arXiv:math/9901055v1 [math.NA] 13 Jan 1999

Numerical Calculations Using Maple: Why & How?

E.V. Corréa Silva; L.G.S. Duarte' L.A. da Mota'and J.E.F. Skead’

Abstract: The possibility of interaction between Maple and numeric compiled languages in
performing extensive numeric calculations is exemplified by the Ndynamics package, a tool for
studying the (chaotic) behavior of dynamical systems. Programming hints concerning the con-
struction of Ndynamics are presented. The system command, together with the application of the
black-box concept, is used to implement a powerful cooperation between Maple code and some

other numeric language code.

Keywords: Dynamical systems, chaos, numeric calculations, non-symbolic compiled languages,

black-box

Introduction

In this paper we explore the possibility of interaction
between Maple and numeric languages, exemplified by
the Ndynamics package [8] — a tool for studying the
(chaotic) behavior of dynamical systems.

Maple interaction facilities may benefit users and
programmers of both symbolic and numeric languages.
As far as the implementation of extensive numerical cal-
culations is concerned, non-symbolic compiled languages
like FORTRAN, PASCAL or C are still more popular than
any symbolic environment; the existing collections of ef-
ficient programs written in such languages could not be
simply overlooked.

This paper is organized as follows: first, the concept
of dynamical systems is introduced to the reader, as
well as to the concepts of fractal dimension and bound-
ary M), extensively used in the paper; the commands of
the package are then briefly described and an example
of utilization follows. Finally we point out some use-
ful considerations about programming design, as to the
possibility of interaction between Maple and other lan-
guages.

Dynamical Systems

Systems of ordinary differential equations (or dynam-
ical systems) play a central role in a large number of
problems in all areas of scientific research, mainly in
physics. Hence the importance of developing tools to
study these systems — in particular, nonlinear systems.
A n-dimensional dynamical system can be generically
represented by

*Centro Brasileiro de Pesquisas Fisicas, R. Dr. Xavier Sigaud,
150, Urca, CEP 22290-180, Rio de Janeiro, RJ, Brazil. E-mail:
ecorrea@cat.cbpf.br

TUniversidade do Estado do Rio de Janeiro, Instituto de Fisica,
Departamento de Fisica Teérica, R. Sao Francisco Xavier, 524,
Maracana, CEP 20550-013, Rio de Janeiro, RJ, Brazil. E-mail:
lduarte@dft.if.uerj.br

fIdem. E-mail: damota@dft.if.uerj.br

§Idem. E-mail: jimsk@dft.if.uerj.br

dX

dt
where X = (X3 (¢), X2(t), ..., Xn(t)) and F = (F1 (X, 1),
Fy(X,t),..., F,(X,t)). The variables X;(¢t), where i =
1,2,...,n, represent the relevant quantities in some phys-
ical model, and ¢ is a continuous parameter (time, for
instance). Each F;(X,t) is an arbitrary function of the
variables X and of the parameter ¢.

Roughly speaking, “chaoticity” means extreme sen-
sitivity to small changes in the initial conditions. This
is the tipical case of 3-dimensional nonlinear dynamical
systems, among which chaotic behavior is a rule, rather
than an exception: due to nonlinearity, small fluctua-
tions in the initial conditions propagate dramatically, so
that two neighbouring inicial conditions may yield orbits
with completely distinct asymptotic behavior.

Chaotic systems have a richer structure than “well-
behaved” ones, hence their interest. Strange attractors
and repellers, as well as fractal boundaries are examples
of peculiarities of chaotic systems. A measure of the
degree of chaoticity of a system can be obtained by the
evaluation of the fractal dimension of the boundaries.

In the next section, we are going to elaborate fur-
ther the concept of fractals and introduce a method to
calculate the associated fractal dimension.

=F(X,1), (1)

“

Fractals

Fractal Dimension

The idea of fractal will always lack a precise definition
[M]. However, when one refers to a set F as a fractal, one
typically has the following in mind:

1. F has a “fine structure”; i.e., has complex details
on arbitrarily small scales;

2. Fis too irregular to be described in the traditional
geometrical language, both locally and globally;

MapleTech Vol. 7, No. ?, pp.[IHE ISSN 1061-5733 $6.00

(© Birkh#user Boston 2008 1

http://arXiv.org/abs/math/9901055v1

3. often, F has some form of self-similarity, perhaps
approximate or statistical;

4. usually, the “fractal dimension” of F' (defined in
some way) is greater than its “topological dimen-
sion”;

5. in most cases of interest, F'is defined in a very
simple way, perhaps recursively.

There are a lot of manners to define the dimension
of a fractal. An important one is called the Hausdorff
dimension [2], one possible generalization of the “primi-
tive” notion of dimension. Suppose we have a hypercube
of edge a, its hypervolume V being given by

V =al, (2)

where d is the hyperspace dimension. Let us divide the
hypercube into N hypercubic cells of edge €, we have

V = Net. (3)

Dividing @) by @) we have:

1=N(5)d (4)

a

Defining 6 = £ and expressing the number of cells as a
function of § (i.e., N = N(9)),
1=N(5)6? (5)

Solving (@) for d, we obtain the standard definition of
dimension:

In(N(§
_In(N(3) “

In(9)
Let us now measure the dimension of a Cantor set, con-
structed through a recursive procedure pictured in figure

d =

In figure 1 we take a segment of length ¢y and divide it
into three parts of equal length €1 = €/3; the middle
segment is then replaced by two segments of length €;.
We then apply the same procedure to each segment of
length €1, dividing them into segments of length es =
€1/3, and so on. After M iterations, we will have a
total of N = 4M segments of length ey = ¢9/3M each.
Defining
s=M_ L (1)
€0

we may write

DN 0N

d L

Figure 1: Cantor set after 0, 1, 2 and 6 iterations, re-
spectively.

MapleTech

Taking the limit M — oo (or § — 0), the Hausdorff
dimension (@) of the Cantor set is defined by the limit

L In(N()
d=-ln =% ©)

which, in the case considered, yields

@)
~ In(3)

~1.26 (10)

Fractal Dimension of Boundaries

Let R be a D-dimensional finite region — which we will
take to be a hypercube of edge a, without loss of general-
ity — divided into N hypercubic “cells” of edge €. Let us
choose an arbitrary cell C. If there are any pair of points
(P,Q) in C so that the orbits of P and @) have distinct
asymptotic behavior, C' is said to be a boundary-cell. In
the limiting case where N is infinite (¢ — 0), the union
of all boundary-cells constitute a boundary.

Let Np be the number of boundary-cells in R. Ac-
cording to eq.(@d), the fractal dimension of the boundary
H] can be inferred from the behavior of N as e — 0 or,
equivalently, as 6 — 0, where § = ¢/a.

However, the total number of cells

N () = (%)D (11)

rapidly increases as § — 0, and the computation of
Np(d) results unpractical. An alternative approach is
that of picking up N* random cells in R and counting
the number of boundary-cells Nj. If N* is large enough
to be statiscally meaningful, we expect that

N, Np
N- N (12)
Supposing that, indeed,
N}y Np
== 1
=% (13)
we have
_ In(Np) _ ~ In(N5/N*) In(N) (14)
Iné Iné Iné °
——— ——
dp D
Defining
_ _ In(Ng/N™)
a=D—dg = o (15)
we have N
ln(NE) =a Iné (16)

Both 6 and Nj/N* can be measured, allowing us to de-
termine « and the fractal dimension dp of the boundary.

Commands of the Package

In this section we present a brief description of the com-
mands of the Ndynamics package. A more complete de-
scription can be found in the on-line help, provided with
the package A

e Nsolve allows the user to specify a system of dif-
ferential equations and initial conditions, calcu-
lating trajectories in phase space and generating
2D/3D plots. Also, random initial conditions may
be chosen from a user-defined region of phase space.

e View allows quick and comfortable visual inspec-
tion of the trajectories calculated by Nsolve, and
the identification of regions of interest in phase
space (e.g., chaos). Zooming in and out is sup-
ported, as well as choosing the variables to be
shown (e.g., 2D or 3D graphs).

e Boxcount performs small random perturbations
in the initial conditions and analyzes their effect
upon the evolution of trajectories. Perturbed ini-
tial conditions are chosen from small regions sized
by a user-defined perturbation parameter, around
each umperturbed initial condition. In the neigh-
borhood of a boundary, two small but distinct per-
turbations of the same initial condition may yield
radically different perturbed trajectories; Boxcount
determines the fraction of the total number of ini-
tial conditions for which this is so.

e Fdimension manages the execution of Boxcount
for a row of values of the perturbation parameter,
and analyzes the results obtained to evaluate the
fractal dimension of the boundary.

Examples

Commands of the package

Ndynamics contains helpful tools for the detection of in-
teresting regions (such as strange attractors, repellers,
and fractal boundaries) in the phase space of a dynami-
cal system. We will take the well-known Lorenz system
as an example.

The package is loaded by the standard command
with. The precision of calculations will be set to 16
digits, using Maple environment variable Digits B

> with(Ndynamics) ;

> Digits := 16;
We define the Lorenz system, and assign some values to
its constants:

I lhttp: //www.dft.if uerj.br /symbcomp.html
2In what follows, the output of command lines has been oca-
sionally omitted.

Vol. 7, No.?, 2008

http://www.dft.if.uerj.br/symbcomp.html

Lorenz := {diff(x(t),t)=sigma*(y(t)-x(t)),

diff (y(t),t)=-x(t)*z(t)+R*x(t)-y(t),

diff(z(t),t)=x(t)*y (t)-b*z(t)};
sigma:=10;b:=8/3;R:=28;
The command Nsolve generates a set of random initial
conditions within a user-defined region in phase space,
and then calculates the orbit of each individual initial
condition. The number of initial conditions to be gen-
erated is controled by the global variable number_ic.
In addition, the color of each individual orbit can be
defined by a boolean expression regarding the final con-
dition of the orbit, to be assigned to the global variable
Colouring. According to the value of that expression,
an orbit may be plotted in one out of two predefined
colors.

vV V VvV V

> number_ic:=8;
> Colouring:=x(t)<-4 and x(t) > -11;

For the sake of syntax clarity only, the following assign-
ments are performed: the variable init_region defines
ranges for each dependent variable, thus limiting the re-
gion in phase space for initial conditions; t_range sets
the independent variable range; steps to the indepen-
dent variable are defined by t_calc_step (for calcula-
tion purposes) and t_plot_step (for plotting purposes).

> init_region := [x=-0.37717..-0.37716,

> y=0.48685..0.48686, z=-0.29894..-0.29893];
> t_range := 0..37;

> t_calc_step := .005;

> t_plot_step := .01;

The command Nsolve may now be run. The standard
Maple function time is employed to give the reader an
estimate computation time (which is machine-dependent
of course).

t0:=time():

graph := Nsolve(Lorenz, [init_region,
[t=t_range,t_plot_stepl], [x(t),z(t)],

random,method=[rk5C,t_calc_step]):
tf := time()-t0;

V V.V VYV

(...some ommited output ...)
tf :=123.880

We have used the option method=[rk5C,...], i.e., we
have used the ‘plugged module’ in C to perform the
numeric calculations. The result can be plotted, for in-
stance, by using the command display of the standard
Maple package plots (previously loaded by Ndynamics):

> display(graph) ;

If the user is interested in detailing some particular re-
gion of phase space, the command View of Ndynamics is
recommended:

> t0 := time();
> View([x=-10..0,z=20..30]); tf := time()-t0;

x(t)

tf = 51.569

In order to exemplify the use of the commands Box—
count and Fdimension, let us slightly modify the Lorenz
system parameters:

> sigma:=10;b:=8/3;R:=20;
and choose another region of initial conditions, as well
as other range and steps for the independent variable:

> init_region2 := [x= -1.001 .. 1.001,
> y =-1.001 .. 1.001,

> z = 21.999 ..22.001];

> t_range2 := 0..16;

> t_calc_step2 := 0.01;

> t_plot_step2 := 0.05;

Also, we will choose a much large number of initial con-
ditions, and a different coloring criteria. Besides, all

MapleTech

three dependent variables (x,y, z) are to be shown in
the resulting 3-D plot:
> number_ic:=10000;

> Colouring:= x(t)<O0:
> frame := [x(¢),y(t),z()];

Once more Nsolve generates random initial conditions
and calculates their orbits:

t0 := time():

Nsolve(Lorenz, [init_region2, [t=t_range?2,

t_plot_step2]],frame,initial,random);
tf := time()-t0;

VvV V.V V

(...some deleted output ...)
tf :=75.725

The command Boxcount is now able to count the
number of hypercubes over the boundary. Basically, this
command takes perturbed initial conditions (those gen-
erated by Nsolve) according to a user-defined parame-
ter, say, epsilon, and calculates their orbits. The final
value of the independent variable is represented here by
final time, and the integration step by integ_step.
(Once more, these variables are assigned just for the
sake of clarity of the Boxcount command line.)

epsilon := 0.0000002;
final_time := 16;
integ_step := 0.02;

t0 := time():

Boxcount (epsilon,final_time,method=
[rk5C,integ_stepl);

tf := time()-t0;

VVVVVVYV

reading rkb output
From the, 10000, points (that were testable), , 200,
of them were close to the boundary.
[200, 10000]
tf :=170.560

In its turn, the command Fdimension calculates the
fractal dimension of the boundary, by picking up a given
number of distinct values of the perturbation paraneter
within a user-defined range, applying Boxcount for each
case.
epsilon_range := 0.0000002..0.000001;
n_epsilons := 5;
t0 := time():

Fdimension(epsilon_range, final_time, n_epsilons,
method=[rk5C,integ_step]) ;
tf := time()-t0;

VVVVVYV

(...some deleted output...)
Fractal dimension = ,2.213198116174276,
statistical error = 1.868128109494962, %

linear correlation = ,.9993933454816381

tf = 964.940

Where the slope of the straight line above («) is de-
fined by M@

Performance of the Package

In the calculations above, the option method=[rk5C, . . .]
allowed us to employ the Ndynamics “plugged module”

— the file rk5.c — containing the C source code for the

algorithm of the 5-th order Runge-Kutta method.

To point out the advantages of our hybrid symbol-
ic/numeric approach, which uses Maple to manage the
source code generation and compilation for the num-
ber crunching, while maintaining Maple’s flexibility, ta-
ble [presents a comparison of the elapsed time taken
to perform the same calculation using the C interface
and performing the entire calculation in Maple, using
some of its numerical integration routines. In order to
obtain a fair comparison, particular care was taken to
use methods of the same order and adjusting parame-
ters to produce solutions with the same precision. The
following procedure was used: for a given set of initial
conditions, Maple’s built-in high-precision Taylor Series
integrator was used to integrate the Lorenz system in the
interval 0 < ¢ < 11, until convergence was obtained to
an accuracy of 13 decimal places; subsequently Maple’s
global variable Digits was set equal to 13 (higher val-
ues of Digits seemed to cause problems with Maple’s
integrator), and Maple’s inbuilt 5th-order Runge-Kutta-
Fehlberg integrator, rkf45, was used up to t = 11. This
integration was found to be accurate to 4 decimal places.
The step size in the C routine was then adjusted to give
the samd] precision, resulting in a step size of 0.002.
Having matched the precision of both results, the aver-
ages of computation times for both methods was then
taken for 200 integrations.

3in fact, the C routine was slightly more precise

Vol. 7, No.?, 2008

The results below were obtained with Maple V.4 run-
ning in Windows 98 on an AMD-K6 266 with 64Mb of
SDRAM. The C compiler used was Delorie’s implemen-
tation of GNU’s gcc H, with level 3 optimization.

Integration C-interface | Maple

Method rk5C rkf45
Seconds per Trajectory 0.1 7.0
Ratio to the Fastest Case 1 70

Table 1: Comparative performances of Maple’s inbuilt
numerical integrators and Ndynamics C interface, for
the Lorenz system.

Programming and Design
Considerations

Building computer programs demands methodical ap-
proach, if time and effort of construction are to be saved,
and coherence to be kept. Furthermore, debugging and
modification of a program relates directly to how appar-
ent the purpose of each piece of code turns out. Software
design is, in itself, a rich subject and field of research,
barely touched here. Yet, we hope the reader may profit
from reading our present considerations.

Interface with Compiled Languages

The numerical integration of a system of differential
equations exemplifies a tipical situation involving exten-
sive numerical calculations. As far as the efficiency (ba-
sically, memory usage and processing time) of numerical
algorithms is concerned, general-purpose symbolic com-
puting systems (based on interpreted languages) gener-
ally offer less attractive means of implementation than
non-symbolic compiled languages such as C, FORTRAN,
and PASCAL. The long history of non-symbolic lan-
guages has already produced a large collection of effi-
cient programs for a wide variety of specific problems
— well-known examples are the NAG library of FOR-
TRAN programs, and the collection of C programs in
[7]. Using a symbolic environment for numerical calcu-
lations, discarding existing solutions (based on compiled
languages) might sound like an attempt to “reinvent the
wheel”.

The point is that symbolic languages provide flexibil-
ity and interactivity which lacks in “numeric-oriented”
languages. In other words, symbolic code and data
structures tend to be more friendly and versatile than
numeric ones. For instance, in our specific case, the
identification of chaotic regions in phase space is made

4http://www.delorie.com

much comfortable by the interactive user-interface of
Maple. (Changing parameters and checking out results
is faster and easier.)

In one aspect, the question is analogue to “Why us-
ing a high-level language instead of Assembly 7”7 No
matter how fast Assembly programs may be, the kind
of details involved in their construction (most of them
totally unrelated to the problem at hand) certainly dis-
courage its use. The more a given language allows its
programmer to focus on “problem-related” details and
ignore the rest, the most suitable the language becomes
to find a solution to the problem. The very nature
of ever-evolving problems in scientifical research recom-
mends the use of “higher-level” languages.

It would be highly desirable to combine the features
of symbolic and numeric languages, for the task in view;
that was one of the guidelines to the construction of our
package. “High-level” tasks, so to speak, are handled by
code written in Maple, whereas numerical calculations
may be (optionally) performed by a piece of code written
in some other language. The present implementation of
the program contains an extension written in C; future
versions will allow the user to simply “plug” his own
(numerical) code. The implementation of these ideas
in Maple was achieved through the utilization of the
standard command systemﬁ — which allows one to
send commands directly to the operational system — as
well as the possibility of exchanging data through files.

In the current implementation of Ndynamics, the
command systen is used for:

° Compiling two source code files: derivs.c, con-
taining the definition of the dynamical system;
and rk5. c, containing the code for the 5-th order
Runge-Kutta method. The executable file rk5. exe
is then produced.

e executing rk5.exe to perform calculations. The
files rk5.1in and rk5.out are, respectively, the in-
put and output files for rk5.exe.

All these operations are performed automatically, en-
tirely from within Maple. The user needs not to be
aware of any such processes.

The attentive Maple programmer will notice that
the wutilization of rk5.exe — assuming that rk5.in and
rk5.out have the proper formats — does not depend
whether its original source code was in C or any other
language. This is an example of a “ black-box”, a con-
cept to be explored in what follows.

5Please refer to the Maple on-line help, by typing ?system.
6Currently, the DJGPP-32 GNU compiler is used. Please refer
to Ndynamics on-line help for more details.

MapleTech

Black-Boxes and Parameter Passing Tech-
niques

A well-know concept in software design is that of a black-
box [B]. For our present purposes, it can be pictured
as a Maple procedure or an executable file which can
be used without any assumption on its internal logic:
all we need to know relates either to input and output
data (meaning, form, values) or to what the procedure
does (rather than how it is done). A good example of
a black-box is the standard Maple function sin: all one
needs to know to use sin is that it accepts a single
input argument (a valid algebraic expression, assumed
to be expressed in radians) and that its output is, also,
an algebraic expression. Using the function sin does
not require the knowledge of details concerning actual
computations.

Ideal packages, made out of black-box-like proce-
dures, would be most easily understood, and hence most
easily tested, debugged and modified.

Exchange of data among procedures is a crucial as-
pect in the construction of a package. A Maple proce-
dure may exchange data by

e using global or environment variables (input and
output);

e using the result of its last executed line (output);
e using the RETURN command (output);

e reading from or writing to a file (input and out-
put);

e using its parameters or arguments (input and out-
put).

Of all these ways, the last one appears to us as the most
interesting, as far the implementation of black-boxes is
concerned. Using arguments of a procedure as a means
of conveying input data is a common practice, needing
no further comments. We would like to invite the reader
to attend more closely to the possibility of passing output
data through the arguments of a procedure — which is
also a known technique [6, ?] found, for instance, in the
standard commands iquo and member:
iquo(11,2,’r’);

r is an output parameter, to be

internally assigned to the

remainder of the integer division
11/2

V V.V VYV

5

> member (x, [y,y,x,y],’pos’);

> # pos is an output parameter, to be
> # assigned to the position of the
> # first occurence of x in [y,y,x,yl]
true
> pos;
3

Another example is the command irem, similar to iquo.
Let us make our point clear with the help of a “toy
procedure” f:

> f := proc(a::posint,sm_,pr_)

> local i;

> sm_ := convert([seq(i,i=1..a)],‘+);
> pr_ := convert([seq(i,i=1..a)],‘*);
> NULL;

> end:

Given a positive integer a, we compute the sum (1 +
2 + ..+ a) and the product (1 *2 * ... * a), which are
assigned to the parameters sm_ and pr_ , respectively.
An example of usage is

> £(5,’s,p’); # null output
> s,p;

15, 120
Now compare the procedure f to a slightly (but signifi-

cantly) modified version g, where output parameters are
not used:

> g := proc(a::posint)

> local i, s, p;

> s := convert([seq(i,i=1..a)],‘+);
> p := convert([seq(i,i=1..a)], ‘*);
> s,p;

> end:

This version employs the “last executed line” technique.
It would run as

> g(5);
15, 120

What is the practical difference between the two proce-
dures? The reader should notice that, in order to inter-
pret (and evaluate the correctness of) the output of g, he
must hold the extra information that the first operand of
the output sequence corresponds to 1+2+3+44+5, and
the second one corresponds to 1 x2x 3 x4 x5 —i.e., the
interpretation of the output depends on its particular
(and arbitrary) form. In this example, it is a sequence,
but it might as well be a list, or even a table. Were it a
sequence or a list, the first operand might be the prod-
uct, instead of the sum ... Well, whatever the choice
as to the output form— which has to be made —, it
would certainly have little to do with the actual purpose

Vol. 7, No.?, 2008

of the procedure (i.e., calculating sums and products),
and thus would be superfluous detail. A procedure call-
ing g (and its poor programmer) would have to know
all about these details, though; it (or he, or she) would
be free from such concern, if £ were used instead. The
procedure £ can be used as a black-box, whereas g can’t.
When it comes to developing a large number of in-
tegrated Maple procedures, the black-box is a valuable
concept to keep in mind, and so is the “output param-
eter” technique. That doesn’t mean that all procedures
should be written in that way, though. The “last line”
and “RETURN” techniques, for instance, seem to be
the most suitable to user-level procedures. The “output
parameter” technique, in its turn, fits best on internal
procedures, where all the “hard work” is carried out.

Conclusion

The powerful combination of Maple flexibility and inter-
activity with the high speed of numeric languages has
been used in the implementation of Ndynamics, a pack-
age for the numerical study of (chaotic) behaviour in
dynamical systems. A more detailed description of the
functions and physical applications of Ndynamics can be
found on [§].

We have also presented some of the programming
hints and strategies used in its construction, hoping to
have shown that there can be a a stronger link between
users (and programmers) of two kinds: those who are
interested in heavy numerical calculations, and those
whose interest lies in symbolic computations.

Part of the current implementation of Ndynamics has
been written in C and has been “plugged”, so to speak,
into the main package. Currently, the user himself can
write and use his own integration routine in C, as long
as the same form of input and output data is kept A ru-
ture versions of Ndynamics will allow the user to “plug
and play” his own numerical piece of code and run the
compiler corresponding to the language of his prefer-
ence, provided that the input and output data follow
the proper conventions.

Biographies
e E.V. Corréa Silva is currently a Ph.D. student of
Physics (Quantum Field Theories) at the Centro
Brasileiro de Pesquisas Fisicas, in Rio de Janeiro,
Brazil. He obtained his Master degree in Physics
at the Universidade Federal do Rio de Janeiro, in
1994. His research interests include the Quantum
Hall Effect, Quantum Field Theory and Chaos,
as well as System Design, Artificial Intelligence,

7For more detailed instructions, please refer to the on-line doc-
umentation.

Computational Physics and its relation to the teach-
ing of Physics.

e L.G.S.Duarte is currently a member of staff at
the Universidade Estadual do Rio de Janeiro (UERJ).
He obtained his PhD in Physics at the Universi-
dade Federal do Rio de Janeiro, in 1997. His in-
terests concentrate on mathematical physics and
he has recently participated on a project that lead
to the creation of a differential equation solver,
writen on Maple, that was finally introduced on
the comercial release number 5 of such mathemat-
ical package.

e L.A.C.P.da Mota is currently a member of staff
at the Universidade Estadual do Rio de Janeiro
(UERJ). He obtained his PhD in Physics at the
University of Oxford, U.K, in 1993. He then held
an one year position as a visiting researcher at the
same University. His interests were then Elemen-
tary Particle Phenomenology. Most recently, his
work has concentrated on mathematical physics
and participated on the same project (mentioned
on the biography above).

e J.E.F.Skea graduated from the University of Glas-
gow with a joint honours degree in Physics and
Astronomy. He first worked with computer alge-
bra as a research tool at the University of Sussex
where, under the supervision of Roger Tayler and
John Barrow, he completed his Ph.D. in the areas
of general relativity and cosmology. Subsequently
he worked for 3 years as a postdoc at the School
of Mathematical Sciences of Queen Mary College
London with Malcolm MacCallum, mainly on the
CA systems SHEEP and REDUCE. He left science
for a couple of years to work in Science Policy with
Ben Martin at SPRU in the University of Sussex,
on the analysis of performance indicators, but re-
turned to physics for his third postdoc, this time
at CBPF (Brazilian Centre for Physics Research)
in Rio. He moved back to Scotland when he fi-
nally got a teaching position in the Department of
Mathematics of the University of Aberdeen, where
he initiated a course on the theory of computer al-
gebra, using Maple in practical sessions. In 1996
he moved to the Theoretical Physics department
of UERJ (Rio State University) where he seems to
have settled down ... for now.

References

[1] B. B. Mandelbrot, The Fractal Geometry of Nature.
Freeman, San Francisco, 1982.

MapleTech

[2] F. Hausdorff, Dimension und dusseres Mass, Math.
Annalen 79, 157 (1918).

[3] E. N. Lorenz, Deterministic Nonperiodic Flow, J.
Atmos. Sci. 20, 130 (1963).

[4] E. Ott, Chaos in Dynamical Systems, Cambridge
University Press, 1997.

[5] Yourdon, E. and Constantine, L.: Structured De-
sign. Yourdon Press, 2nd ed. New York, 1978.

[6] Heck, A.: Introduction to Maple. Springer-Verlag,
New York, 1993.

[7] Press, W.H., Teukolsky, S.A., Vetterling, W.T.,
Flannery, B.P., Numerical Recipes in C; Cambridge
University Press, second edition.

[8] L. G. S. Duarte, L. A. C. P. da Mota, H. P. de
Oliveira, R. O. Ramos and J. E. F. Skea: Numeri-
cal Analysis of Dynamical Systems and the Fractal
Dimension of Boundaries. Submitted to Computer
Physics Communications, chao-dyn/9812029.

Vol. 7, No.?, 2008

http://arXiv.org/abs/chao-dyn/9812029

