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Departing from the Energy of a quantum system of identical boson particles, the field equation is derived.
This is the Gross-Pitaevskii equation (GPE). A continuity equation for this system is also derived,

->
showing that the velocity flow satisfies Vx v = 0, i.e.: is irrotational.

The Gross-Pitaevskii equation

Problem: derive the field equation describing the ground state of a quantum system of identical
particles (bosons), that is, the Gross-Pitaevskii equation (GPE).

Background: The Gross-Pitaevskii equation is particularly useful to describe Bose Einstein
condensates (BEC) of cold atomic gases [3, 4, 5], that is, an ensemble of identical quantum boson
particles that interact with each other with an interaction constant G. The temperature of these cold
atomic gases is typically in the ~100 nano-Kelvin range. The atom-atom interactions are repulsive for
G > 0 and attractive for G < 0 (which could lead to some instabilities). The GPE is also widely used
in non-linear optics to model the propagation of light in optical fibers. In this area, GPE is known as
"non-linear Schrédinger equation”, and the non-linearity comes from the Kerr effect [6].

Solution
One can derive this field equation the usual way, in two steps:

* Construct the Lagrangian for the system, and with it write the action functional

* The Gross-Pitaevskii equation is obtained minimizing this action, i.e., equating to zero its
functional derivative with respect to the boson field.

Derivation: The system is assumed to be at sufficiently low temperature such that the particles all

share the same quantum ground state , where psi is the particle-field function and N is the total

particle number: (y | y) = N. To construct the Lagrangian we thus depart from the energy density
E for a quantum system of identical boson particles.

The version of Physics used is from November/26 (or later), available at the Maplesoft Physics
Research & Development webpage

> restart; with(Physics ) : with(Physics | Vectors ]) :
> interface(imaginaryunit=1i) :

> Setup (mathematicalnotation = true)
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[ mathematicalnotation = true ] (1.1.1)
Use a macro Psi = psi(x, y, z, ¢) to avoid redundant typing and use declare to have a compact
display
> macro(Psi=psi(x,y,z,t)) :
> PDEtools:-declare( (y, V) (x,, z, t))
Y (x, Y, z, t) will now be displayed as \y
V(x,,z, t) will now be displayed as V (1.1.2)

The energy density E for a quantum system of identical boson particles is (see [3])
> E = h? Norm(%Gradient(Psi))*/ (2m) + V(x,y,z, t) abs(Psi)* 4+ (1/2) G abs(Psi)*;
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(1.1.3)

where 7 1s the Planck constant divided by 2 -7, m the mass of a single particle, psi(x, y, z, t) a
complex field, V' (x, y, z, t) an arbitrary external potential and the interaction term G takes into
account atom-atom interactions. So set the real objects for this problem

> Setup (realobjects = {t,m, h, G, V(x,y,2,1)})
[realobjects = {h: Ga i,ja ka q), ’;, [3’ ea I’I’l, q): 7", p: t, ea X,y, Z: V}] (1’1'4)

The Lagrangian density L is defined in terms of the Energy E in the usual way

> L= (%j (conjugate(Psi) diff (Psi, t) — Psi*diff (conjugate(Psi), t))-E
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The corresponding Action S
> S:=Intc(L,x,y,2,t)
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Minimizing the action gives the field equations, so taking the functional derivative

> SyX Y, ZT):
subs({X=x,Y=y,Z=z,T=1t}, (%Fundiff = Fundiff' ) (%))
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Equating this result to 0 is the desired field equation, GPE. This result can be compacted to arrive at
the standard form of the GPE. For instance, in the right-hand side of (1.1.7) we see a Laplacian in
disguise. So take the conjugate and isolate the time derivative:

> conjugate(rhs ((1.1.7)) = 0)
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> ihisolate((1.1.8), diff (Psi, t))
(T L
. 2 2 _
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Introduce in (1.1.9) the Laplacian
> (Laplacian = %Laplacian) (Psi)
vty = 2y (1.1.10)
> algsubs((1.1.10), (1.1.9))
2 72
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The product psi p_51 can be rewritten as |psi| and, collecting psi, we arrive at the standard form of the
Gross—Pitaevskii equation

> collect(convert((1.1.11), abs ), psi)
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(1.1.12)
So the GPE looks like the usual Schrodinger equation, except there is a non-linear term acting as a

potential proportional to the local field intensity |\|1|2.

Continuity equation for a quantum system of identical
particles

Like for the standard Schrodinger equation, it is possible to derive a continuity equation for the ground
state of a quantum system of identical particles that is similar to the one in fluid mechanics. Because the

non linear term G || is real, the continuity equation will be independent of this non linearity (and of
the potential V" as well).

To obtain the continuity equation, GPE (1.1.12) is first multiplied by \ ; then the complex conjugate of
the resulting product is subtracted:

> conjugate(Psi) (1.1.12)
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> (2.1) — conjugate((2.1))
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> expand( % ]
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The left hand side of (2.3) can be integrated, consider
> %diff (abs (Psi)?, t)
< (jvf") @4)
> convert((2.4), conjugate) = (2.4)
— (ww) = () @5)
> value(lhs ((2.5))) = rhs ((2.5))
vy, vy, = (vl 2.6)
So (2.3) becomes
> subs((2.6), (2.3)) B
G (yp) = YT iy Ty @7

The right-hand side of this result can also be rewritten as a divergence, consider
> conjugate(Psi) %Gradient(Psi) — Psi %Gradient(conjugate(Psi))
Yy -y Vy (2.8)
Take now the divergence and compare with its expanded form
> (%Divergence = expand (@ %Divergence) ((2.8))

(WYY -y V) =y Py -y Py 2.9)
Multiply by the proper factors of the right-hand side of (2.7)
1% (2.9)
2m
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The right-hand side of this result is equal to the right-hand side of (2.7) . So subtract this result and

isolate the time derivative m |psi|2
> normal((2.7) - (2.10))

in e (Woy—yvy) =2 < (jy) m
_ =0 (2.11)
2m

> isolate((2.11), %diff (abs (Psi)?, ¢))
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To express (2.12) as a typical continuity equation, the argument of the divergence operator can be



rewritten as the product of the particle density n(x, y, z, ¢) times a velocity field 3(x, ¥, z, t), where the

density satisfies n(x, y, z, t) = |\|l|2 > 0.
> PDEtools:-declare( (n,v_)(x,»,z,t))
n(x,y, z, t) will now be displayed as n

;/)(x, », z, t) will now be displayed as v (2.13)

> Setup (realobjects =n(x, y, z, t)) o )
[realobjects = {h, G,i,j, k, 0o, 1:, ;3, 0,m,¢,r,p,1,0,x,9,2,V, n}] 2.149)

So the argument of the divergence V+ (;E (Vpsi) — psi ( &) ) (2.12) can be expressed as

> op(op(3, rhs((2.12)))) = abs (Psi)> v _(x, 1, z, 1) ( 2’;” j
2 >
— — 21 vm
Yy —yVy= N’;'L (2.15)
> subs((2.15), (2.12))
i [ 2ilyl ¥ m J
— h . .
< () = 2 " 2.16)
t m
Introducing now the particle density n and expanding
> abs(Psi)? =n(x,y,z, 1)
2
" =n 2.17)
> subs((2.17), (2.16))
i 2invm
e ()
—n= (2.18)
t m
> [hs((2.18)) = expand (rhs((2.18)))
—n=-n vV —Vnev (2.19)
That is,
> [hs((2.19)) = - %Nabla((nv_)(x,y,z, 1))
n=-v(nv) (2.20)

dr
One can still verify that, provided that there are no singularities, i.e. n # 0, the velocity satisfies
Vxy= 0, it can be written as a gradient, V= —Vs. That is, GPE admits solutions with vortices. At
m

the center of a vortex, the field density vanishes, n = 0. This singularity warrants that the velocity
circulation around a vortex is not 0 (indeed, it is quantified, but that is beyond the scope of this
worksheet).

To verify that V x v= 0, y is rewritten as a function of its phase s (so s is real) and amplitude \/7 ,

> PDEtools:-declare(s (x,y, z, t))
s (x, v, z, t) will now be displayed as s (2.21)



> Setup (realobjects =s(x,y,z,t)) )
[realobjects = {h, G,i,j, k, 0o, r, ﬁ, 0,m,0,7,p,,0,x,9,2,V,n, s}] 2.22)

> Psi=sqrt(n(x,y,2,1)) RECREN)

y=Jn e’ (2.23)
Substituting this value in (2.15)
> eval((2.15), (2.23)) -

\/— (\/—els) \/—e” (\/7]: 2i|n|3m (2.24)

is h

Taking into account that outside the center of the vortex n > 0 and isolating the velocity v
> simplify((2.24)) assuming n(x, y,z,t) > 0

. . . s 2 >
n(e P ve' —¢e¥ve ”)Z# (2.25)

> isolate((2.25),v_(x,y,2,1))

_;(e—is eis_eis e—is)h
V= (2.26)

m

The right hand side can now be conveniently rewritten as a gradient. For that purpose, compute first the
inert gradient functions of (2.26)
> expand (value((2.26))) )
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v — 227
m m m

This result can recombined as a gradient of the phase s (x, y, z, #)
> (Gradient = %Gradient) (s (x, , z, 7))

Sz+s]+s k— s (2.28)
> algsubs((2.28), (2.27))
s Vs (2.29)
m
And from this result it follows that
> Curl((2.29))
Vxvy=0 (2.30)

The continuity equation (2.18) can finally be rewritten, now carrying the information about V x V= 0,
directly in terms of s (x, y, z, ) as
> subs((2.29), (2.20))

e (”h S) 2.31)

m

or in expanded form
> expand((2.31))

(232)



n:_nh Zs R (Vn-Vs) 2.32)

dt m m

References

[1] Gross-Pitaevskii equation (wiki)

[2] Continuity equation (wiki)

[3] Bose—FEinstein condensate (wiki)

[4] Bose-Einstein Condensation in Dilute Gases, C. J. Pethick and H. Smith, Second Edition, Cambridge
(2008), ISBN-13: 978-0521846516.

[5] Advances In Atomic Physics: An Overview, Claude Cohen-Tannoudji and David Guery-Odelin,
World Scientific (2011), ISBN-10: 9812774963.

[6] Nonlinear Fiber Optics, Fifth Edition (Optics and Photonics), Govind Agrawal, Academic Press
(2012), ISBN-13: 978-0123970237.




