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Departing from the Energy of a quantum system of identical boson particles, the field equation is derived. 
This is the Gross-Pitaevskii equation (GPE). A continuity equation for this system is also derived, 
showing that the velocity flow satisfies V# v = 0, i.e.: is irrotational.  

The Gross-Pitaevskii equation

Problem: derive the field equation describing the ground state of a quantum system of identical 
particles (bosons), that is, the Gross-Pitaevskii equation (GPE).

Background: The Gross-Pitaevskii equation is particularly useful to describe Bose Einstein 
condensates (BEC) of cold atomic gases [3, 4, 5], that is, an ensemble of identical quantum boson 
particles that interact with each other with an interaction constant G. The temperature of these cold 
atomic gases is typically in the ∼100 nano-Kelvin range. The atom-atom interactions are repulsive for 
G O 0 and attractive for G ! 0  (which could lead to some instabilities). The GPE is also widely used 
in non-linear optics to model the propagation of light in optical fibers. In this area, GPE is known as 
"non-linear Schrödinger equation", and the non-linearity comes from the Kerr effect [6]. 

Solution
One can derive this field equation the usual way, in two steps:

Construct the Lagrangian for the system, and with it write the action functional

The Gross-Pitaevskii equation is obtained minimizing this action, i.e., equating to zero its 
functional derivative with respect to the boson field.

Derivation: The system is assumed to be at sufficiently low temperature such that the particles all 

share the same quantum ground state 
y

N
, where psi is the particle-field function and N is the total

particle number: y  y = N.  To construct the Lagrangian we thus depart from the energy density 
E for a quantum system of identical boson particles.

The version of Physics used is from November/26 (or later), available at the Maplesoft Physics 
Research & Development webpage

restart; with Physics : with Physics Vectors :
interface imaginaryunit = i :
Setup mathematicalnotation = true
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mathematicalnotation = true

Use a macro Psi = psi x, y, z, t  to avoid redundant typing and use declare to have a compact 
display

macro Psi = psi x, y, z, t :
PDEtools:-declare y, V x, y, z, t

y x, y, z, t  will now be displayed as y
V x, y, z, t  will now be displayed as V

The energy density E for a quantum system of identical boson particles is (see [3])
E d Z2 Norm %Gradient Psi 2 / 2 m CV x, y, z, t  abs Psi 2 C 1 / 2  G abs Psi 4;

E d
Z2 Vy

2

2 m
CV y

2
C

G y
4

2

where Z is the Planck constant divided by 2$p, m the mass of a single particle, psi x, y, z, t  a 
complex field, V x, y, z, t  an arbitrary external potential and the interaction term G takes into 
account atom-atom interactions. So set the real objects for this problem

Setup realobjects = t, m, Z, G, V x, y, z, t
realobjects = Z, G, i , j , k, f, r , r, q, m, f, r, r, t, q, x, y, z, V

The Lagrangian density L is defined in terms of the Energy E in the usual way

L d 
i Z
2

 conjugate Psi  diff Psi, t KPsi * diff conjugate Psi , t KE

L d
i Z y yt Ky yt

2
K

Z2 Vy
2

2 m
KV y

2
K

G y
4

2

The corresponding Action S
S d Intc L, x, y, z, t

S d
KN

N

KN

N

KN

N

KN

N i Z y yt Ky yt

2
K

Z2 Vy
2

2 m
KV y

2
K

G y
4

2
dx dy

dz dt

Minimizing the action gives the field equations, so taking the functional derivative
S, y X, Y, Z, T :
subs X = x, Y = y, Z = z, T = t , %Fundiff = Fundiff %

d
d y KN

N

KN

N

KN

N

KN

N i Z y yt Ky yt

2
K

Z2 Vy
2

2 m
KV y

2
K

G y
4

2
dx

dy dz dt =
Z2 yx, xCyy, y Z

2 CZ2 yz, z K 2 G y2 yC i yt ZCy V  m

2 m

Equating this result to 0 is the desired field equation, GPE. This result can be compacted to arrive at 
the standard form of the GPE. For instance, in the right-hand side of (1.1.7) we see a Laplacian in 
disguise. So take the conjugate and isolate the time derivative:

conjugate rhs (1.1.7)  = 0
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Z2 yx, x

2
C

yy, y Z
2

2
C

Z2 yz, z

2
K

m K2 i yt ZC 2 y VC 2 G y
2
 y

2
m

= 0

i Z isolate (1.1.8), diff Psi, t

i yt Z =
K
Z2 yx, x

2
K

yy, y Z
2

2
K

Z2 yz, z

2
m

Cy VCG y
2
 y

Introduce in (1.1.9) the Laplacian
Laplacian = %Laplacian Psi

yx, xCyy, yCyz, z = V2y

algsubs (1.1.10), (1.1.9)

i yt Z = K
Z2 V2y

2 m
CG y

2
 yCy V

The product psi psi can be rewritten as psi  and, collecting psi, we arrive at the standard form of the
Gross–Pitaevskii equation

collect convert (1.1.11), abs , psi

i yt Z = G y
2
CV  yK

Z2 V2y
2 m

So the GPE looks like the usual Schrödinger equation, except there is a non-linear term acting as a 
potential proportional to the local field intensity y

2
.

Continuity equation for a quantum system of identical 
particles

Like for the standard Schrödinger equation, it is possible to derive a continuity equation for the ground 
state of a quantum system of identical particles that is similar to the one in fluid mechanics. Because the 
non linear term G y

2
 is real, the continuity equation will be independent of this non linearity (and of 

the potential V as well). 

To obtain the continuity equation, GPE (1.1.12) is first multiplied by y ; then the complex conjugate of 
the resulting product is subtracted:

conjugate Psi  (1.1.12)

i Z y yt = y G y
2
CV  yK

Z2 V2y
2 m

(2.1)K conjugate (2.1)

i Z y yt C i Z y yt = y G y
2
CV  yK

Z2 V2y
2 m

Ky G y
2
CV  yK

Z2 V2y
2 m

expand
(2.2)
i$Z
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y yt Cy yt =
i Z y V2y

2 m
K

i Z y V2y
2 m

The left hand side of (2.3) can be integrated, consider
%diff abs Psi 2, t

d
dt

y
2

convert (2.4), conjugate = (2.4)
d
dt

y y =
d
dt

y
2

value lhs (2.5) = rhs (2.5)

y yt Cy yt =
d
dt

y
2

So (2.3) becomes
subs (2.6), (2.3)

d
dt

y
2

=
i Z y V2y

2 m
K

i Z y V2y
2 m

The right-hand side of this result can also be rewritten as a divergence, consider
conjugate Psi  %Gradient Psi K Psi %Gradient conjugate Psi

y VyKy Vy

Take now the divergence and compare with its expanded form
%Divergence = expand@%Divergence (2.8)

V, y VyKy Vy = y V2yKy V2y

Multiply by the proper factors of the right-hand side of (2.7)
i Z (2.9)

2 m
i
2

 Z V, y VyKy Vy

m
=

i
2

 Z y V2yKy V2y

m

The right-hand side of this result is equal to the right-hand side of (2.7) . So subtract this result and 

isolate the time derivative 
v

vt
psi 2

normal (2.7) K (2.10)

K

i Z V, y VyKy Vy K 2 
d
dt

y
2

 m

2 m
= 0

isolate (2.11), %diff abs Psi 2, t

d
dt

y
2

=

i
2

 Z V, y VyKy Vy

m

To express (2.12) as a typical continuity equation, the argument of the divergence operator can be 
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rewritten as the product of the  particle density n x, y, z, t  times a velocity field v x, y, z, t , where the 
density satisfies n x, y, z, t = y

2
R 0 . 

PDEtools:-declare n, v_ x, y, z, t
n x, y, z, t  will now be displayed as n
v x, y, z, t  will now be displayed as v

Setup realobjects = n x, y, z, t
realobjects = Z, G, i , j , k, f, r , r, q, m, f, r, r, t, q, x, y, z, V, n

So the argument of the divergence V, psi Vpsi K psi Vpsi  (2.12) can be expressed as

op op 3, rhs (2.12)  = abs Psi 2 v_ x, y, z, t  
2 m i
Z

y VyKy Vy =
2 i y

2
 v m

Z

subs (2.15), (2.12)

d
dt

y
2

=

i
2

 Z V,
2 i y

2
 v m

Z

m

Introducing now the particle density n and expanding
abs Psi 2 = n x, y, z, t

y
2

= n

subs (2.17), (2.16)

d
dt

n =

i
2

 Z V,
2 i n v m

Z

m

lhs (2.18)  = expand rhs (2.18)
d
dt

n = Kn V, v KVn , v

That is,
lhs (2.19)  = K %Nabla n v_ x, y, z, t

d
dt

n = KV n v

One can still verify that, provided that there are no singularities, i.e. n s 0, the velocity satisfies 

V# v = 0, it can be written as a gradient,  v =
Z 
m

Vs. That is, GPE admits solutions with vortices. At 

the center of a vortex, the field density vanishes, n = 0. This singularity warrants that the velocity 
circulation around a vortex is not 0 (indeed, it is quantified, but that is beyond the scope of this 
worksheet).

To verify that V# v = 0, y is rewritten as a function of its phase s (so s is real) and amplitude n ,
PDEtools:-declare s x, y, z, t

s x, y, z, t  will now be displayed as s
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Setup realobjects = s x, y, z, t
realobjects = Z, G, i , j , k, f, r , r, q, m, f, r, r, t, q, x, y, z, V, n, s

Psi = sqrt n x, y, z, t  eI s x, y, z, t

y = n  ei s

Substituting this value in (2.15)
eval (2.15), (2.23)

n  V n  ei s

ei s K n  ei s V
n

ei s =
2 i n  v m

Z

Taking into account that outside the center of the vortex n O 0 and isolating the velocity v
simplify (2.24)  assuming n x, y, z, t  O 0

n eKi s Vei s K ei s VeKi s =
2 i n v m

Z

isolate (2.25), v_ x, y, z, t

v =
K

i
2

 eKi s Vei s K ei s VeKi s  Z

m

The right hand side can now be conveniently rewritten as a gradient. For that purpose, compute first the
inert gradient functions of (2.26)

expand value (2.26)

v =
Z sx i

m
C

Z sy j

m
C

Z sz k

m

This result can recombined as a gradient of the phase s x, y, z, t
Gradient = %Gradient s x, y, z, t

sx i C sy j C sz k = Vs

algsubs (2.28), (2.27)

v =
Z Vs

m

And from this result it follows that
Curl (2.29)

V# v = 0

The continuity equation (2.18) can finally be rewritten, now carrying the information about V# v = 0, 
directly in terms of s x, y, z, t  as

subs (2.29), (2.20)
d
dt

n = KV
n Z Vs

m

or in expanded form
expand (2.31)
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d
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n = K
n Z V2s

m
K

Z Vn ,Vs
m
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