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Departing from the equation for a quantum system of identical boson particles, i.e.the Gross-Pitaevskii
equation (GPE), the dispersion relation for plane-wave solutions are derived, as well as the Bogoliubov

equations and dispersion relations for small perturbations d¢ around the GPE stationary solutions.

Stationary and plane-wave solutions to the Gross-Pitaevskii
equation

Problem: Given the Gross-Pitaevskii equation,
2 2
iy =(Gly[ +V)y—- — 72
iny, = (G +7)y— 5 T2y
a) Derive a relationship between the chemical potential i entering the phase of stationary, uniform

. . . . . 2,
solutions, the atom-atom interaction constant G and the particle density n = |y|” in the absence of an
external field (V= 0).

b) Derive the dispersion relation for plane-wave solutions as a function of G and n.

Background: The Gross-Pitaevskii equation is particularly useful to describe Bose Einstein
condensates (BEC) of cold atomic gases [3, 4, 5]. The temperature of these cold atomic gases is
typically in the ~100 nano-Kelvin range. The atom-atom interaction are repulsive for G > 0 and
attractive for G < 0, where G is the interaction constant. The GPE is also widely used in non-linear
optics to model the propagation of light in optical fibers.

Solution

a) Derive a relationship between the chemical potential W entering the phase of stationary,

uniform solutions, the atom-atom interaction constant G and the particle density 7 = || in the
absence of an external field (V= 0).

The version of Physics used is from December/6 (or later), available at the Maplesoft Physics
Research & Development webpage

> restart; with(Physics ) : with(Physics | Vectors ]) :
> interface(imaginaryunit=1i) :
> Setup (mathematicalnotation = true)
[ mathematicalnotation = true ] (1.1.1)

| Use a macro ¥ = y(x, y, z, t) to avoid redundant typing and use declare to have a compact display
| > macro(Psi=psi(x,y,z,t)) :




> PDEtools:-declare( (y, V) (x,y,z,1))
Y (x, Y, z, t) will now be displayed as \y
V(x,y, z, t) will now be displayed as V (1.1.2)
:The Gross-Pitaevskii equation, derived in the previous post in Mapleprimes, is given by
> ihdiff (Psi, 1) = (G (abs(Psi)?) + V(x,y,z, 1)) Psi — h? %Laplacian(Psi) / (2 m);

. 2 W2 V2
iny,= (G +7)y- Zm“’ (1.1.3)

where G is the atom-atom interaction constant, V' (x, y, z, ¢) is an external field, y is the particle-
wave function, m is the mass of a single particle and 7 is the Planck constant divided by 2r. Set the
| real objects of this problem including the chemical potential i
> Setup (realobjects = {m, t, G, V(x, Y, Z,t), h, mu})
[realobjects = {h, G, ;, ]A', k,o,7,p,0,m W, ,rp,t0,x7,z, V} ] (1.1.4)
[ In the absence of an external potential, we have V(x, y, z, t) = 0. To relate the chemical potential to
the interaction constant G' and the particle density » we look for a real stationary and uniform

_itpe
solution for (1.1.3) of the formy =@ e " where U is the chemical potential and ¢ is
constant.
B _ipe
—ipt
y=¢ec " 1.1.5)
;Substituting into the GPE equation (1.1.3),
> eval((1.1.3), {(1.1.5), V(x,y,z,t) =0})
—iut
—iput —ipt P ( 7 j
2 i I Qe
ope " =Glo"pe " — (1.1.6)

_The relationship between L, G and 7 is then obtained evaluating the Laplacian in the right-hand

| side, isolating | and introducing the particle density n = |\|J|2
> isolate(value((1.1.6)), mu)

n=Glof’ (1.1.7)
[From (1.15),
> map(u — abs(u)z, (1.1.5))
i i® =oP 1.1.8)
> subs (abs (Psi)? =, (1.1.8))
n=|ol (1.1.9)

:From where
> subs((rhs =lhs)((1.1.9)), (1.1.7))

u=Gn (1.1.10)




b) Derive the dispersion relation for plane-wave solutions as a function of G and n.

We now look for plane-wave solutions / n e ** 7197 yhere k is the wave number and @ the

frequency. To simplify, the GPE is restricted to a 2D spacetime case, still in the absence of external
potential.
> macro(Psi2 = psi(x, t)) :
> PDEtools:-declare(Psi2)
Y (x, t) will now be displayed as (1.1.11)

> Setup (realobjects = {n, k, omega }) _
[realobjects = {h, G,i,j, k,o,r, 5, 0, k,m,n,n,m0rp,t0,x,,z, V} ] (1.1.12)
;So the 2D GPE at V=0 is obtained replacing y(x, y, z, t) = y(x, ) in (1.1.3)
> subs(V(x,y,z,t) =0, psi(x,y, z, t) = psi(x, t), (1.1.3))
h2 ZW

2m

: 2
ihy =Gylyl — (1.1.13)

Introducing now an explicit form of y in terms of the particle density n = |1|1|2 and a plane wave
| &' #* ~ 1! ‘and taking into account that n > 0,

(> Psi2= sqrt(n) exp(i (kx - omegat))

y=n ¢ kx— o) (1.1.14)

> eval((1.1.13), (1.1.14) ) assuming n > 0

o _— 12 72 i(kx —or)
nm om0 =g l2 ke o (Jze ) (1.1.15)
m
;Isolating o and evaluating the Laplacian we get the dispersion relation
> isolate((1.1.15), omega) _
26 m — 2 v

® o (1.1.16)
2he " m
> expand (value(%) )
Gn _ hK
= — + — 1.1.17
® T m ( )

=This GPE dispersion relation is a function of both the non-linearity G and the field density n
| (which would not be the case for a linear PDE).

The Bogoliubov equations and dispersion relations

Problem: Given the Gross-Pitaevskii equation,

a) Derive the Bogoliubov equations, that is, equations for elementary excitations d¢ and 8—(/) around
a GPE stationary solution ¢ (x, y, z),



0 72 V23¢

i —dp=— — + (2 2 — 2 8¢
iho 8=~ =+ (2GoI" +V—n) 3¢ +Go*dp ,
0 — 12V — _
lhESQD:-FT(p—(zGM)lz-FV—M) 5¢—G5(p(p2 ,

b) Show that the dispersion relations of these equations, known as the Bogoliubov spectrum, are
given by

it wEG
e, =ho,=+ -+ -,
4 m m

where £ is the wave number of the considered elementary excitation, €, its energy or, equivalently,

®, its frequency.

Solution
a) To derive Bogoliubov's equations, start from a non-uniform stationary GPE solution, so ||
it
0

depending only on x, y, z, that is, of the form y = ¢ (x, y,z) e , where written in this form
is the chemical potential, and introduce small perturbations d¢ (x, y, z, t) around ¢ (x, y, z).

Bogoliubov's equations describe the evolution in time and space of these small perturbations 6¢ and
are obtained, basically, by inserting the perturbed solution into the GPE and discarding terms of

higher degree in d¢.

_> PDEtools:-a’eclare(lp(x, Yz, 1), ®(x%,,2), 00 (x, ¥, 2, 1) )
v (x, ¥, z, t) will now be displayed as ¢

¢ (x, y, z) will now be displayed as ¢
d¢(x, v, z, t) will now be displayed as d¢ (2.1.1)
The departing point is then the form of the GPE solution y(x, v, z, ¢) that includes this small
| perturbation d¢(x, y, z, t) depending on space and time

. ] t
> Psi= ((p(x,y,z) -I—&p(x,y,z,t)) exp(— lrr;Lu )

—ipt
v=(¢+dp)e " (2.1.2)
;Recalling the form of the GPE (1.1.3)
> (1.1.3)
. 5 2 2y
iy = (G +V)y- S (2.1.3)

;Substitute into it the perturbed y
> eval((1.1.3), (2.1.2))




. —ipt .
—1Ut . h —1uUt
ih(ﬁgoe e 1((p+5(p2ue ]Z(G|(p+6(p|2+V) (¢ +89) e f (2.14)

t

—ipt
2 2((@+5¢)e i )
2m

> expand((2.1.4) exp( : n;Lu ! ) )

. 2 2 2 72
i7dp, +Uo+udp=Glo+39] o+ Glo+3¢ dp+Vo+Vdp— 2m‘p (2.1.5)
)
2m
i _ipt
| The unperturbed GPE solution ¢ (x, y, z) -e " s also substituted into (2.1.3):
imut
> Wz ) = o(xy.z) expl - p )
Zint
y=e " ¢ (2.1.6)
(> eval((2.1.3), (2.1.6))
. . —ipt
—1us —iut —_—
3 [ hZ 2(6 h j
pe " o=(Glo’+7V)e " - YT @.1.7)
m
i iwe
> expand((2.1.7)e f )
2 2 2<P
Re=¢Glo" +Veo— — (2.1.8)
m

_To obtain the equation for the perturbation ¢, subtract the non-perturbed solution (2.1.8) from the
| perturbed solution (2.1.5):

> (2.1.5) - (2.1.8)
2 72

h
ih6¢l+u6q)=G|(p+8<p|2(p+G|(p+8qo|28qo+VS(p— S¢

5 — 0 Glo] (2.1.9)
m

B . . . . — . 2.
In order to discard higher degree terms in the perturbation 8¢ and 8¢ , rewrite the |@ + d¢|  in
| terms of ¢ + d¢ and its conjugate
> expand (convert((2.1.9), conjugate))

ihdp, +1dp=0>GBp+20G89T+29Gdpdp+Gdp o+ Gdp d¢ (2.1.10)
W2 V2§
+Vop— 0P
2m

> simplify((2.1.10), size)
i8¢ + 1 dp @.1.11)




_ 2Gm((p+8(p)2@—h2 280 +28pm (Gopdp+2Gpo+ V)
2m

In (2.1.11) we see that, discarding higher degree terms in d¢ and @ , we have

(o + &p)2 @ =~ @2 @ ,and 8¢ G @ d¢p = 0. These higher degree terms have degrees 2 and 3
=and can be selected as follows

> variables == 8¢ (x, y, z, t), conjugate(d¢(x, y, z, 1) )

variables ‘= 3¢, d¢p (2.1.12)
> 0= select(u — degree(u, {variables}) : identical(Z 3) rhs((2.1.10)))
0= 2(pG8(p8<p+G8(p (p-l-G&p S(p (2.1.13)

[ So we can either subtract these terms from (2.1.10), as in (2.1.10) - (2.1.13) or, simpler, use
| remove mstead of select, as in

> map2(remove, u — degree(u, {variables}) :: identical (2, 3), (2.1.10))
h2 28(p

ih&pt+u8cp:(p2G$+2(pG8<p6+V&p— 5

(2.1.14)

_Isolating now the term involving the time derivative and converting to abs only the terms involving
| ¢ we arrive at Bogoliubov's equation for d¢

> isolate((2.1.14), i i diff (8¢ (x, y, 2, 1), 1) ) :

> convert(%, abs, {@}) :

> collect( %, d¢)

indp =(2G|ol"+V—u)dp+o Gdp— — = (2.1.15)
_The equation for gp can now be obtained by taking the conjugate of the equation for d¢,
| expanding and collecting terms
> -conjugate((2.1.15)) :
> collect(expand (%), conjugate) o
— _ - hZ 28
ih8¢t=(—2G|(p|2—V—i—u)&p—G&p(pz-l— 7"’ (2.1.16)

b) Solving Bogoliubov's equations (2.1.15) and (2.1.16) is, in general, a difficult problem. The
computation is here restricted to a perturbation 8¢ around the uniform solution (1.1.5) derived in the
previous section. So we take V=0, u=G n,and ¢(x,y,z) = \/7 , where 7 is a constant uniform
particle density. The dispersion relations for (2.1.15) and (2.1.16) are then derived using two

different approaches: first simplify the problem to one in 1+1 spacetime dimensions and use Fourier
transforms, then consider the whole problem in 3+1 spacetime dimensions and find the dispersion

relations treating 0¢ and d¢ as independent perturbation functions.

[Introduce V=0, u=Gn,and ¢ (x,y,z) = \/_ into Bogoliubov's equations

|7> conditions = [V(x,y, z,t)=0,0(x,yz \/— u= Gn]
2117



conditions == [V=0,¢0=n,u=Gn| (2.1.17)

> eval((2.1.15), conditions ) assuming n > 0

- h2 26
1180 =Gndp+nGop— —°% (2.1.18)
4 2m
> eval ((2.1.16), conditions ) assuming n > 0 o
e — h? V23¢
1h5got=—nG8q)—Gn5go+7 (2.1.19)

At this point we need to introduce an expression for the perturbation d¢. We start considering this

perturbation as a complex function, that is 8¢ = u(x, t) + 1v(x, ¢), where u and v are real
| functions of x and .

> PDEtools:-declare( (u, v) (x, t))
u(x, t) will now be displayed as u

v(x, t) will now be displayed as v (2.1.20)
> Setup (realobjects = {(u, v) (x,1)})
| realobjects = {n, G, i, j, k, ¢,7,p, 0,k m, W, n, & 0 7r,p, 10,xy2 V,uv}] (2.1.21)
jSo the simplified equation (2.1.18) becomes
> eval((2.1.18), 8¢ (x, y, z, t) = u(x, t) + iv(x, 1))

2 2 :
ih(ut—i-ivt):Gn(u-i-iv)+nG(u—iv)— " éum+1v) (2.1.22)
;Compute now the Laplacian on the right-hand side
> expand(value((2.1.22)))
n? u,_ in? LA
ihut—hv[=2Gun— 2m” — 2m" (2.1.23)

[ All the objects in this equation are real, so (2.1.23) represents two equations, respectively
| conformed by its real and imaginary parts

> expand(Re((2.1.23)))
h2

u
2 G X, x (2.1.24)
t 2m
(> expand (Im((2.1.23)))
h? L.
= (2.1.25)

[ To obtain the dispersion relations, take the Fourier transforms of these two equations towards
| eliminating u(x, ) or v(x, ). The Fourier transform with respect to x gives:
:> with (inttrans ) :
> Sfourier((2.1.24), x, k)
(K +4Gnm)F_ (u)

() = o : (2.1.26)

-h (3

X,

> fourier((2.1.25), x, k)

A 1 AN



REF ()
h(F ) = 5 (2.1.27)

t 2m

=Equation (2.1.27) can be simplified using (2.1.26) to eliminate F N k(u) = fourier (u(x, t), x, k) in

favor of ffx k(v) (see simplify with respect to side relations)

> simplify ((2.1.27) , {(2.1.26) }, { fourier (u(x, ), x, k) })
2 12 (Sfx’k(v)) m w2t (v)
_ . Lt % k (2.1.28)
K +4Gnm 2m

=The: equation above now involves only F p k(v). This dependency can also be eliminated by taking
another fourier transform of both sides of (2.1.28), now with respect to ¢, introducing the
frequency 0,
(> fourier((2.1.28), t, omega[ k])
5 2 2 72 .
2 mo, 9[’ wk(ﬂ”x,k(v)) he k Z}”t, wk(&’x’k(v)>
3 = (2.1.29)
Wik+4Gnm 2m

[ We see now that the double Fourier transform is a common factor of the left and right-hand sides.

The desired dispersion relation for ®, is then obtained just isolating ®,

> isolate((2.1.29), omega[k]*)
2 2 12
h 4
o= K U2E +4Gnm) (2.130)
4m

Alternatwely, a 3+1 spacetime treatment is also possible treating d¢ and &p as independent

perturbation functions, introducing them as a plane waves 8¢ = u(¢) e ¢ [ . To reuse u and v this

time as non-real functions of ¢, unset u(x, ¢) and v(x, ¢) used as real objects in the previous
| approach

> Setup (realobjects = {unset u(
[ realobjects = {h, G, i

=> PDEtools:-declare( (u, v)

) (

X, 1) })
k, .7

Jk,myu,n,o,0,7,p,40,x,,2, V} ] (2.1.31)

o L:

(4
u(t) will now be displayed as u

) will now be displayed as v (2.1.32)

;We use u(t) for d¢ and v(¢) for 3¢
> 0p(x,y,z, t)=u(t)exp(ik_.r );

i,J
)
(t
v(t

Sp=ue k7 2.1.33)
B conjugate(8¢(x,y,z,t)) =v(t) exp(ik_.7r_)
So=ve k° ) (2.1.34)

> k_=k[x]_i + k[y]_j + k[z]_k
=k i+ ky} +k k (2.1.35)




>r =x ity j+z k

F=xi+yj+zk (2.1.36)

| where & and # arereal
> Setup (realobjects = {n, k_,r_, k[x], k[y], k[z]})

- —~ -

[realobjects = {1, G, 7. ], ky 0,7, D, 0,k ky m, W, @, 0,7, 7, p, 1, 0,5, v, 2, k ko, @137)

gl

=Introducing now the form for the perturbations (2.1.32) and (2.1.33), expanding the scalar product
| and evaluating the Laplacian on the right-hand side, we have:

> eval((2.1.18), [(2.1.33), 2.1.34)])

-

B2 2<uei(k'7)>

ihutei(k'r>=Gnuel(k'r)+nGve( ) _ (2.1.38)
2m
> eval((2.1.38), [(2.1.35), (2.1.36) ])
i(xk +yk +zk) i(xk +yk +zk) i(xk +yk +zk)
ihu, e * Y “=Gnue 7 Y +nGve Y : (2.1.39)
i(xk +yk +zk
R O )
2m
> value(%)
i(xk +yk +zk) i(xk +yk +zk) i(xk +yk +zk)
ihute * Y “=Gnue 7 “+nGve Y : (2.1.40)
i(xk + vk +zk) 5 5 5
nue * 7 Z<k+k+k)
+ X y z

2m

2 >

| In the equation above, the """ is now a common factor. Isolating the time derivative of u(¢)
> normal(isolate((2.1.40), diff (u(t),t)))

—?(hzuki%—hzuki+h2ukj+2nva+2Gnum)
u = (2.1.41)

t mh

2
’

Introducing & + & + & = [[£|

> map(u — Norm(u)z, (2.1.35))
-2
Il =& + & + & (2.1.42)
> algsubs ((rhs = lhs) ((2.1.42)), (2.1.41))

_;7 (hzu ‘|ZH2+2nva+2Gnum)
u = (2.1.43)
mh

> collect(1h(2.1.43), [G,n,m])

w2 |k

ithu=v+u)nG+ m

(2.1.44)




An equation for the time derivative of v(t) can be obtained, for instance, by taking the conjugate of
2

(2.1.44) and noting that, from (2.1.33) and (2.1.34), i = v ( (¢ (- ’)) ) and
2

v=u ( (ei (-7 >) ) , or, for simplicity, just repeating the steps after (2.1.36), this time departing
| from the equation for d¢ (2.1.19)
> eval((2.1.19), [(2.1.33), (2.1.34) ])

(T > (7 > (T > 2 72 i(k-r)
ihvtel(k°r):—nGvel(k'r)—Gnuel(k"’)JF i <;; ) (2.1.45)
> value(eval((2.1.45), [(2.1.35), (2.1.36)]) ) :
> normal(isolate( %, diff (v(t),t)))
% (hzvki+h2vk§+h2vk§+2nva+2Gnum)
v = T (2.1.46)
> algsubs ((rhs = lhs) ((2.1.42)), (2.1.46)) :
> collect(1h %, [G,n, m])
-2
: k| v
1hvl=(—v—u)nG—!mH (2.1.47)

=Taken together, the 1st order linear differential equations for u(¢) and v(¢), equations (2.1.44) and

u(t) u(t)

(2.1.47) can be rewritten as a matrix equation can be rewritten: 1% | . 0 = 0 where
v v
[ 2
+Gn Gn
2m
> M=
n2 i
-Gn -|Gn+
2m

-2
and we are using H k || = /*. This DE system can be solved by passing it to dsolve, and from
there conclude about the dispersion relations by inspection, or one can directly get the dispersion

relations noting that, by definition, 7 O, =€, where €, is the energy, in turn equal to the
| eigenvalues of M, so

> g, = LinearAlgebra:-Eigenvalues (M)

JRKE+4Gnm kh

2m
e = (2.1.48)

SR +4Gnm kh
2m

Taking into account that €, = % ®,, this result is the same one obtained using Fourier transforms
[ (2.1.30).
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