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Abstract 
 
The effect of a uniform transverse magnetic field on two-dimensional stagnation-point flow of an incom-
pressible viscous electrically conducting fluid over a stretching surface is investigated when the surface is 
stretched in its own plane with a velocity proportional to the distance from the stagnation-point. This mag-
netohydrodynamic (MHD) flow problem is governed by the parameter b representing the ratio of the strain 
rate of the stagnation-point flow to that of the stretching sheet and the magnetic field parameter M. It is 
known from a previous paper [9] that if b > 1, the steady solution to the problem is monotonic increasing and 
the solution is also unique. But when 0 < b < bc (where bc (< 1) depends on M), there exists a dual solution 
which is non-monotonic in addition to a monotonic decreasing solution. It is found in this paper that bc de-
creases as M increases. Numerically it is shown that if M > 0.23919, the non-monotonic solution cannot exist 
and so in this case, the only solution is monotonic decreasing. A stability analysis reveals that when 0 < b < 
bc, the solutions along the upper branch corresponding to the monotonic solution are linearly stable while 
those along the lower branch for the non-monotonic solution are linearly unstable. It is also shown that the 
decay rate of a disturbance increases with increasing M for the stable solution but the growth rate of instabil-
ity for the non-monotonic solution decreases with increasing M. 
 
Keywords: Dual Solution; Magnetohydrodynamic Stagnation-Point Flow; Stretching Surface; Stability Analysis 

1. Introduction 

Flow of an incompressible viscous fluid over a 
stretching surface has important bearing on several in-
dustrial processes. For instance, in the extrusion of a 
polymer in a melt-spinning process, the extrudate from 
the die is usually drawn and simultaneously stretched 
into a sheet which is then cooled gradually by direct 
contact with water. The property of the final product 
depends on the rate of heat transfer at the surface of the 
sheet. Further the study of the flow of an electrically 
conducting viscous fluid caused by the deformation of 
the walls of the vessel containing this fluid in the pres-
ence of a magnetic field is of great interest in modern 
metallurgical and metal-working processes. Crane [1] 
obtained a similarity solution in closed analytical form 
for steady two dimensional flow of an incompressible 
viscous fluid caused solely by the stretching of an elastic 
sheet which moves in its own plane with a velocity 

varying linearly with distance from a fixed point. Pavlov 
[2] gave a similarity solution in exact analytical form of 
the MHD boundary layer equations for steady two-di-
mensional flow of an electrically conducting incom-
pressible viscous fluid due to the stretching of a plane 
elastic surface in its own plane in the presence of a uni-
form transverse magnetic field. This problem was ex-
tended by Chakrabarti and Gupta [3] to include suction 
or injection at the stretching surface. The temperature 
distribution in the flow was also found by them in the 
case of constant surface temperature. Andersson [4] in-
vestigated the MHD flow of a viscoelastic fluid past a 
stretching surface in the presence of a uniform transverse 
magnetic field. 

Recently Chiam [5] studied steady two-dimensional 
stagnation-point flow of an incompressible viscous fluid 
towards a stretching surface in the case when the pa-
rameter b representing the ratio of the strain rate of the 
stagnation-point flow to that of the stretching surface is 
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equal to unity. By removing this highly restrictive as-
sumption (b = 1), Mahapatra and Gupta [6] analyzed the 
steady two dimensional orthogonal stagnation-point flow 
of an incompressible viscous fluid towards a stretching 
surface in the general case b ≠ 1. They found that the 
structure of the boundary layer depends crucially on the 
value of b. Temperature distribution in the flow was also 
obtained by them. Earlier Mahapatra and Gupta [7] in-
vestigated the steady two- dimensional orthogonal stag-
nation-point flow of an incompressible viscous electri-
cally conducting fluid towards a stretching surface, the 
flow being permeated by a uniform transverse magnetic 
field. The steady and unsteady equations governing 
stagnation-point flow of an electrically nonconducting 
incompressible viscous fluid over a stretching surface 
along with the existence and uniqueness of the solutions 
of these equations were studied by Paullet and Weidman 
[8]. 

In this paper we investigate the dual solution of steady 
two-dimensional orthogonal stagnation-point flow of an 
incompressible viscous electrically conducting fluid to-
wards a stretching surface in the presence of a uniform 
transverse magnetic field. We provided a mathematical 
proof in [9] that if b > 1, then the solution of this prob-
lem is monotonic increasing and further this solution is 
unique. But for 0 < b < 1, it was shown that there exists a 
dual solution which is non-monotonic in addition to a 
monotonic decreasing solution. We have found numeri-
cally in this paper that this dual solution exists upto a 
certain value of the magnetic parameter M. A linear sta-
bility analysis of these two solutions is also presented. 

 
2. Flow Analysis  
 
Consider the steady two-dimensional stagnation point 
flow of an incompressible viscous and electrically con-
ducting fluid permeated by a uniform transverse mag-
netic field towards a flat stretching surface coinciding 
with the plane y = 0, the flow being confined to the re-
gion y > 0. Two equal and opposite forces are applied on 
the stretching surface along x-axis so that the surface is 
stretched with a velocity proportional to the distance 
from the stagnation-point which is taken as the origin. 
This is shown in Figure 1. 

Using boundary layer approximations, the equations 
for steady MHD two-dimensional flow are in usual nota-
tion  
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where j is the electric current density, B0 is the imposed 
uniform magnetic field (acting along the y-direction). In 
writing (1), we have neglected the induced magnetic 
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Figure 1. A sketch of the physical problem. 
 

field since the magnetic Reynolds number RM for the 
flow is assumed to be very small. Such an assumption is 
justified for the flow of electrically conducting fluids 
such as liquid metals e.g., liquid sodium, mercury etc. 
[10].  

The equation of continuity is  

0.
u v

x y

 
 

 
            (3) 

Clearly the electric current flows parallel to the z-axis 
which is normal to the plane of the flow. Hence by 
Ohm’s law 

00, 0, [ ],x y z zj j j E uB         (4) 

where σ is the electrical conductivity of the fluid which 
is assumed constant and Ez is the electric field along 
z-axis. It is assumed that the current lines in this 
two-dimensional problem close in a manner consistent 
with the experiment. Now since the flow is steady, 
Maxwell's equation gives 

   ,             (5) 

where E is the electric field (which acts parallel to the 
z-direction). This gives  

0zE
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
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so that Ez is a function of z only. 
Since the induced magnetic field is neglected in view 

of the assumption RM <<1, electric current in the flow is 
determined from Ohm's law and not from = eB  j ,  

μe being the magnetic permeability. But the consequence 
0j  

0

 of this equation must be satisfied [10]. Noting 

that the physical variables are functions of x and y, 
j    then gives from (4), Ez = constant. Thus using 

(4), we find from (1),  
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Since from (2), the pressure p is a function of x only, 

the pressure gradient 
p

x




 can now be obtained from (6) 

in the inviscid region as  
2
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where U(x) is the free stream velocity and  use is made 

of the fact that Ez is constant. Hence eliminating 
p

x


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from (6) and (7), we get  
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We note that the electric field does not directly affect 
the boundary layer equation although it has an influence 
on the relation between the free stream velocity and the 
pressure distribution given by (7). 

Thus the governing equations for the velocity compo-
nents u and v are (3) and (8). The boundary conditions 
are 
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where a and c are positive constants. Under the similarity 
transformation 
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where a prime denotes derivative with respect to the 
similarity variable η, we find that (3) is identically satis-
fied. 

Substitution of (11) in (8) then gives 
2''' '' '
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where b = a/c and M is the dimensionless magnetic pa-
rameter . 1/ 2

0 ( / )B c 
The boundary conditions for (12) then follow from (9) 

and (10) as 
' '(0) 0, (0) 1, ( ) .F F F   b

,

''

    (13) 

A detailed proof of the uniqueness of the solution for 
the same problem for an electrically non-conducting (M 
= 0) fluid was given by Paullet and Weidman [8]. Sub-
sequently the present authors [9] proved the uniqueness 
of the solution for an electrically conducting fluid in the 

presence of a magnetic field (M ≠ 0) using a similar ap-
proach as that in [8]. In [9] we have shown that if b > 1, 
the solution of the boundary value problem (BVP) given 
by (12) and (13) is monotonic increasing for all magnetic 
parameter M and further this solution is unique. But if 0 
< b < 1, there is a dual solution to the above BVP, which 
is non-monotonic in addition to a solution which is 
monotonic decreasing. Note that when b = 1, the above 
BVP admits of the exact solution F(η) = η, which is the 
inviscid solution near the stretching surface as found by 
Mahapatra and Gupta [7]. However this solution is not 
frictionless in a strict sense because in this case the fric-
tion is uniformly distributed and does not therefore affect 
the motion. 
 
3. Numerical Solution 
 
Since there is no general analytical solution of the 
non-linear differential equation (12) with the boundary 
conditions (13) for the case b ≠ 1, so this system is 
solved numerically by an efficient shooting method for 
different values of M and b. To do this, we first trans-
form the non-linear differential equation (12) to a system 
of three first order differential equations as: 
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where '
1 2 3( ) , ( ) , ( )y F y F y F      and a prime 

denotes differentiation with respect to the independent 
variable η. 

The boundary conditions (13) become  
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The values of y1 and y2 are given at the starting point η 
= 0. But the value of y2 as η→ ∞ is replaced by y2=b at a 
finite value η= η∞ to be determined later. The value of y3 
at η = 0 is guessed in order to initiate the integration 
scheme. Starting from the given values of y1 and y2 at η 
= 0 and the guessed value of y3 at η = 0, we integrate the 
first order equations (14) by using a fourth-order 
Runge-Kutta method up to the end-point η = η∞. The 
computed value of y2 at η = η∞ is then compared with y2 

= b. The absolute difference between this computed 
value and b should be as small as possible. To this end 
we use a Newton-Raphson iteration procedure to assure 
quadratic convergence of the iterations. The value of η∞ 
is then increased till y2 attains the value b asymptotically. 
 
4. Dual Solution of MHD Stagnation-Point  

Flow  
 
Our numerical results reveal that for 0 < b < 1, in addi-
tion to a monotonic decreasing solution which was al-
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ready found by Mahapatra and Gupta [7], there exists a 
dual solution which is non-monotonic. We have found 
that in the absence of magnetic field (M = 0), the 
non-monotonic solution exists in the range 0 < b ≤ 
0.16906. This result in the nonmagnetic case (M = 0) was 
also obtained in [8]. For M = 0.1, the dual solution exists 
in the range 0 < b ≤ 0.14845, and for M = 0.2, such solu-
tion is found in the range 0 < b ≤ 0.08234. Numerically 
we have found that when M ≤ 0.23919, the non-   
monotonic solution exists in the range 0 < b <1. Thus we 
see that as M increases, the range of b (such that 0 < b <1) 
for which the dual (i.e., non-monotonic) solution exists 
progressively decreases. The novel result which emerges 
from the analysis is that when M > 0.23919, there is no 
dual solution in the range 0 < b < 1 and the solution in 
this range is monotonic decreasing and unique. 

Figure 2 gives the variation of the dimensionless 
skin-friction coefficient F''(0) with b for several values of 
M. Here the upper branch corresponds to the monotonic 
solution while the lower branch corresponds to the non- 
monotonic one. It can be seen that for the monotonic 
solution, |F''(0)| increases with increase in M. This re-
sult can be physically explained as follows. It is clear 
from the momentum equation (8) that when b < 1 (i.e., 
a<c), the Lorentz force given by the last term is negative 
because the stagnation-point velocity U(= ax) is less than 
the stretching velocity cx of the sheet so that u > U. 
Hence this magnetic force decelerates the flow inside the 
boundary layer. Since the velocity of a fluid particle par-
allel to the surface is diminished relative to that of the 
stretching surface, the velocity gradient at the surface 
increases with increase in the magnetic field B0 (charac-
terized by the magnetic parameter M). This results in 
increase in the dimensionless skin-friction coefficients 
|F''(0)| with increase in M. Note that the above argument 
is valid for the monotonic solution for the velocity dis-
tribution because in this case the velocity inside the 
boundary layer decreases monotonically from the surface 
velocity cx to ax (since a < c) so that u > U. 

Figures 3-5 display self-similar velocity profiles of 
F'(η) for different values of M at selected values of b. 
The non-monotonic behavior of the velocity distribution 
is evident from these figures. It is observed from these 
figures that for a fixed value of b, the velocity parallel to 
the stretching surface at a point in the boundary layer 
decreases with increase in M. From a physical point of 
view, this follows from the fact that when b < 1, increase 
in M leads to increase in the magnitude of the retarding 
Lorentz force acting on the fluid resulting in enhanced 
deceleration of the flow. 

An interesting result which emerges from this analysis 
is that for a given value of M, the skin-friction coefficient 
|F''(0)| for the dual solution in the case 0 < b < 1 is not a 
monotonic function of b but has a maximum at a par-
ticular value of b (see Figure 2). This result is to be con-
trasted with the corresponding result for the monotonic  

 
Figure 2. Reduced skin friction coefficient F''(0) with b for 
several values of M showing the upper and lower curves. 
 

 
Figure 3. Self-similar velocity profiles (for non-monotonic 
solution) for b = 0.02 with different values of M. 
 

 
Figure 4. Self -similar velocity profiles (for non-monotonic 
solution) for b = 0.05 with different values of M. 
 
solution for 0 < b < 1, where |F''(0)| decreases monotoni-
cally with increase in b as shown in Figure 2. Physically 
this stems from the fact that for the dual solution, the  
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Figure 5. Self -similar velocity profiles (for non-monotonic 
solution) for b = 0.08 with different values of M. 
 
self-similar velocity profiles F'(η) are non-monotonic 
(see Figures 3-5). 
 
5. Stability Analysis 
 
In order to ascertain which of the two solutions in the 
region 0 < b < bc (where as shown above, bc depends on 
M), is expected to appear asymptotically, we test the sta-
bility of the above two solutions. 

To this end, we consider the unsteady form of the 
Equation (8) as 
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together with the equation of continuity (3). We seek the 
unsteady similarity solution in the form 
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where the subscript η denotes partial derivative with re-
spect to η and τ is the dimensionless time ct. Note that 
with u and v given above, the equation of continuity (3) 
is identically satisfied. Substitution of (17) in (16) then 
gives 
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where the subscripts η and τ denote partial derivatives 
with respect to η and τ respectively. The boundary condi-
tions are 
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In terms of f(η,τ), these conditions are 

(0, ) 0, (0, ) 1, ( , ) .f f f  b          (21) 

Following Merkin [11], we put 

( , ) ( ) ( ) ,f F e g            (22) 

where F(η) satisfies (12) subject to (13) and corresponds 
to the steady state solution. Further g(η) and all its de-
rivatives are assumed small compared with the steady 
solution F(η) and its derivatives. Such an assumption is 
made because we are studying the linear stability of the 
basic flow F(η) so that the disturbance g(η) is small, γ 
being the growth (or decay) rate of the disturbance. 
Substituting (22) in (18) and linearizing, we get 

''' '' ' 2 ' ''( 2 ) 0.g Fg F M g F g          (23) 

Here prime denotes derivative with respect to η. The 
boundary conditions for g(η) follow from (13), (21) and 
(22) as 

' '(0) 0, (0) 0, ( ) 0.g g g         (24) 

Clearly the homogeneous linear Equation (23) subject to 
the homogeneous boundary conditions (24) constitutes 
an eigenvalue problem with γ as the eigenvalue. Without 
loss of generality, we can take g''(0) = 1. Solutions of (23) 
and (24) give an infinite set of eigenvalues γ1 < γ2 < γ3 

<… If the smallest eigenvalue γ1 is negative, then there is 
an initial growth of disturbances and the flow is unstable. 
On the other hand, when γ1 is positive, there is an initial 
decay and the flow is stable. 

Figure 6 shows the variation of the smallest eigen-
value γ1 for the monotonic solutions (corresponding to 
upper curves in Figure 2) with b for several values of the 
magnetic parameter M. Since γ1 is real and positive for 
these curves, it follows that the monotonic solutions are 
linearly stable. Further, for a given value of b, γ1 in-
creases with increase in M. Thus we may say that for 
these stable solutions, disturbances decay more quickly 
with increase in M. 

On the other hand, Figure 7 gives a plot of the varia-
tion of the lowest eigenvalue γ1 for the non-monotonic 
 

 

Figure 6. Plot of lowest eigenvalues γ1 as a function of b for 
the upper branch solution with different values of M. 
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Figure 7. Plot of lowest eigenvalues γ1 as a function of b 
for the lower branch solution with different values of 
M. 
 
solutions (corresponding to lower curves in Figure 2) 
with b for several values of M. Since γ1 < 0 for these 
curves, it is clear that the non-monotonic solutions are 
linearly unstable. Further for a given b, |γ1| decreases 
with increase in M for the non-monotonic solutions. 
Hence it follows that the growth rate of unstable distur-
bances decreases with increase in M. A physical inter-
pretation of these results is that the magnetic field has a 
stabilizing influence on the flow. In fact a magnetic field 
exerts something like a viscous drag on an electrically 
conducting fluid and also imparts to it some degree of 
rigidity. Thus magnetic field can be expected to inhibit 
any tendency to instability. Further from an energetic 
point of view, a magnetic field is stabilizing since in ad-
dition to the dissipation of energy by viscosity, there is 
dissipation of magnetic energy in the form of Joule heat-
ing [12]. Specially, when an electrically conducting fluid 
is perturbed in the presence of a magnetic field, the dis-
turbances induced by currents, whose energy is dissi-
pated by Joule heating. 

It may be noted that the result that the monotonic solu-
tion is linearly stable and the non-monotonic solution is 
linearly unstable in the case of an electrically noncon-
ducting fluid with M = 0 was arrived at earlier in [8]. Our 
present stability analysis is based on the approach in [8]. 

 
6. Conclusions 

An investigation is made of steady two dimensional 
MHD stagnation-point flow of an electrically conducting 
incompressible viscous fluid over a stretching surface in 
the presence of a uniform transverse magnetic field. The 
surface is stretched in its own plane with a velocity pro-
portional to the distance from the stagnation-point. The 
flow problem is governed by the dimensionless parame-
ter b representing the ratio of the strain-rate of the stag-
nation flow to that of the stretching surface and the 

magnetic parameter M. It is shown that in addition to the 
monotonic increasing solution (which is unique) for b > 
1 earlier found by Mahapatra and Gupta [7], there exist 
two solutions in the range 0 < b < bc, where bc(< 1) de-
pends on M. In this range one solution is monotonic in-
creasing whilst the dual solution is non-monotonic. It is 
also found numerically that bc decreases with increase in 
M and when M > 0.23919, the dual solution does not 
exist. 

A linear stability analysis of the two solutions in the 
range 0 < b < bc reveals that the monotonic decreasing 
solution is linearly stable but the non-monotonic solution 
is linearly unstable. Further the magnetic field exerts a 
stabilizing influence on the flow. 
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