
              fs:=convert(series(fs,vars[-i],norder),polynom);
          end do;
          return fs;
end proc:

f:=(x+y)^x:
f1:=vvmseries(f,[x=0,y=0],5):
f2:=mymseries(f,[x,y],5):
eval([f,f1,f2],[x=0.0001, y=0.001]);

[.9993189875,  .9993189874,  .7786567398]

 

Best regards,

V.A.

[edited example]

@one man 

1. The only problem is that the thread is about parametrization of a surface and you insist in posting curves (animated or not).
Your curves are not bad, but their place is not here.

2. I do not have a general method. In your example:
(x1^2+x2^2-0.4)^2+(x3+sin(x1*x2+x3))^4-0.1=0;

a) start with a parametrization U(t), V(t) of the curve U^2 + V^4 - 0.1 = 0.
b) define g(v,w) as the unique root z of    z + sin(w + z) = v
     (In Maple it us a RootOf)
c) The parametrization is
     x := sqrt(U(t) + 0.4) * cos(u)
     y := sqrt(U(t) + 0.4) * sin(u)
     z := g(V(t), x*y).

 

Here also implicitplot3d is your main ingredient to see the surface.
Compare with a real surface parametrization (exact or approx).

First 131 132 133 134 135 136 137 Last Page 133 of 177