Mini-Course: Computer Algebra for Physicists

Edgardo S. Cheb-Terrab
Maplesoft

This course is organized as a guided experience, 2 hours per day during five days, on learning the basics
of the Maple language, and on using it to formulate algebraic computations we do in physics with paper
and pencil. It is oriented to people not familiar with computer algebra (sections 1-5), as well as to people
who are familiar but want to learn more about how to use it in Physics.

Motivation
Among other things, with computer algebra:

* You can concentrate more on the ideas (the model and its formulation) instead of on the algebraic
manipulations

* You can extend your results with ease
* You can explore the mathematics surrounding your problem

* You can share your results in a reproducible way - and with that exchange about a problem in more
productive ways

* After you learn the basics, the speed at which algebraic results are obtained with the computer
compensates with dramatic advantage the extra time invested to formulate the problem in the
computer.

All this doesn't mean that we need computer algebra, at all, but does mean computer algebra can enrich
our working experience in significant ways.

What is computer algebra - how do you learn to use it?
Computer algebra is just another language to do the same computations you do with paper and pencil:

- There is our math/phys language, that we understand and use when doing computations with paper
and pencil.

- There is a dictionary (the help pages) that translate the computer-algebra language into our
math/phys language.

- We want to express - in the computer algebra language - those algebraic computations we do with
paper and pencil using our math/phys language.

* For these purposes it is relevant that the computer algebra language is as close as possible to
our math/phys language.



* You only need to know a basic set of words and syntax, and for everything else use the help
pages (the dictionary). If the language is useful, with time you naturally remember more words.

What is this mini-course about?

Below you will find 10 Sections with computational topics. Sections 1 to 5 are about the basics in
computer algebra, a sort of minimum that we need to know. Sections 6 to 10 are dedicated to
formulating, on the computer algebra worksheet, some of the typical algebraic computations in Physics.

Each section stats with a table summarizing it, followed by two subsections: one with examples (the
introductory material I present in class, approx 15 minutes), and one with exercises including their
solutions, the material you work with in classroom (approx 1 hour and 15 minuts). You can either try
to solve the problems proposed by yourself or, frequently more convenient:

a Give a look at the solution presented - in that way refreshing the physics and getting ideas
on a computational approach for the problem

b Close the solution subsection and try to solve the problem yourself (allow for repeating a
and b as many times as you need to feel you can solve the problem thinking by yourself and
understanding what you are doing).

In a first approach you can also only just give a look at all the solutions presented, to form a general
idea. It is rewarding, however, to try to solve a minimum of one problem per section.

What can you expect from this mini-course?

* The number of topics is large; yet the idea is that you can get the minimum necessary to move ahead.
The solved exercises help showing how you translate paper and pencil computations into computer
algebra computations.

* In order to cover the topics proposed, some of the computational ideas and commands are
introduced directly within the exercises, and some other ones are only indicated by pointing to help
pages (remember: place the cursor over the command you don't know about, then press F2 to open a
related help page). There you can selectively grab only the information you need, or explore
furthermore if you prefer - this is very personal.

* At the end of these 5 lectures you will have seen the main ideas behind doing - with computer
algebra - the typical algebraic computations of physics. You will also be able to either formulate a
problem yourself, or to formulate a more precise question on what part of the computation you feel
lost, and you will be able to make use of any good answer provided to your question.

Summary: Learning the whole language takes more than 5 days, but below you have all what you need
to move by yourself + interact with others.

Explore. Having success doesn't matter, using your curiosity as a compass does - things can be done in so
many different ways. Have full permission to fail. Share your insights. All questions are valid even if to
the side. Computer algebra can transform the algebraic computation part of physics into interesting
discoveries and fun.



1. Arithmetic operations and elementary functions

Operators: | +, -, *, /, *

Functions | exp, In, sin, cos, tan, csc, sec, cot, arcsin, arccos, arctan, arccsc, arcsec, arccot. For the
hyperbolic functions put an h at the end as in sinh, arctanh, etc.

Manipulati | Related to numerical evaluation: evalf, Digits.

on The complex components: Re, Im, conjugate, abs, argument
commands | Related to functions: series, convert (any function to any other one when possible),
FunctionAdvisor

Related to plotting: plot, plot3d, plots:-plotcompare

Table 1: Arithmetic operations and elementary functions

Examples

Blank spaces mean multiplication.
Function application is represented with rounded parenthesis (), as in f(x).

Indexation, as used in tensors, is represented with squared brackets [], as in A[mu] displayed as
A

mu’
Numerical approximation is obtained applying evalf

| > restart; interface(imaginaryunit =1i) :

>4+5i
4451 (5.1.1)
[> Re((5.1.1))
4 (5.1.2)
> conjugate((5.1.1))
4—5i (5.1.3)
> evalf (Pi)
3.141592654 (5.14)
> Digits
10 (5.1.5)

> evalf[50](Pi)
3.1415926535897932384626433832795028841971693993751 (5.1.6)

> FunctionAdvisor ()
The usage is as follows:

> FunctionAdvisor ( topic, function, ... );
where 'topic' indicates the subject on which advice is
required, 'function' is the name of a Maple function, and '..
.' represents possible additional input depending on the
"topic' chosen. To list the possible topics:

> FunctionAdvisor ( topics );
A short form usage,




> FunctionAdvisor ( function );
with just the name of the function is also available and
displays a summary of information about the function.

i> FunctionAdvisor (topic)

* Partial match of "topic" against topic "topics".

The topics on which information is available are:

[ DE, analytic_extension, asymptotic_expansion, branch_cuts, branch_points,
calling sequence, class_members, classify function, definition, describe,
differentiation_rule, function classes, identities, integral _form, known_functions,
relate, required _assumptions, series, singularities, special values, specialize,
sum_form, symmetries, Synonyms |

=> FunctionAdvisor (classes )

[ trig, trigh, arctrig, arctrigh, elementary, GAMMA_related, Psi_related, Kelvin, Airy,
Hankel, Bessel related, OF1, orthogonal polynomials, Ei_related, erf related,
Kummer, Whittaker, Cylinder, 1F1, Elliptic_related, Legendre, Chebyshev, 2F1,
Lommel, Struve_related, hypergeometric, Jacobi_related, InverseJacobi_related,
Elliptic_doubly periodic, Weierstrass_related, Zeta_related, Other, Bell, Heun,

trigall, arctrigall, piecewise_related, complex components, integral _transforms |

> FunctionAdvisor (ele)
* Partial match of "ele" against topic "elementary".
The 26 functions in the "elementary" class are:

arctanh, cos, cosh, cot, coth, csc, csch, exp, In, sec, sech, sin, sinh, tan, tanh ]

> FunctionAdvisor (identities, sin )

1

csc(z)’ sin(z)

sin(z) = -sin(-z), sin(z) =2 sin( %j cos(%), sin(z) =

2 2

(> FunctionAdvisor (display, In)
In belongs to the class "elementary" and so, in principle,

see FunctionAdvisor ( "elementary" );

[arccos, arccosh, arccot, arccoth, arccsc, arccsch, arcsec, arcsech, arcsin, arcsinh, arctan,

can be related to various of the 26 functions of that class -

(5.1.7)

(5.1.8)

(5.1.9)

(5.1.10)



describe = (In = natural logarithm)

classify function = elementary

o | —z) M
ln(z)=(z—1)[2 N

k=0

definition = ,And(z — 1] < 1)

singularities = [In(z), No isolated singularities |
branch_points = [In(z),z € [0, © + o i]]
branch_cuts = [In(z),z < 0]
special_values = [ln( —1)=1in,In(1)=0,In(-e)=1+1im, In(i) = ;— T, In(—1) =

—l—n,ln(oo)z w, In(-w)=o0 +in, [In(e") =n, n:real]

2
identities = [In(z) =1arg(z) + In(|z|) ]
integral form = |In(z) = [ % d kI, And(Notz < 0)
J; =
; < 1)
differentiation_rule = e In(f(z)) = 1)
DE=|f(z)=mn(z), | £ /()=
dz z
series = (series(In(z),z,4) =1In(z))
asymptotic_expansion = (asympt(In(z),z,4) =In(z)) (5.1.11)
> cos (x) + i sin(x)
cos(x) + 1sin(x) (5.1.12)
=> convert(%o, €xp)
e ™ (5.1.13)
=> convert( %o, trig)
cos(x) + isin(x) (5.1.14)

> FunctionAdvisor (relate, arcsin, In)

arcsin(z) = —iln(y -2+ 1 +iz) (5.1.15)

(> FunctionAdvisor (specialize, arcsin )
1 s
zHC[O, 5:0.0, 1
— 1
arcsin(z) = - , with no restrictions on (z) |, [arcsin(z) (5.1.16)
J -2+
11 1 o) . . T
=z HG [0, 0, 50 0, 5 z" |, with no restrictions on (z) |, |arcsin(z) = >




am_l(arcsec(z)|1) (z—1)

+ ,And(R(z) € (0,m)) |, |arcsin(z)

-(z—1)°

2
| 1
1[4 5
z‘/n(—222+2) P?(—2zz—|—1)
2 : .
- 1[4 , with no restrictions on (z) |,
2 (-22%)
L
272
zG;’z 2 1
b 0,_ ?
arcsin(z) = , With no restrictions on (z) |, [arcsin(z) =
2ym

T

— arccos (z ), with no restrictions on (z) |, |arcsin(z) = 5

b

arccosh(z) (z — 1)

, with no restrictions on (z) |, |arcsin(z) =T

-(z—1)°

z

— 2 arccot , With no restrictions on (z) |, |arcsin(z)

>

1+ -224+1

(2i/-2+1 +2i

_ 1

iz+J-224+1 +1

—22) arccoth —Z +in(1
1+ -2 +1
iz 2
+1 , with no restrictions on (z) |,

+JT+1)/-

1+ -2 +1

. 1 .
[arcsm(z) = arccsc[ — ) , With no restrictions on (z) |, | arcsin(z)
z

b

. T 1
, [arcsm(z) =5 T arcsec[—),

. i : -
=1 arccsch( — j, with no restrictions on (z)
z z

T



arcsech(L) (-1+2)

z

. . . T
with no restrictions on (z) |, |arcsin(z) = > +

with no restrictions on (z) |, [arcsin(z) = —iarcsinh(iz),

with no restrictions on (z) ], |arcsin(z) = 2 arctan

b

zZ
1+ -22+1

with no restrictions on (z) |, | arcsin(z) = -2 iarctanh

. . 11 . 1 1 3
with no restrictions on (z) |, arcsm(z)zzzFl( , —; ;22),

with no restrictions on (z) |, |arcsin(z) = —iln(wl 14+ iz),

with no restrictions on (z) |

Y Plotting
| 2D plotting
> plot(exp)




-10 -8 -6

S plot[ sin(x) ]




Complex algebraic expressions F'(z) of a complex variable z can be represented by two 3D
plots: the value of R (F(z)) and J(F (z)) (so the real or imaginary parts of the expression) on
the vertical axis and the real and imaginary parts of the variable z on the two horizontal axes
| (PlotExpression uses plots|plotcompare]| with the option expression_plof)
| > PlotExpression := f — plots:-plotcompare( f, 0, rest, 'expression_plot', 5) :

> PlotExpression(exp(z), scale range=Pi, 5)




[ You can manipulate each of these plots 'in-situ', or reproduce them for independent
| manipulation:

> P[1]




=> PlotExpression(In(z), scale range=P1,5)




R(In(z))

So In is a multivalued function with a cut over
> FunctionAdvisor (branch_cuts, In)

[In(z),z < 0]

(5.1.1.1)



> In(-7-10.00%))
In( -1.000000000 10~° 1) (5.1.1.2)

> In( 4 17-10.0C°9)
In( 1.000000000 10~ 1) (5.1.1.3)

[ 1f you know in advance that z is real, or imaginary then the two 3D plots transform into two 2D
plots:

=> PlotExpression(In(z), scale_range=P1, 5) assuming z :: real




R(In(z)) J(In(z))
11 3
3 -2 {0 2 3 2
1,
_2—
“ 3 -2 -1 0 1

X

2

3

B PlotExpression(In(z), scale_range =P1i, 5) assuming z :: imaginary




R(In(z)) S(In(z))
1.5
1,
1,
3 -2 {0 2 3 0.5]
y
3 -2 -10] 1 2 3
1 y
-0.51
-2H -1
“ -1.51
>
Exercises

Choose one exercise, try to solve it in up to 10 minutes. If there is time, move to next problem. Or,
feel free to use the time to explore the help pages about any related topic more of your interest.

1 Use the convert command to express the functions of the following groups in terms of each
other

a [exp, sin, cos, tan, sec, csc, cot]
b [In, arcsin, arccos, arctan arcsec, arccsc, arcot]

¢ Choose a couple of the relations between functions say A = B obtained and verify that A
and B have the same series expansion

Solution

Remember always to restart to avoid other computations to interfere with the one you are
developing



restart

v v

convert(exp(z), sin)

sin[lz + 721:) — Isin(Iz)
> convert(exp(z), trig)
cosh(z) + sinh(z)

> convert(exp(l-z), trig)
cos(z) + I'sin(z)

> convert(sin(z), exp)

_; (eIz . e—Iz)

> exp(In(z))
> sin(arcsin(z))
convert arcsm

/z—l /z—i—l (arcsin(zz+l)—n]
+1 —1 2 2
z z z +1In

_mﬁ]
BRETG

> convert(arcsin(z), In)

—Iln(J 4 —I—Iz)

[> series (arcsin(z), z)

1 3
Z+gZ —}—Ez +O( )

> series ((5.2.1.8), 7)

1 3
z+gz +Ez +0(z)

>

2 plot the sin function between — pi and pi, then:
1. click the plot to select it ;

2. go to the menu Plot -> Probe Info -> Cursor position to access the probe tool;
3. use the probe to identify the coordinates of points of the plot between , as in

[ i ] [X2 22} o Ko 2]

(5.2.1.1)

(5.2.1.2)

(5.2.1.3)

(5.2.1.4)

(5.2.1.5)

(5.2.1.6)

(5.2.1.7)

(5.2.1.8)

(5.2.1.9)

(5.2.1.10)

4. search the help system for 'interpolate' and choose a command to interpolate a polynomial
approximating sin(x) between — piand pi. How many points do you need to obtain an

approximation more or less acceptable?



\ 4 Solution

> restart
Because sin has a symmetry, you only need to investigate the problem in one semiplane - say
| between 0 and pi

> plot(sin(x),x=0..P1)
1 _

0.8

0.6 1

0.4

0.2 1

L 5t 3w 7T T
2 8 4 8
X

R
8

T
8§ 4

_Again, because this plot also has a symmetry you only need to probe a few points to the left of

% and because we know the value of the function at 0 and % and we are lazy we only

. o 1 1
choose probing at two points in between, so at % and %; from there we get the values at

3pi 7pi
| 4 7 8
Pi Pi Pi Pi Pi .
> R := [[0, 0], ?,0.368], [T’ 0.7 |, [7, 1}, [37,0.7], [7?, 0.368}, [P1, 0]}
i 0 o 3m Tm
R:=[0,0], 5,0.368, 1,0.7, ?,1 s 4,0.7}, T’O'%S , [n,O] (5.2.2.1)

B CurveFitting:-Polynomiallnterpolation (R, v)

P N N NN



6 5 4 3
T T T T

2.8053396451° 2782171431 v
+ : +
T T
> plot((5.2.2.2), v=0..Pi)

1,

3204787139 9.674361452v° | 15351872561 _ 14.57980932’

0.8 1

0.6 1

0.4 1

0.2 1

3
8

St 3m Tm
8 4 8

r T
8 4

<l\.)|:_]4

[ From the symmetry of sin, the interpolation from — pito 0 is
-

> -subs(v=-v,(5.2.2.2))
3.2247871390°  9.674361452°  15.35187256V"  14.57980932 v’

6 5 4 3
I T T I

| 2.895339645v" | 2782171431

1t2 n

(> plot((5.2.2.4), v=-Pi..0)

(5.2.2.2)

(5.2.2.3)

(5.2.2.4)



- _77t_37t_5n T _3_7t T n
8 4 8 2 8 4 8
%
—0.2
-0.4
-0.6
-0.8 -
_17

[ You can now construct the plot between -Pi to Pi putting the two interpolations into a piecewise
function

> piecewise(v = 0, (5.2.2.2), (5.2.2.4))

6 5 4 3 2
L T T T T

3.224787139V°  9.674361452 v | 1535187256 Vo 14.57980932 v | 2.895339645 Vv

\S)

| 3.224787139y°  9.6743614527°  15.351872561"  14.57980932V’  2.895339645 v

6 5 4 3 2
T I T T I

> plot((5.2.2.5), v=-Pi..Pi)




0.5

0.5 1

-1 -

:A plot superimposing sin(v) with its interpolation
> plot([sin(v), (5.2.2.5)], v=-Pi..Pi)

-|>|>-l;



0.5
X _3n m T R n 3n o«
4 2 4 4 2 4
\%
0.5
_17

[ You can now click the plot to display to plotting toolbar, and use the scale and translate plot
tools to distinguish between these two lines. It is sometimes convenient to duplicate the plot to
| keep the complete picture

> plot([sin(v), (5.2.2.5)], v=-Pi..Pi)




1,
0.5
X _3n m T R n 3n o«
4 2 4 4 2 4
\%
0.5
_17
BE

1 /1
3 Use plots:-plotcompare to determine for which values of z you have # | — . Trytit
/ z
z

with the options same_box, assuming z::real and assuming z::imaginary

\ 4 Solution

| > restart

1 1 .
> plots:-plotcompare| ————, sqrt| — |, same_box, scale range = Pi
sqrt(z) z




<R

) ()

e (/)




(o sl )

: 1 1 :
So, apparently, these two expressions, m, sqrt( — ) , are equal, BUT: there is a branch
z z

cut .... you need to check the values over the cut, that is located in the same place for the two
| expressions:

1
> FunctionAdvisor (branch_cuts, sqrt( — ) )
z

[ L.« ol (5.2.3.1)
z

1
sqrt(z) )
L« ol (5.2.3.2)

> FunctionAdvisor ( branch _cuts,

z

:For cuts over the real axis, the solution is to plot assuming real
1

sqrt(z) ’

> plots:-plotcompare( sqrt( — ) , same_box, scale_range = Pi) assuming z
z

2 real




120

100+

80

10
60 1 —J I
Tﬁ@\ 1 2 3

X
407 _10,
20
_20,
3 -2 -10 1 2 3 30|
X

>

> eval(

[ So: over the negative real axis, the imaginary parts of these two expressions have the same
| absolute value but different sign

! ,x=-0.3
sqrt(x) )
-1.825741858 1 (5.2.3.3)

1
> eval(sqrt( ;), x=—0.3]

1.825741858 1 (5.234)

2. Algebraic Expressions, Equations and Functions

Algebraic
expression

any mathematical object built with numbers, symbols and functions combined using
arithmetic operations




Equation a construction using the = sign, typically with algebraic expressions on the left-hand
and right-hand sides

Function It can be a known function as In(z) orJ (z), or an unknown function, for example
J(x,p,2,1)

Mapping maps variables into constructions that involve these variables, typically algebraic

expressions, for example f := (x,y,z) — “+ y2 + 22

Manipulatio | « T represent function application use (), as in f'(x)
n

commands | ¢ TO construct expressions, equations and mappings use: =, =, ->, and unapply to

convert an expression into a mapping,
* Related to expressions: numer, denom, collect, coeff, degree

* Related to equations and inequations: =, <>, <=, >= and to get each side use lhs,
rhs,

* Basic manipulation of expressions and equations: subs, eval, map, collect, isolate,
solve

Table 2: Algebraic expressions, equations and functions

Examples
;An algebraic expression
| > restart,
2 s
> + —
ax 5
ax’ + j%’ (6.1.1)

[Note you can think of the labels as names assigned any visible output.

You can also give any name to an expression (assign a name to it) in order to refer to it, and also if
| the expression is not displayed. You do that by using the assign operator :=

> = (6.1.1)
X
.ﬂ=af+~%' (6.1.2)
:Now you can refer to the expression (6.1.1) using the given name
> f
2, €
ax + b (6.1.3)

\

[ Different from an expression, an equation always has left and right-hand sides with the "=
| operator in between. For example

> f=0

(6.1.4)




X

2 (§]
7:0
ax + b

:You get each of the sides using the lhs and rhs commands
> lhs((6.1.4))

X

2, ©
ax” + b
[> rhs((6.1.4))

0

:You can assign names to everything, also to an equation
> h:=f=g

X

2 (§]
hi=ax + —=
ax b g

X
. c .. .
What we call "the function of x equal to a 4+ 7" is implemented in the computer as a

=mapping, using the arrow operator ->
> x — (6.1.1)
X
2
— + —
X ax b

:To use a mappings it is also practical to assign a name to it
> h:=x— (6.1.1)
X

2 (§
hi=x—ax + —
X ax b

> h(x)

> (6.1.8)(x)

2
+ —
ax b

| pass to it, as in

> h(y)
2, ¢
ay + b
> h(alpha)
(0
oc2 + c
¢ b
[> (6.1.8) (beta)
p
a B2 + c

(6.1.4)

(6.1.5)

(6.1.6)

(6.1.7)

(6.1.8)

(6.1.9)

(6.1.10)

(6.1.11)

[ Note however that the mapping h not really a function of x, but also of whatever argument you

(6.1.12)

(6.1.13)

(6.1.14)



| You can convert an expression or equation into a mapping using unapply

> (6.1.1)
ax’t + % (6.1.15)
> unapply (%, x)
X
X ax + % (6.1.16)
=> unapply((6.1.1), x, a, b)
X
(x,a,b) = ax’ + % (6.1.17)
:Returning to the expression f
> f
ax + % (6.1.18)

You can get the numerator, denominator or the coefficient of a or of p1 ), or compute the
| maximum and minimum degrees with respect to any variable

> numer (f)
ax’ b+ ¢ (6.1.19)
> denom (f)
b (6.1.20)
> coeff (f.a)
b (6.1.21)
> coeff (f, b, -1)
¢ (6.1.22)
> degree(f, D), ldegree( f, b)
0, —1 (6.1.23)
> degree( f, x)
FAIL (6.1.24)
_> degree( f, )
1 (6.1.25)
> frontend (degree, [ f,x])
2 (6.1.26)

| You can substitute into or solve expressions and equations

> subs(x=0,f)

0
€

< (6.1.27)

:Note the difference with eval: it evaluates the function
> eval(f,x=0)

(6.1.28)



1
— 1.2
b (6.1.28)

Most functions automatically return a value for their simplest special cases, as ¢”. Inert functions
| are useful to avoid these automatic simplifications, for example:

> [%exp(0) =exp(0), %sin(0) =sin(0), %cos(0) = cos(0) ]
[¢”=1,5in(0) =0, cos(0)=1] (6.1.29)
;You can activate inert functions using the value command
> value((6.1.29))
[1=1,0=0,1=1] (6.1.30)
;The mathematical properties of the inert functions are understood by the system
> %sin(%cos(z))
i (cos(z)) (6.1.31)
> diff ((6.1.31), z)
-sin(z) cos(cos(z)) (6.1.32)
[ You can solve expressions or equations or systems of them. When solving, an expression is
| considered an equation with right-hand side equal to zero

> f
ax + ‘Z (6.1.33)
> isolate( f, D)
b=~ (6.1.34)
ax
> solve(f, {b})
[bz-— ez} (6.1.35)
ax

:isolate however only returns one solution. To get all the solutions use solve
> isolate( f, x)

x=-2w|- Y27 (6.1.36)

> solve( f, {x})

x=-2w|-X—"Z || |x=-2w| X1—""— (6.1.37)

> Iprint((6.1.37))
{x = -2*LambertW(-(1/2)*(-1/(a*b))"(1/2))}, {x = -2*LambertW/(
| (1/2)*(=1/ (a*b)) ~ (1/2)) }

> solve(f, {x}, AllSolutions)

(6.1.38)



/1 R
y= 2| zom - @b s | 23 4D (6.1.38)

- 2 2

;> PlotExpression = f — plots:-plotcompare( f, 0, rest, 'expression_plot', 5) :
> PlotExpression (LambertW (z))

N (LambertW(z)) J(LambertW(z))

F F

> FunctionAdvisor (cuts, LambertW')
* Partial match of "cuts" against topic "branch cuts".

1 1
W(z),z < —;}, W(a,z),a# 0Andz < 0,a=0Andz < v (6.1.39)

=> PlotExpression(In(z))




R(In(z)) J(In(z))

¥ ¥

> FunctionAdvisor (def, LambertW (z))
* Partial match of "def" against topic "definition".

|

Wiz)=1+e " (-1 +In(z)), And(Notz:: (6.1.40)

1+ ki

% ln[ kI —1m —In(_kI) + In(2) J
Kl +1Tn—In(k) +1n(z) ) kl}

0

¥V Exercises




1. Consider what we call f(x) = cos(x)2 + g(x)
a Enter the expression cos (x)2 + g(x)
b Use % to refer to this expression and assign the name F to it
¢ Compute the value of ' for: x=piandx=1a
d Transform F into a mapping of x and assign the name G to it

e Use the mapping G to compute the values of item c

Solution
| > restart

> cos(x)” + g(x)
cos (x)% + g(x)

> F=%
F = cos(x)2 + g(x)

> eval(F, x=Pi)
1+ g(n)

> eval(F,x=1a)
cosh(a)? + g(Ia)
(> G = unapply (F, x)
G:==xm cos(x)2 + g(x)

> G(Pi)
1+g(m)
> G(la)
cosh(a)® + g(1a)
=>

(6.2.1.1)

(6.2.1.2)

(6.2.1.3)

(6.2.1.4)

(6.2.1.5)

(6.2.1.6)

(6.2.1.7)

2. Construct a polynomial of 2nd degree taking the product of monomials of the form (x — alphaj)

where alphaj are the roots and compute the maximum and minimum degrees with respect to x, then

the coefficients of x to the powers 2,1 and 0, one at a time (coeff) or all at once (coefts)

é’olution
=> restart
> P:= (x — alphal) (x — alphaz)
P:= (x— oc]) (x— 0(2)

> degree(P, x)

2
> ldegree(P, x)
0
> coeff (P, x, 0), coeff (P, x, 1), coeff (P, x, 2)
o, 0, 0, — O, 1

(6.2.2.1)

(6.2.2.2)

(6.2.2.3)

(6.2.2.4)



3.

> seq(coeff (P, x,j),j=[0,1,2])
o, 0, ~0, — 0O, 1 (6.2.2.5)

> seq (coeff (P, x,j),j=0..2)

o, 0, ~0, — 0O, 1 (6.2.2.6)
[ For historical reasons to use 'coeffs' you need to expand the polynomial first - if you don't you
| hit those non-sense computer idiosyncrasies ...

> coeffs (P, x)

Error, invalid arguments to coeffs

> expand(P)

xz—oc]x—xocz-l-oc[ o, (6.2.2.7)

> coeffs (%, x)
l,-a, —o, o0, a, (6.2.2.8)
[ To avoid these subtleties you can also use the more modern and general Physics:-Coefficients

| command (also handles anticommutative variables)
> Physics:-Coefficients (P, x)

o, 0, ~0, — 0O, 1 (6.2.2.9)

>

Consider the transformation equations between cartesian and spherical coordinates

x =r sin(theta)cos (phi), y=rsin(theta)sin(phi), z=r cos(theta)

Use the commands isolate, map and subs - and assuming to tell the domain of r, theta and phi -

in order to invert these equations

\ 4

é'olution
=> restart
> eq = x=r sin(theta)cos(phi)

eq. = x=rsin(0) cos (o) (6.2.3.1)
> e, = y=r sin(theta)sin(phi)
eq,=y=r sin(0) sin(0) (6.2.3.2)
> eq = z=r cos(theta)
eq_ = z=rcos(6) (6.2.3.3)
=> map(u - uz, eqx)
2= sin(0)” cos(0)’ (6.2.3.4)

> map(u - uz, eqy)

2 2

sin(0) (6.2.3.5)

y2 =7 sin(0)



map(u — uz, eqz)

= cos(e)2

(6.2.3.4) + (6.2.3.5) + (6.2.3.6)

4y = sin(e)2 cos(q))2 + 2 sin(e)2 sin(q))2 + /7 cos(e)2

simplify (%)
X+ y2 +2=/

1
map(u - u?, %j
simplify (%) assuming » > 0

eq = (rhs=1hs) (%)

- rhs(eq )
y _ sin(¢)
X cos(9)

convert(%, tan)
* = tan(9)

eq i = isolate( %, phi)
e, = 0= arctan( ;})
isolate ( eq_, theta )

0= arccos(z)
r

€ peta = SUDS (eqr, %)

z

\/x2+y2+22

eqy = 0 = arccos [

(6.2.3.6)

(6.2.3.7)

(6.2.3.8)

(6.2.3.9)

(6.2.3.10)

(6.2.3.11)

(6.2.3.12)

(6.2.3.13)

(6.2.3.14)

(6.2.3.15)

(6.2.3.16)

V¥ 3. Limits, Derivatives, Sums, Products, Integrals, Differential
Equations




Comman | limit, diff and D, sum, product, int, dsolve, pdsolve

ds

Manipula | PDEtools:-dchange, PDEtools:-casesplit,

tion the inert forms %limit, %int, etc. and the related value command
command

S

Table 3: Calculus

Examples

The commands to compute limits, derivatives, sums and products are limit, diff, sum, product. The
D command also represents derivatives - more about this afterwards.

=> restart,
> limit[ sin () ,X= Oj
X
1 (7.1.1)
[All Maple commands have an inert version of them, that represent the mathematical object but does
not perform the computation until you require it using the value command. Inert subexpressions
| always have some part displayed in grey:
> %limit( @ x= 0)
sin(x) (1.1.2)
x — 0 X
> value((7.1.2))
1 (7.1.3)
_> +e
L 8x) Te
2
= (et +¢7) (7.1.4)
(> value((7.1.4))
2
g (x)+2xe (7.1.5)
_Handy: functionality is distributed over the sides of equations, so you can write this:
X X"
Yosum [ e n= 0 ..inﬁnily) = sum ( —,n= 0 ..inﬁnity]
n! n!
| directly as
n
> (%osum = sum) [ ;C—', n=0 ..inﬁnilyj
*® xn
— =g (7.1.6)
n=0" !
[ All the family of sum, int, solve, dsolve and pdsolve are rather powerful commands nowadays. In




the case of summation, note that it can also be performed in the indefinite case with the meaning:

- f(k)=g(k) where g(k+1)—g(k)=f(k)

When entering the following command, you will be asked whether it represents a function

definition or a remember table assignment, choose remember table assignment (to perform these

assignments with a function on the left-hand side without being asked questions enter first you can
| also enter Typesetting:-Settings ( 'functionassign = false') )

>fwy=(§)w
fmyz[gj!k (7.1.7)
> Osum (f (k). b);
k[i)!k (7.1.8)
(> value((7.1.8))
2(§J!+2(§+;)! (7.1.9)

> eval((7.1.9), k=k + 1) - (7.1.9

2

N | ==

+1)!—2(’2‘J! (7.1.10)

> simplify (%)
k

( 2) ! k (7.1.11)

:Results are frequently expressed in terms of not-so-familiar special functions

> %int(e - xz’ x);

e’ dx (7.1.12)
=> value((7.1.12))
n erf(x)
5 (7.1.13)
> %int ,t=2.3
28 —374 -2
3
1
t (7.1.14)

(7.1.15)




> Iprint(%)
(1/5)*57(1/2)*EllipticF ((1/3)*7~(1/2), (1/5)*57(1/2))-(1/5)~*
| 57 (1/2) *EllipticF ((1/2)*2~(1/2), (1/5)*5%(1/2))

:Most of these commands have options to workaround special cases
1

> int( —,x=a.2
X

Warning, unable to determine if 0 is between a and 2; tryv to
use assumptions or use the AllSolutions option

1
J — dx (7.1.16)
X
a
[ (1 :
> mt( 7 x=a.2, 'AllSolutlons'j
undefined a<O0
o0 a=0 (7.1.17)

-In(a) +In(2) 0<a

| The assuming command is also handy in these cases

> (7.1.16) assuming a > 0;
-In(a) + In(2) (7.1.18)

=> (7.1.16) assuming a < 0;
undefined (7.1.19)

The ordinary and partial differential equation commands have by now concentrated so much
| solving power that themselves are used to develop new solving algorithms
> PDEtools:-declare(y(x), prime = x)
y(x) will now be displayed as y

derivatives with respect to x of functions of one variable will now be displayed with ' (7.1.20)

> ode, ==y’ (x) — y(x)* + (y(x) sin(x)) — cos(x) =0
ode, = y' — y2 + ysin(x) —cos(x) =0 (7.1.21)
=> dsolve(ode[2])

e—cos(x)
= - i 1.22
y it eos() + sin(x) 7 )

x( —x—1+x2—2x2y(x)+ (2x4))

(=) x+ 1))
x(xz—x—1—2x2y+2x4)

> ode, =y’ (x)=

ode, = y'= (7.1.23)
3 2
i (¥ =») (x+ 1)
| Computing an integrating factor
> DEtools[intfactor |(ode[3])
2
Yty (7.1.24)

2 +2y—1




| The product of an ode and its integrating factor results in an total derivative
> (7.1.24) (7.1.23)

(—x2+y)y’ B (—x2+y)x(x2—x—1—2x2y—|—2x4) (7.1.25)
2 +2y—1 (-2 +2y—1) (*—y) (x+1)
;From where
> dsolve((7.1.25))
1
y=-——— 22 =8 —13x — 1227 — 8% (7.1.26)
2 (x+1)
4x3
3 4o 3
-w] - e4 () ! +43x —4x2—4 Cl+4x—1
2 cryt 4
+e (ex)(ef )(X+1) —4x—1
> simplify((7.1.26))
:—x3 —4x2—4 _Cl+4x—1
wl-= .
2 (x+1) 1
= — 1.2
y=x + 2 + > (7.1.27)
;The notation for special functions is frequently unfamiliar - use Iprint
> Iprint((7.1.27))
y(x) = x"2+(1/2) *LambertW (-exp ((4/3) *x"3-4*x"2-4* Cl+4*x-1)/
| (x+1)"4)+1/2
| Laplace equation in spherical coordinates:
> PDEtools:-declare(F (r, theta, phi))
F(r,8,0) will now be displayed as F (7.1.28)
i F(r, th hi
, theta sin(theta) ( Stheta (r, theta, phi) )

0 .
> PDE = o " (a—r F(r, theta, phl)) +

sin(theta)

02
[ F (r, theta, phi) J

dphi’
+ ~ P . =0
sin(theta)
— (sin(0) F
2 0 ( (6) 9> F¢,¢
PDE == — (r Fr) + _ + =0 (7.1.29)
r sin(0) sin(0)
> value(PDE)
cos(0) F_+sin(0) F F

2rF +P7F + 4 204 09 (7.1.30)

’ sin(6) sin(0)

:The standard solution separating variables by product



> pdsolve( PDE)

FI(r)_¢, 2_FI
(F=_FI(r) _F2(8) _F3(0)) &where |{_FI = s F2 (1131
: p ,
(0) F2(6) ¢, cos(®) _F2, (0)
=- F2(0) ¢, + — - , F3 =- F3(0) ¢
" sin(e)’ sin(6) o0 ’

;Laplace equation also admits a solution separable by sum
> pdsolve(PDE, HINT = "+ )

c 2 FI
(F=_FI(r)+ _F2(8) + _F3(¢)) &where |{ FI = — — LR, = (113D
T :
cos(0) _F2e <
- ¢ — - , F3 =
- sin(6) sin(0)” — *¢ 77

[ You transform these structures into a concrete solution using the build command, or using the
| build option as in pdsolve(PDE, build). For example

> PDEtools:-build (%)

16 2
. ln[1(—e +1)

-3 16 16
| 1(- |
F=- ¢ + ¢ In(r)+ C3hn (e +1) (7.1.33)
2 - a e +1
16
_C3ln[ .
10 10
1(- | |
+_¢/In (e +1) Iee +1) ~2 ¢, In(2) — (% +1)
e +1 2
eIe 16
_¢; In 3 C3In| - 3
e ) (04 1)
2 2
eIG
- 1“[' (' + 1)2 ¢2 -4 Cl
- : t o G50+ C6+ 24 C4— =
r

Symmetry methods and systems of partial differential equations, linear and nonlinear, can be
solved in many cases.

| A nonlinear ODE and the linear PDE system for its symmetries
> ode , =y" (x)+ (ax"y(x)")=0
ode = y"+a ¥ )y'=0 (7.1.34)

=> sys = [DEtools|gensys |( ode[11], [xi, eta](x,») ) ;

(712K



Sy = [&y p 2 éx,y +n, .3 &,y ¥ y'a+2 n.,— & 28, ¥ y'a— n, X y'a (7.1.35)

LAy adyn | Ewmylaxry l
y X X, X
> pdsolve(sys)
Cly (r+2
{n(x,y)= = ,“:(_1 ),é(x,y)=_C1x} (7.1.36)

[ A solution for this system such that r is a parameter (so, also a solving variable) and n is different
| from 1

> sys, = [DEtools[gensys]( ode[11], [xi, eta](x,y)),n # 1];
r.n r.n r.n
[ —2& , 3§yx y a+2nx’y—§x3x,2§xx ya—mxya (7.1.37)
r n
R )axy o Swyax
X X, X
> pdsolve(sysz, [xi, eta, r])
{r==2,m(x,)=0,&(x,y)= Clx}, {r=-n—3,n(x,y)=0,&(x,y) =0}, {r=-n(7.1.38)

- 3=n(x=y) = (_CIx+_C2)y,§(x,y)

(Clx+ (Clx+ _C2)n— _C2)x

- — — } {r=r,n(x,y)=_C1y,§(x,y):

Clx(n—1)
r+2

[ Tndeed if you take r as a solving variable, using differential algebra techniques the problem splits
| into three different problems (so called: the general and the singular cases:

> PDEtools:-casesplit(sys o [xi, eta, 7], caseplot)
========= Pjyots Legend =========
pl=n,
p2=2 X+ (xr)xx

p3= —(xr)xx—xr (n+3)



Rif Case Tree

E(x,y) = _n(x’y;;igg(x’y)x,nx=0,ny: NEY) | gwhere [(r+2)x" # 0, (7.1.39)
) 2m 2% +n(xy) nx —n(xy) x
-(r+n+3)x iO], E(x,y)= ,nx’x:(),ny

ny+y

- M’rz -n—%&where[], [§x= E_,();,y)’& =0,n(xy)=0,r=—=2

y Y
&where [ ]
[
¥V Exercises

There is no much to say about all these commands but for dsolve and pdsolve, the solvers for
ordinary and partial differential equations, as well as the PDEtools:-casesplit command for
triangularizing systems of equations. So the exercises for this section are about exploration.

1. Open the help page for dsolve/education ,
a. Transform the page into a worksheet (one of the icons on the toolbar);




b. Go to the menu View -> Collapse All Sections, and choose a section you want to explore. My
recommendation according to how useful it could be in physics computations:

* If you are not familiar with symmetry methods, the corresponding section can give you a
rapid glimpse on how to tackle ODEs by discovering their symmetries and using them to
construct solutions

* The section on singular solutions may open your eyes to something you are probably not
aware of regarding differential equations. Singular solutions are frequently the ones that are
relevant in physics models. The relevant command here is PD Etools:-casesplit

* The section on using "this or that method" has no mathematical insights but is useful
information regarding flexibility for computing different forms of general ODE solutions

2. The same with the help page for PDEtools:-InvariantSolutions

3. The product of an integrating factor an a differential equation is a Total Derivative. Use DEtools
redode] to construct a second order ODE family having an integrating factor mu = F'(x) -- an
arbitrary function -- such that the reduced ODE has the same integrating factor.

Solution
This problem is solved as the first part of problem 1. in the help page for DEtools[redode]

4. An ODE of order n™ admits n integrating factors. Use DEtools[redode] to construct the most
general third order ODE admitting the
following three integrating factors:

then use DEtools[mutest] to verify that the obtained ODE admits these 3 expressions as integrating
factors

Solution
This problem is solved as the first part of problem 1. in the help page for DEtools[redode]
1 1
1, 1292 1 1292
T 44
> mu = |y(x)x,x y(x),x y(x)
1 J29° 1 J29°
B e S
U= |yx,x V, X y (7.2.2.1)
> DEtools|redode](mu, 3, y(x))
2
5 I
-3y'y" + + FI(x)
13 5y" 13y -
e 2L 2 Sy a (71.2.2.2)
8 x 2x 4 x Y
> map (DEtools | mutest ], mu, (7.2.2.2))
[0,0,0] (7.2.2.3)




| >

4. Algebraic manipulation: simplify, factor, expand, combine,
collect and convert

Comman
ds

simplify, factor, expand, combine, collect and convert

Table 4: Algebraic manipulation

Examples

Simplification is not really a well defined operation, but one based on common sense, and the
desired result sometimes depends on particularities of the problem.

Among the most typical simplifications there is the one that makes use of functions identities

€

> sin(x)2 + cos(x)2

2

sin(x)* 4 cos (x) (8.1.1)

> simplify((8.1.1))

1 (8.1.2)

:Another typical simplification is the simplification in size

12 1 3 122 3 1 x2

w

5

>

€

Yot x? 1et 2t X piF(x)  le* 2% x? /piF(x)
4 * 8 * 8

2 2 2

X X X

’T2ll4x3/2 .\ 6423/4\/8?‘/?}7@) . e423/4)658/2\/?}7()0 613

4

=> simplify (%, size)

)C2 Xz
Jx (ﬁﬁ(szrl)F(x)e“ +2¢ 4 x) 2! 14
2 8.1.4)
:In other cases, it all depends on what is preferred
>6(x+4) (x-1)
6(x+4)(x—1) 8.1.5)
> 6x + 18x — 24
6x° + 18x — 24 (8.1.6)
;These two expressions are equal, and both are 'simplified', so simplify does nothing
> simplify((8.1.5))
6(x+4)(x—1) 8.1.7)

> simplify((8.1.6))




6> + 18 x — 24 (8.1.8)

:To rewrite one as the other one, the operations to be performed are: to factor or to expand

> factor((8.1.5))
6(x+4)(x—1) (8.1.9)

> expand((8.1.9))

6x° +18x—24 (8.1.10)
:In this case the expanded form is also a form where powers of x are collected, as in
> collect((8.1.9), x)

6 + 18x — 24 (8.1.11)
[ One of the most powerful simplifications is to simplify with respect to given equations, for
| example: "simplify 6 ¥+ 18x— 24 taking x+4=alpha and x-1=beta
[> simplify((8.1.11), {x + 4 = alpha})

60 — 300 (8.1.12)

[ Both expand and combine take into account the properties of mathematical functions, with the
combine command rewriting powers of trigonometric functions as expressions linear in other
| trigonometric functions

> sin(x)2 -Cos (x)2

sin(x)2 — cos(x)2 8.1.13)
> combine((8.1.13))
-cos (2 x) (8.1.14)
> %sum(a[ j]-cos(j-x)’ + b[j]sin(jx)*,j=1.2)
2
(a; cos(jx)’ + b, sin( jx) ) (8.1.15)
j=1% :
> value((8.1.15))
a, cos(x) + b, sin(x)2 + a, cos(2 x)2 + b, sin(2 x)4 (8.1.16)
(> combine((8.1.16))
b, cos(2x) b, a, cos (4 x) a, b, cos (4 x)
a, cos(x) — — + > + — + E R — 8.1.17)
b, cos(8 x) 3b
2 2
i 8 * 8
;We almost always want to 'simplify in size":
> simplify((8.1.17), size)
(4 a, — 4b2) cos (4 x) L cos(r) b, cos(2 x) N b, cos (8 x) . a5 N bf1 3.0.18)
8 1 2 8 2 2 o
3b
2
i 8

:In this following example the simplification in size is more convenient that a direct simplification



L
2

I\J|>—‘

cos (x)? sin(x)mj + (3 sin (x)

cos (x)* cos(x)")
1

+ (4 sin (x) cos( )4 sin( )mj — 4 sin(x) cos( x)* cos (x)"
= -3 [sin(x) cos(x)> )"+ 3 \/STCOS % cos (x)" (8.1.19)
+4 \/m cos(x sin ( —4 \/T cos ( cos (x)"
=> simplify(e2, size)
-4 (cos(x)2 — i) sin(x) (cos(x)" — sin(x)m) cos(x)2 (8.1.20)
=> simplify(e2)
cos (x)2 /sin(x) (4 cos(x)? sin(x)" — 4 cos(x)> t" — 3sin(x)" + 3 cos(x)") (8.1.21)

[ Other times what we really want is not a simplification but to have an expression rewritten with
| powers of same variables factored out (we say 'collected'), for example

>p=by+6gx+xy

> e2 = — (3 sin (x)

L
2

e by 6ot rx (8.1.22)
B collect(p, [x,y])

(6g+y)x+by (8.1.23)
> collect(p, [y, x])

(b+x)y+6gx (8.1.24)

[ Sometimes all what we want is to cancel factors that appear in the numerator and denominator of
| an expressions, for example:

> num = expand((x —a) (x — b))

num == ab—ax—xb+x (8.1.25)
=> den := expand((x —a) (x —c))
den =ac—ax—xc+x (8.1.26)
i num
den

ab—ax—xb-i—x2

5 (8.1.27)
ac—ax—Xxc+x
;To cancel common factors in the numerator and denominator we use normal
> normal((8.1.27))
b —
ol (8.1.28)
c—x

_Finally what we sometimes want is just to rewrite an expression in terms of different functions, for
| example

—

1 [ 2 4
ey - —*

(8.1.29)




() 1 - (8.1.29)
4 4 (ex)
> simplify((8.1.29)) 2 2
2r 2
y— (8.1.30)
=> convert((8.1.29), trig)
(cosh(x) + sinh(x) )2 B 1 8.1.31)
4 4 (cosh(x) + sinh(x))?
> simplify((8.1.31))
cosh (x) sinh(x) (8.1.32)

[ You can try converting any function into any other one, and the conversion will (almost always)
| proceed when the conversion is possible
>

\ 4

Exercises

1. Show, algebraically, using simplify and assuming, that ./ z* =z when z is real and positive and
discover the most general domain for z such that the identity holds

Y Solution
> Sqrt(zz) =z
J7 =z (8.2.1.1)

[ You can see this expression is not equal to z by comparing both expressions using plots

| [plotcompare
> plots| plotcompare]((8.2.1.1), same_box)




M c+1)7) and Rx | 3 +13)%) and 3(x
+1y) +1y)

Rotating the plots you see that these two functions are equal when 0 < z. To simplify
| algebraically assuming that z> 0, use
> simplify((8.2.1.1)) assuming z > 0;
z=z (8.2.1.2)

To discover the most general domain for z such that the identity holds, by trial an error the first
| thing one could do is to try simplifying the expression as given:
> simplify((8.2.1.1))
csgn(z)z=z (8.2.1.3)

=and, from its help page, csgn(z) is equal to 1 only when
0<R(z)or (R(z)=0and 0 < JF(z)).

| So the following also simplifies to an identity
> simplify((8.2.1.1)) assuming K (z) =0 and 0 < J(z)
z=z (8.2.1.4)

>




2. Use a simplification taking into account that sin® + cos” = 1 (see simplify.siderels) to show that

8 sin(x

4
)
+ 7

cos(x) + 15 sin(x)2 cos(x)3 — 15 sin(x)2 cos(x) +7 cos(x)5 — 14 cos(x)3

cos(x)

is equal to 0.

§ olution

>

> eq

2 5

> f:= 8sin(x)" cos(x) + 15 sin(x)” cos(x)> — 15 sin(x)* cos (x) + 7 cos (x)

— 14 cos (x)° 4 7 cos (x)

f=38 sin(x)4 cos(x) + 15 sin(x)2 cos(x)3 — 15 sin(x)2 cos(x) + 7 cos(x)5 8.2.2.1)
— 14 cos(x)3 + 7 cos(x)

= {sin(x)2 + cos()c)2 = 1}
eq = {sin(x)* 4 cos(x)* =1} (8.2.2.2)

> simplify( /; eq)

0 8.2.2.3)

5. Matrices (Linear Algebra)

Command
s

Matrix, Vector is the same as Vector[colum], Vector[row], or matrix and vector. Use +
and . for operations

Manipulati
on
commands

LinearAlgebra package: conjugate, Transpose, HermitianTranspose, Determinant, Trace,
Eigenvalues, Eigenvectors, MatrixExponential, LinearSolve

linalg package: conjugate, transpose, htranspose, det, trace, eigenvalues, eigenvectors,
exponential, linsolve

Table 5: Linear Algebra

Examples

There is a whole LinearAlgebra package with 130 commands to manipulate Matrices and solve
linear algebra problems.
There is also the older linalg package with 114 matrix algebra commands.

Here we restrict to a small subset of matrix commands that are used more frequently, and for the
rest: just consult help pages when necessary.

[For historical and other reasons, there are two kind of matrices in Maple.



* The old ones, represented by the lowercase word matrix have the advantage that you can
compute with them without displaying their contents.

* The new ones, represented by the word Matrix have the advantage of performing component
computations faster

| First matrix
> A4 = matrix(2,2, [a, b, c,d])

a b
A = 9.1.1
. d O.1.1)
:Invoking the matrix does not show its components
> A4
A 9.1.2)

[ You can refer to an unspecified component (this is useful when setting brackets rules in Quantum
| Mechanics), as in
(> A[i.]

Al.’j 9.1.3)
:You any specified component by attributing values to the indices
(> eval((9.1.3), [i=1,7=2])

b 9.14)
:The same with Matrix
> B := Matrix(2, 2, [a, b, ¢, d])
a b
B = c d 9.1.5)
:Invoking it shows its components
> B
a b
. d (9.1.6)

:You cannot refer to an unspecified component
> Bli,J]

The LinearAlgebra package is all about Matrix, while there also exists the old linalg package about
matrix. So you can do operations with both packages according to whether you need more
symbolic capabilities (linalg) or faster computations (LinearAlgebra).

| There are routines to convert a matrix into a Matrix and the other way around
> C = convert(B, matrix)
a b

o 9.1.7)

P22 I ANN



C 9.1.8)

> Cli/]
Cl.j 9.1.9)
=> M = convert(A, Matrix)
“? 9.1.10
M = 1.
. d ( )
> M
“b 9.1.11
g 9.1.11)
> M[i]

Error, bad index into Matrix

| Vectors can be represented using the vector and Vector commands
> vi= vector( [va, vb])

- [ v, ] 9.1.12)
=> %
y 9.1.13)
ERIV
v, 9.1.14)
> V(2]
v, (9.1.15)
> 7= Vector ([V,,.7,])
%
o ., (9.1.16)
> 7
Va
. 9.1.17)

[ When using Matrix and Vector, summation and product are performed using +* and ".". When
| using matrix and vector, it is the same but you need to enclose the operation with evalm

> v.4

veA (9.1.18)
> evalm ((9.1.18))
v,atv,c v b+ v d 9.1.19)
;Note that for Vector there are row and colum vectors, so
> V.B
Error, (in LinearAlgebra:-Multiply) cannot multiply a column

Vector and a Matrix




>V = Vector[row](V)
row
V.. = [ Va Vb ]

row

Vat+V,c Vab+Vbd]

[ The typical operations: conjugate, Transpose, HermitianTranspose, Determinant, Trace,

| Eigenvalues
> LinearAlgebra:-Determinant(B)
ad—>bc
> LinearAlgebra:-Eigenvalues (B)
i-i— a . \/a2—2ad—|—4bc+d2
2 2 2
2 2
i—l— a \/a —2ad+4bc+d
2 2 2
> conjugate(A) B
A
> evalm (%)
a b
¢ d
> LinearAlgebra:-Trace(B)
d+a

;Note these do not work with matrix for which you can use the old linalg

> Trace(A)
Trace(A)

> linalg[trace](A4)
d+a

| :For solving linear systems there is the LinearSolve command.

V Exercises

following matrix:

0 —-IJ2 0
M=|1/2 0 -1J2
0 1J2 0

Y Solution

(9.1.20)

(9.1.21)

(9.1.22)

(9.1.23)

(9.1.24)

(9.1.25)

(9.1.26)

(9.1.27)

(9.1.28)

1. Determine the characteristic matrix, eigenvalues and then: step by step the eigenvectors, of the



| > restart

> with(LinearAlgebra)
[ &x, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, 9.2.1.1)

BidiagonalForm, BilinearForm, CARE, CharacteristicMatrix,
CharacteristicPolynomial, Column, ColumnDimension, ColumnOperation,
ColumnSpace, CompanionMatrix, CompressedSparseForm, ConditionNumber,
ConstantMatrix, ConstantVector, Copy, CreatePermutation, CrossProduct,
DARE, DeleteColumn, DeleteRow, Determinant, Diagonal, DiagonalMatrix,
Dimension, Dimensions, DotProduct, EigenConditionNumbers, Eigenvalues,
Eigenvectors, Equal, ForwardSubstitute, FrobeniusForm,
FromCompressedSparseForm, FromSplitForm, GaussianElimination,
GenerateEquations, GenerateMatrix, Generic, GetResultDataType,
GetResultShape, GivensRotationMatrix, GramSchmidt, HankelMatrix,
HermiteForm, HermitianTranspose, HessenbergForm, HilbertMatrix,
HouseholderMatrix, IdentityMatrix, IntersectionBasis, IsDefinite, IsOrthogonal,
IsSimilar, Is Unitary, JordanBlockMatrix, JordanForm, Kronecker Product,

LA Main, LUDecomposition, LeastSquares, LinearSolve, LyapunovSolve, Map,
Map?2, MatrixAdd, MatrixExponential, MatrixFunction, MatrixInverse,
MatrixMatrixMultiply, MatrixNorm, MatrixPower, MatrixScalarMultiply,
MatrixVectorMultiply, MinimalPolynomial, Minor, Modular, Multiply,
NoUserValue, Norm, Normalize, NullSpace, Outer ProductMatrix, Permanent,
Pivot, PopovForm, ProjectionMatrix, QRDecomposition, RandomMatrix,
RandomVector, Rank, RationalCanonicalForm, ReducedRowEchelonForm,
Row, RowDimension, RowOperation, RowSpace, ScalarMatrix, ScalarMultiply,
ScalarVector, SchurForm, SingularValues, SmithForm, SplitForm,
StronglyConnectedBlocks, SubMatrix, SubVector, SumBasis, SylvesterMatrix,
SylvesterSolve, ToeplitzMatrix, Trace, Transpose, TridiagonalForm,
UnitVector, VandermondeMatrix, VectorAdd, VectorAngle,
VectorMatrixMultiply, VectorNorm, VectorScalarMultiply, ZeroMatrix,
ZeroVector, Zip |

(> M := Matrix(3, (i,j) — if abs(i - j) = 1 then -1sqrt(2) else 0 fi, shape
= antisymmetric)

0 -1J2 0
M={1J2 0 -1J2 (9.2.1.2)
0 IJ2 0

(> CharacteristicMatrix (M, x)




X Iﬁ 0

0 —12 X

=> Eigenvalues (M)
0

2
—2

[All eigenvectors satisfy

> V= Vector( [VJ’ Vs v3])

[ and the v, are the unknowns to be determined.

First eigenvector corresponding to the eigenvalue 0

> M.V=0-V
—I\/?vz
I\/?v]—l\/?vs =
I\/7v2

> Ihs (%) — rhs (%)

—1I 2v2

12 v, =12 v,
Iﬁvz

> convert(%, set)

> solve(%)
1 32 >3
> V, = subs (%, V)

-1J2  x 12

M+ V=1lambda-V
| where lambda is an eigenvalue and V is an eigenvector, of the form

{—Iﬁvz,lﬁvz,lﬁvl —Iﬁvj}

{v =y,v,=0,v =v3}

(9.2.1.3)

(9.2.1.4)

(9.2.1.5)

(9.2.1.6)

(9.2.1.7)

(9.2.1.8)

(9.2.1.9)

/MM 1 10\



V=10 (9.2.1.10)

[ For the second and third eigenvalues it is the same process, so copy the block of operations
| above and paste

>M. V=2V
_I\/?VZ 2v1
1/2v, =12 v, |=]| 2V, (9.2.1.11)
Iﬁvz 2v,
> Ihs(%) — rhs (%)
—Iﬁv2—2v1
12 v, —1J2 v, —2v, (9-2.1.12)

Iﬁv2—2v3

> convert(%, set)
V2, =2y, 2y, —2v, 12y, =12 v, =2, | (9.:2.1.13)

=> solve(%)

{vl = - % J2 vy, =v, v, = éﬁvz} (9.2.1.14)
> 7, = subs(%, V)
: % T,
v, = v (9.2.1.15)
e

;Now for the third eigenvalue (again copy and paste)
>M.V=-2-V

—Iﬁvz -2 v]
12 v, =1J2 v, |=| -2V, (9.2.1.16)
12 v, “2Vs

> Ihs (%) — rhs (%)




> convert( %o, set)

=> solve(%)

> V, = subs(%, V)

>V, V,V,

6. Vector Analysis

| So the three eigenvectors are

—I\/?v2—|-2v1

Iﬁvl—lﬁv3+2v2

I\/?v2+2v3

{—I\/?v2+2v],l\/7v2+2v3,l\/7vl—I\/?v3+2v2}

I I
{vlz VT v,y —2ﬁv2}

(9.2.1.17)
(9.2.1.18)
(9.2.1.19)
(9.2.1.20)

V2 v,

v, (9.2.1.21)

representa
tion

Algebraic | Any symbol (could contain many letters) that ends with the underscore . It can have
indices and functionality, as in A_[x](t), displayed as 4 ().

You can compute with vectors without projecting them into any orthonormal basis.
Unit vectors for Cartesian, cylindrical and spherical coordinates: use the standard names
preceded by the underscore, as in [ i, j, k] displayed as [ i,J, k]

You can represent a projected vector as an algebraic sum of products of components
times unit vectors.

S

Operation |+ . &x, respectively for plus, scalar product and cross product

Command | Those of the Physics:-Vectors package,




s [&x, "+, ., ChangeBasis, Component, Curl, DirectionalDiff, Divergence, Gradient,
Identify, Laplacian,V, Norm, Setup, diff]
and their inert forms, prefixing the command with %, as in %Gradient.

Projected | See the VectorCalculus package.
vectors
using a
matricial
representa
tion

Table 6: Vector Analysis

Examples

Vectorial equation of a plane

Problem
1. Derive the vectorial equation of a plane passing through three generic points A, B, and C.
2. Choose three concrete points A, B, and C and plot this plane.

Solution
The vectorial equation of a plane is the equation satisfied by the position vector of any point of
this plane.
> restart,
with (Physics | Vectors ]) :
Setup (mathematicalnotation = true);
[mathematicalnotation = true | (10.1.1.1)

l To construct th1s equation, letA B and C be the vectors pointing to A, B, and C,

respectlvely, and 7 be the position vector of any point of this plane. The differences A C and

A B are Vectors parallel to the plane we want to represent, and also the difference between
and any of A B or C is a vector parallel to the plane. So the equation of the plane can be
- - i

obtained by taking the cross product of differences involving 4, B, and C to construct a vector
| perpendicular to the plane,
>G =(4 -B )& (4 -C)); L

G=(4-B)x(4—C) (10.1.1.2)

then equati_Pg to zero the scalar product of 8 with any of the differences parallel to the plane

| involving r. So for instance, one way of writing this vectorial equation of the plane is

> Eq:=(r -4).G =0

Eg=(F—4) ((4=B) x (41=C)) =0 (10.1.1.3)
=2. To plot this plane, turn the generic points A, B, and C into concrete points; that is, give

| values to the components of Z, E, and E For example:

(>4 =2 i-3 j+4 k

A=21—3] 14k (10.1.1.4)




>B =5 i+4 j-7 k

Bi=5i+4; -7k (10.1.1.5)
[ 30 9
> = — 4 — B ;
C 1 A + - B A A
- 555 405 j .
C:= - + 1 60 k (10.1.1.6)
;For ’ we always have
>r =x_i+y j+z k .
Fi=xi4yj+zk (10.1.1.7)
:The vectorial equation for these particular points A, B, and C is thus:

> Eg;
_1355x 4607y 6233z
14 7 14

As a verification that the surface represented by this equation contains the points A, B, and C,
you can substitute in the values of the coordinates of these points and see that the equation is
| satisfied. These are the coordinates of the three points:
> A, B, C := seq([seq(Component(v,j),j=1.3)],v=[4 ,B ,C ]);
555 405

-0 (10.1.1.8)

A,B,C:= [2,-3,4],[5,4, —7], — 4 —60 (10.1.1.9)
> for Pin [4, B, C]do
eval(Eq, [x=P[1],y=P[2],z=P[3]]);
od;
0=0
0=0
0=0 (10.1.1.10)

[ That this surface is a plane is clear from the fact that E£q is linear in all of x, y, and z. One way of
| plotting this plane is to use the command implicitplot3d.

> opts := axes = boxed, scaling = constrained, orientation = [ 125, 65 ], style = surface;
opts = axes = boxed, scaling = constrained, orientation = [ 125, 65, style (10.1.1.11)

= surface

> plots[implicitplot3d | (Eq, x=-2.2,y=-2.2,z=-2.2, opts);




Y Volume element of a sphere

Problem
Determine the infinitesimal volume element of a sphere expressed in spherical coordinates.

Solution

-
Let7 = R(u, v, w) be the vectorial equation, parameterized by u, v, and w, of a generic 3-D
geometric object; in this case, we are dealing with a sphere of generic radius ». The volume

69(696

element is derived from equation as Lr=—71|—7Fx —7F|dudvadw.
ou ov ow

> restart,
with (Physics | Vectors ]) :
Setup (mathematicalnotation = true);
[ mathematicalnotation = true ] (10.1.2.1)

[ We want this volume element expressed in spherical coordinates (7, phi, theta); we can always
choose these coordinates themselves as parameters u, v, w. We are thus interested in the explicit
| form of (note the use of %diff, the inert form diff):




> answer = %diff (r_, r) . (%diff (r_, theta) &x %diff (r_, phi));

N

answer = — 1| —rFx — 1 (10.1.2.2)
r 0 0
The first step is to write the vectorial equation r= R(r, phi, theta) for a sphere of radius r; that

is, the equation satisfied by the position vector » of any point of the sphere. In spherical
coordinates, and choosing the origin of the reference system at the center of the sphere, this

vectorial equation has its simplest form R(r phi, theta) = r r, where 7 points to any point of

the sphere, 7 is the radial coordinate (constant over the sphere) and 7 is the radial unit vector.
So

>r =vr_r
Fo=rr (10.1.2.3)
;From where the value of
> answer,
— (rr)e | — (rrYyx — (rr 10.1.2.4
c (g xS o] (10.1.2.4)

:can be computed directly, using the value command
> value(answer);

#* sin(0) (10.1.2.5)
_Alternatively, one could compute this result one step at a time, making explicit that 7 depends
on ¢ and 6. For that purpose we change the basis in the vectorial equation to the Cartesian basis

(z Js k) where all the unit vectors are constant and so the partial derivatives can be performed
directly.

> r_ = ChangeBasis(r_, 1); .
7= rsin(0) cos() i + rsin(0) sin(¢) j + rcos(0) k (10.1.2.6)

| So, the answer introduced lines above becomes:

> answer;
— (rsin(0) cos(9) i +rsin(0) sin(0) j +rcos(0) k) - (e (10.1.2.7)
(rsin(0) cos(¢) 7 + rsin(0) sin(0) j + r cos(8) k) X —q)
(sin(0) cos(¢) 7 + rsin(0) sin(¢) j + r cos(8) k))
> value((10.1.2.7))
% sin(0) (10.1.2.8)

| Hence the volume of element requested is & 7= sin(theta) Pdrded ¢.

Lagrangian for a pendulum

Problem

Determine the Lagrangian of a plane pendulum having a mass m in its extremity and whose
suspension point:

a) moves uniformly over a vertical circumference with a constant frequency .



b) oscillates horizontally on the plane of the pendulum according to x = cos (omega 7).

YV Solution

The Lagrangian is defined as
> restart,
with (Physics [ Vectors ]);
Setup (mathematicalnotation = true)
[&x, "+, ., ChangeBasis, Component, Curl, DirectionalDiff, Divergence,
Gradient, Identify, Laplacian,N, Norm, Setup, diff |
[ mathematicalnotation = true | (10.1.3.1.1)

L=T—-U (10.1.3.1.2)

where T'and U are the kinetic and potential energy of the system, respectively, in this case
| constituted by a single point of mass m. The potential energy U is the gravitational energy
>U=-mgy
U=-mgy (10.1.3.1.3)

where g is the gravitational constant and we choose the y axis along the vertical, pointing

downwards, so that the gravitational force F = mg j. The kinetic energy is:
) 1
>T:=—mv_.v;

2
T = ’"”;“ (10.1.3.1.4)

;To compute this velocity, the position vector 7 of the suspension point of the pendulum,
>r =x_i+Yy_J ) )
Fi=xi+yj (10.1.3.1.5)

[ must be determined. Choosing the x axis horizontally and the origin of the reference system




| at the center of the circle (see figure above), the x and y coordinates are given by:
> parametric_equations = [x=a cos(omegat) + [ sin(phi(?)),y=
-a sin(omega t) + [ cos (phi(¢)) ];
parametric_equations = [x=acos(wt) + [sin(d(¢)),y=-asin(wz)  (10.1.3.1.6)

i + Icos(d(2)) ]
> r_ = eval(r_, parametric_equations ); X
o= (a cos(wt) + lsin(¢(t) ) ) i+ (—a sin(wt) + lcos(d)(t) ) ) Jj  (10.1.3.1.7)

=> v = diff (r_,1);
v

= (-awsin(w?) + lpili(t) cos((2))) It (-aowcos(mt) —1 (10.1.3.1.8)

phi(z) sin(0(z))) j
> T;
1

E(m ((-a osin(w) + Iphi(r) cos(6(6)))’ + (-amcos(ws) —1  (10.1.3.1.9)

.. . 2
| phi(r) sin(0(1)))"))

This expression contains products of trigonometric functions, so one simplification consists
| of combining these products.

> combine(T, trig)

pili(t)2 Fm azmw2

—pi’li(t) sin(wt— (1)) almo+ > >

(10.1.3.1.10)

[ For the gravitational energy, expressed in terms of the parametric equations of the point of
| mass m, we have

> U := eval(U, parametric_equations )

U:==-mg(-asin(wt) + lcos(d(t))) (10.1.3.1.11)
;So the requested Lagrangian is
> L := combine(L, trig)

I
: h
L = -phi() sin(w ¢ — 0(1)) alm @+ 2L LM | @ m® (10.1.3.1.12)

—sin(wt) agm + cos(d(t)) glm

_Taking into account that the Lagrangian of a system is defined up to a total derivative with
respect to £, we can eliminate the two terms that can be rewritten as total derivatives; these

2 2
m a” omega

are——— — and m g a sin(omega t), so
> (OZ
o (10.1.3.1.13)
_> select(has, L, [omegaz, sin(o;nega t) ])
02”2”0 — sin(w?) agm (10.1.3.1.14)

> L= L - (10.13.1.14)




. 5
L= —pili(l‘) sin(wt—¢(t)) almo+ phl(t)zlm + cos(d(2)) glm (10.1.3.1.15)

b) The steps are the same as in part a:

_> restart,
with (Physics | Vectors ]) :
Setup (mathematicalnotation = true)

[ mathematicalnotation = true | (10.1.3.1.16)
(> L=T-U
L=T—-U (10.1.3.1.17)
(> U:=-m gy
U=-mgy (10.1.3.1.18)
[ 1
> T := 5mV_v_
m |[VII°
T:= s (10.1.3.1.19)
=> rs=x_1+y_j ) )
F=xi4yj (10.1.3.1.20)

_Now, regarding part a), the only change is in the expression of the y coordinate, which for
| this part b) is:
> y=1Icos(phi(?));
y=1cos(0(t)) (10.1.3.1.21)
:So the parametric equations in this case are
> parametric_equations = [x = a cos(omegat) + (/sin(phi(¢))), (10.1.3.1.21) ]
parametric_equations == [x=acos(w¢t) + Isin(d(z)),y=1cos(0(¢))] (10.1.3.1.22)

[~ -> - . .
> r = eval(r, parametric_equations )

= (acos(wt) + Isin(0())) i + Lcos(d()) j (10.1.3.1.23)
v = (-aosin(w) + [phi(t) cos(d(¢))) i — [phi(¢) sin(0(z)) j  (10.1.3.1.24)

[ For the gravitational energy, expressed in terms of the parametric equations of the point of
| mass m, we have

> U := eval(U, parametric_equations )

U:=-mglcos(d(t)) (10.1.3.1.25)

:So the requested Lagrangian is
> L
. s 2 2 1. 2 . 2
m ((—awsm((ut) + [phi(¢) cos(d(z)))” + £ phi(z)” sin(d(¢)) )
2

(10.1.3.1.26)




+mglcos(d(1))
> = combine(L, trig) )
P phi(?) sin(mt—ZFq)(t)) almo  phi(?) sin(mt;q)(t)) alm® (10.13.1.27)
o2 2 2 2
B cos(2 wt) a* mo N phi(t)” "' m L amoe
4 2 4
+mglcos(d(t))
;The terms in L that can be expressed as total derivatives can be discarded, so
> select(has, L, [omega2 cos (2 omega N1)
2 2 2
2
e dme | amo (10.1.3.1.28)
4 4
;So the Lagrangian is
> L= L —(10.1.3.1.28) )
b . b . B
7 . _ Phi(?) 31n(0)t-2|-¢(t)) almw  phi(r) sm(wt2 () almo (10.13.1.29)
. )
hi(z) !/
+ pl()zm +mglcos(d(t))

¥V Exercises

Y Vectorial equation of a plane tangent to a sphere of radius a

Problem
Derive the vectorial equation of a plane tangent to a sphere of radius a.

YV Solution

The vectorial equation of this plane is the equation satisfied by the position vector of any
point of it.

> restart;
with (Physics | Vectors ) :
Setup (mathematicalnotation = true)
[ mathematicalnotation = true ] (10.2.1.1.1)

N
Letr represent the position vector of any point of the plane, 4 be a vector pointing to the
center of the sphere, and B be a Vector pointing to the point B where the plane is tangent to

the sphere. So the difference r — B is a vector on the plane, and the difference B A is a
vector from the center of the sphere to the point of contact between the sphere and the
tangent plane (that is, a vector perpendicular to the plane). Hence, these two vectors are

| perpendicular, and so their scalar product is equal to zero.

>Eq=(r -B).(B_-4)=0

10.2.1.1.2)



Eg=(F—B)-(B—4)=0 (10.2.1.1.2)
ThlS is already the vectorial equatlon of the tangent plane but not yet expressed in terms of

the radius of the sphere. Now since B A is a vector from the center of the sphere to the
| point of contact with the plane, the norm of this vector is the radius a of the sphere.

> key == Norm(B_-A )=a
key = ||B— A =a (10.2.1.1.3)
;Expand both expressions to use them together.
> expand(Eq);

FeB—7Fed—||B| +B-4=0 (10.2.1.1.4)

=> map(u — u”"2, key);
1B -4 = (10.2.1.1.5)

=> expand ((10.2.1.1.5))
1B =284+ 4] = (10.2.1.1.6)

| So simplify one with respect to the other one, eliminating E &. E (see simplify/siderels)
> simplify((10.2.1.1.4), {expand((lﬂ 2.1.1 5))} {Norm(B )})

IIAH — P —BA+7B—F+4=0 (10.2.1.1.7)

Collecting terms in the above, this vectorial equation requested can be rewritten more

— -

compactly as (B — A) . (7 — A) = 4*. As an exercise, consider choosing three concrete
values for the positions of A, B, and the radius a of the sphere, then insert these values into
the equation derived, and plot the sphere and this tangent plane together (see plots[display

| to merge the plots).

Static: reactions of planes and tensions on cables

Problem

A bar AB of weight w and length L has one extreme on a horizontal plane and the other on a
vertical place, and is kept in that position by two cables AD and BC. The bar forms an angle
alpha with the horizontal plane and its projection BC over this plane forms an angle beta with the
vertical plane. The cable BC is in the vertical plane where the bar is. Determine the reactions of
the planes at A and B and the tensions on the cables.



~--—-__-----_—‘L\__----_—_- 1

YV Solution

There are two equations that contain information about the state of equilibrium of a system.
The first one, saying that the sum of the forces acting on the body are equal to zero, tells that
the center of mass of the body is not accelerated. The second one, saying that the sum of the
moments of the forces acting on the body (that is, the total torque) is zero tells that the
rotation of the body around its center of masses is not changing (if it is not rotating, it stays
that way). These two equations involve the reactions of the planes and the tensions on the
cables, so from them we can obtam the solution to the problem. There is no friction so it is

also clear that the reactions R and R are perpendicular to the planes, as shown in the

figure, and the tensions T ' and T » on the cables have direction AD and BC, respectively.
The steps to solve this problem are:

1. Determine each force 17 acting on the bar and its application point r.

2. Equate the sum of the forces F to zero.

3. Equate the sum of the moments 7 X ;: to zero.

4. Solve these two vectorial equations for } w ;2) " 3)’ P and ?B , representing the reactions

of the planes at the points of contact A and B, and the tensions of the cables attached to
the bar at A and B, respectively.

_> restart,
with (Physics [ Vectors ]);
Setup (mathematicalnotation = true)
[&x, "+, ., ChangeBasis, Component, Curl, DirectionalDiff, Divergence,
Gradient, Identify, Laplacian,N, Norm, Setup, diff |
[ mathematicalnotation = true ]| (10.2.2.1.1)



- o -
The forces acting on the bar are its weight %, and the reactions and tensions R o Re Ty

-
and Tp,. So the two equilibrium equations are:

> eq[l] = w_+R_[A]+R_[§]+T AJ+ [B]=

N =

eq =W+ R, +R,+T,+T,=0 (10.2.2.1.2)
> eq[2] = r_[w]&w_+ r_[A]&R_[A] + r_[B] &x R_[B] + r_[A]
&xT_[A]+ r_[B]&x T_[B]=0;
eqy =T XWAL XR A1y X Ryt 7 X T, + 7% Ty=0 (10.2.2.1.3)

[ Set the origin and orientation of the reference system to project these vectors; any choice
will do, but a good one will simplify the algebraic mampulatlons We choose the origin at

the point B, the vertical z axis in the direction of the reaction R , SO that 7 rp=0, the yaxis in

the direction of R ' and the x axis in the remaining direction, anti-parallel to T '+ With this

choice, the vectors entering eq, and eq, are projected as follows:
[> R [B]:= abs(R[B])* k A
R, = |RB‘ k (10.2.2.1.4)

N
where |RB| represents the norm of R, to be determined,

(> r [B] = 0;
ro=0 (10.2.2.1.5)

> R_[A] = abs(R[4])*_j;

R, = R[] (10.2.2.1.6)

where |R A| is to be determined. This reaction R , is applied to the bar at A, represented by

r (> Its component along the x axis is obtained by projecting the segment BA onto the

horizontal plane (L cos (alpha)), resulting in BC, then into the intersection of the two

| planes. So:

> r [A] = L *cos(alpha) * (cos(beta) * i + sin(2*Pi - beta)* j) + L
*sin(alpha) * £;

7, = Lcos(B) cos(a) i —Lsin(B) cos(at) j + Lsin(a) k (10.2.2.1.7)

:For the other vectors we have
> T [A]:= -abs(T[A4])* i
—‘TA| i (10.2.2.1.8)

> T [B]:= abs(T[_l)?]) *cos (beta) *_1; + abs(7[B]) *Asin(Z*Pi - beta) * j;

Ty = |Ty cos(B) i — |7 sin(B) j (10.2.2.1.9)
jwhere |T A| and ‘T B| are to be determined,
> w_ = -abs(w)* £k

-

= ||k (10.2.2.1.10)




?W _ Lcos(B)zcos(oc) i B Lsin(B)zcos(Oc)j N Lsinéoc)/; (10.2.2.1.11)

:The two equilibrium equations now appear as
> eq[1] : : : : :
-lw| k + ‘RA|j + ‘RB| k — |TA‘ i + |T3‘ cos(B) i — |TB‘ sin(B) j =0 (10.2.2.1.12)

> eq[2]; ) .
Lsin(B) cos(a) |w| i N Lcos(B) cos(a) [w]j
2 2

+ L cos(B) cos (o) ‘RA|IA€—Lsin(Oc) |TA‘j

— Lsin(a) |R| i (102.2.1.13)

— Lsin(B) cos(a) |TA‘ k=0

[ These two vectorial equations represent a system of six equations, obtained by equating

each of the coefficients of i, j, and k in each of the equations to zero; that is, taking the

| components of the vectorial equations along each axis:

> Eq[1,2,3] := seq(Component(lhs(eq[1]),n)=0,n=1.3);

Eq1,2,3 = —‘TA| + |TB‘ cos(B) =0, RA‘ — ‘TB| sin(B) =0, -|w| + ‘RB| (10.2.2.1.14)

> Eq[4,5, 6] := seq(Component(lhs(eq[2]),n) =0,n=1.3);
Lsin(B) cos(a) [w|

Eqy 5.6 = ) — Lsin(a) |R,|=0, (10.2.2.1.15)

L cos(B) cos(o) [w]
2

— Lsin(PB) cos(a) 7,=0

— Lsin(a) 7, =0, L cos(P) cos(a) R,

:So the system of equations to be solved is

[> sys == {Eq[1,2,3], Eq[4,5,6]}:

:The unknowns are

> var = {abs(R[A]), abs(R[B]), abs(T[A]),abs(T[B]) };

var = {[R |, Ryl |T | | T4} (10.2.2.1.16)
;and the solution is
> solve(sys, var);
cos(o) |w| sin(B) cos(o) |w| cos(P)
R |= SR =W, |T,| = T 10.2.2.1.17
[ 2 sin(o) o =M [T 2 sin( o) i )

_ cos (o) [w] }

2 sin(a)

¥ Potential Phi and electric field E of a charged disk

Problem

Calculate the potential Phi and the electric field E of a disc of radius a, loaded with a surface



density of charge sigma (constant), in points of an axis perpendicular to the disk and passing
through its center.

Solution
Given the potential Phi, the general expression of the electric field £ is

E= -V (Phi)

In turn, the general expression for the potential Phi of a distribution of charges over a surface
is given by

Phi(?)zJ %dg
R-r

Sigma

where 7 is the position vector of any point in space, jé is the position vector of any point of
the disk, and ds is the surface element; the above expression is a surface integral with Sigma
representing the integration domain.
> restart,

with (Physics [ Vectors ]);

Setup (mathematicalnotation = true)
[&x, "+, ., ChangeBasis, Component, Curl, DirectionalDiff, Divergence,

Gradient, Identify, Laplacian,N, Norm, Setup, diff

[ mathematicalnotation = true | (10.2.3.1.1)

| The expression for the electric field ZT) as the gradient of the potential ® can be entered as
> E = -%Gradient(Phi);

Ei=-V® (10.2.3.1.2)
[ where in the above we are using the inert form of the Gradient command. The expression
for Phi in turn can be entered as a double integral in cylindrical coordinates (rho, phi, z); the
element of surface of a disk in these coordinates is p dp d¢, with rho varying from 0 to a
| and phi from 0 to 2 pi.
[> Phi = Int(Int(sigma*rho/Norm(r_ - R_),tho=0.a),phi=0..2*P1);

2m (¢

D = — 9P 4pdo (10.2.3.1.3)
o |, 17 =&l

[ We choose the origin of the system of references to be the center of the disk and the z axis
oriented perpendicular to the disk. In this system of references, the position vector of a point
| over the z axis is

>r =z* [k )
=zk (10.2.3.14)

:and the position vector of a point of the disk is
> R :=rtho* rho;

N

Ri=pp (10.2.3.1.5)



| The value of the potential Phi for z > 0 can now be computed.
> Phi := value(Phi) assuming z > 0;

®:=-2zon+2Jd+z> on (10.2.3.1.6)

:From this we get
> E

v(-2z0n+2/2+2 on) (10.2.3.1.7)

> E_ := value ((10.2.3.1.7)) ;

[2 2 ;
E = 2m0 “2+22 ~2) (10.2.3.1.8)
Ja +z

Y Magnetic field H of a rotating charged disk

Problem
A disk of radius a, uniformly charged with a surface density of charge 6, rotates around its axis

with a constant angular velocity phi = ®, where phi is the cylindrical coordinate (the polar angle).
Calculate the magnetic field on the axis of the disk.

V Solution
The expression of the magnetic field H ( ;:) due to a current of charges J(R) is

J(R) x (7 —R)
- > X \r —
H(r) [ — 3 ds
, c |r — R|
Sigma
BN

where 7 is the position vector of any point in space, R is the position vector of any point
where the current exists, in this case a disk of radius a, and ds is the surface element. Sigma
represents the integration domain and the above expression is a surface integral.
> restart,

with (Physics [ Vectors ]);

Setup (mathematicalnotation = true)
[&x, "+, ., ChangeBasis, Component, Curl, DirectionalDiff, Divergence,

Gradient, Identify, Laplacian,N, Norm, Setup, diff |
[ mathematicalnotation = true ] (10.2.4.1.1)

The expression for H can be entered as a double integral in cylindrical coordinates (

rho, phi, z); the element of the surface of a disk in these coordinates is p dp de¢, with rho
| varying from 0 to @ and phi from 0 to 2 pi1 ..
> H = Int(Int(J &x (r_ - R )/c/Norm(r_ - R )*3*rho,tho=0..a),phi=0..2
*Pi);
a -

U (F=R)p

BN
H = - -3
o | elF- R

p do (10.2.4.1.2)




We choose the system of references as in the previous problem, with the origin in the center
of the disk, and the z axis oriented perpendicular to the disk. So again the position vector of
| a point over the z axis is

>r =z* [k )

Fi=zk (10.2.4.1.3)
:and the position vector of a point of the disk is
> R = rtho* rho;

Ri=0pp (10.2.4.1.4)

By definition, the current J at a point R is equal to the value of the density of charge times
| the velocity of this charge; that is,

> J = sigma*V ;
J=0cV (10.2.4.1.5)

Finally, the velocity 7 of a point R of the disk can be computed as the derivative of R with

respect to ¢ (the time), and in doing so we need to take into account that the unit vector rho
varies with time because it depends on the angle ¢ and the disk is rotating.

This derivative of ;?) can be computed in different ways. The simplest way is to state that the
| unit vector tho is a function of time 7 and differentiate:
> tho * _rho(t);

pp(1) (10.2.4.1.6)
> diff (%, 1); A
p phi(7) o(¢) (10.2.4.1.7)

Another way, step-by-step, is to make explicit this dependence of Iil?) on phi by changing
| the basis onto which R is projected from the cylindrical to the Cartesian basis.
> ChangeBasis (R _, 1); ) )
pcos(9) i+ psin(o)j (10.2.4.1.8)

[ Now make phi depend on ¢ and differentiate.
> subs (phi = phi(¢), (10.2.4.1.8)); )

pcos(d(t)) i +psin(d(r))j (10.2.4.1.9)
> diff ((10.2.4.1.9), 1) A . A
-p phi(¢) sin(0(¢)) i + p phi(¢) cos(d(¢)) j (10.2.4.1.10)

Introduce phi(t) = m, and remove the explicit dependence of phi with respect to ¢ to arrive at
-

| an expression for V.
> factor (subs ([diff (phi(?), t) = omega, phi(#) = phi], ??))

[phi(7) = ®, ¢(2) = 0] (10.2.4.1.11)

—~

= -
Y et another manner, knowing that rho and so R = p rho depends on the time only through

d -
R(phi) = ® ——— R(phi).
(phi) = - R(phi). So

=(p, you can compute R = phi dphi
> V_:= omega * diff (R _, phi);

Vi=0po (10.2.4.1.12)



At this point, we have all the quantities defined in the system of coordinates chosen and in

terms of the constant angular velocity, ®, and the radius of the disk, a. The expression of the
| magnetic field looks like
> H ;

a

2m (Gmpzl;-l—cwpzﬁ) p

2>3/2

b do (10.2.4.1.13)
2
0 0 c(p +z

—~

However, to perform the integrals, we still need to express rho as a function of phi, one of
the integration variables. For that purpose, it suffices to change the vectors involved (;2) and
j/)) to the Cartesian basis.

> R = ChangeBaszs( L 1)

= pcos(0) i + psin(6) (10.2.4.1.14)
> V= ChangeBaSls( , 1);
V= ~wpsin(0) i + opcos(d) (10.2.4.1.15)
| With this change, H looks like
> H ;
2T ‘ ) . p 27
(cos (o) wg) ozi +2s1n((i)) ®p (522] + c53(7)2p k) p 00 (10.2.4.1.16)
0 c (p cos(0)” + p~ sin(¢) +22)

0

and so the integrals can be performed, leading to the desired value of the magnetic field H
| on the axis of the rotating disk.

> H_:= value(H ) assuminga > 0,z > 0;

2wcnk(2\/a + 2’ Z_az_zzz) (10.2.4.1.17)
N at+ 2 ¢

H = -

7. Tensors and Special Relativity

Algebraic | Indexed objects, as A[x], can include functionality as in A[x](x), must be defined using
representa | the Physics:-Define command and can have (anti)symmetry properties of any particular
tion kind regarding permutations of indices. You can also define tensors using tensorial
equations.

Command | Physics:-Define, Physics:-Simplify, and Physics:-"." to "multiply and simplify" in one
S step - useful to directly perform a contraction instead of just representing it.

Table 7: Tensors



¥ Examples

> restart,
with (Physics ) :
Setup (mathematicalnotation = true);
[ mathematicalnotation = true ] (11.1.1)

To define a system of references (coordinates system) and the related spacetime vector you can use
Setup or Coordinates;

[> Coordinates (X);
Default differentiation variables for d , D _and dAlembertian are: {X= (xI,x2,x3,x4)}

Systems of spacetime Coordinates are: {X= (xI,x2,x3,x4)}
{X} (11.1.2)

[ You can now use X to represent function dependency, as in F'(.X), equivalent to writing F{(

x1,x2, x3, x4), and also as the spacetime vector X " (see also SpaceTimeVector). To indicate that

| an index is contravariant, prefix it with ~ (tilde)
> X[~mu], X[mu];
X4, X, (11.1.3)

:The label X can also be used to select each of the components of the spacetime vector
(> X[11.X[3]]
x1,x3 (11.1.4)
:and x0 is always mapped into x4
> x0;
x4 (11.1.5)

You can also set the coordinates to be any sequence of four names. Three predefined sets are
| 'cartesian’, 'cylindrical' and 'spherical’
> Coordinates (X = cartesian)
Default differentiation variables for d , D _and dAlembertian are: {X= (x,y,z,t)}

Systems of spacetime Coordinates are: {X= (x,y,z,t)}

{X} (11.1.6)
In all cases you will still be able to refer to each coordinate using the generic symbols x/, x2, ...
[> xI , X2,

X,y (11.1.7)
(> x0=x4 ;

t=t (11.1.8)

You can set many systems of coordinates simultaneously - although only one is considered the
'default differentiation variables' for the d_ dAlembertian and D__ operators (and that is the system of
references were are all the general relativity tensors are defined).

> Coordinates (Y );
Systems of spacetime Coordinates are: {X= (x,y,z,t), Y= (yl,y2,y3,y4)}

{(X, Y} (11.1.9)




> y0=y4;
V4 =y4 (11.1.10)
> Setup (diff);
* Partial match of 'Physics:-diff' against keyword 'differentiationvariables’
Default differentiation variables for d , D _and dAlembertian are: {X= (x,y,z,t)}

[ differentiationvariables = [ X] | (11.1.11)

[ To change the differentiation variables enter for instance Setup(diff = Y);

When you load Physics, some package's commands that are automatically set as spacetime tensors,
such as the metric g_[mu. nu] or the differential operator d_[mu]. Every other symbol that you want
to be considered a spacetime tensor must be defined as such using the Define command, and
nothing else will be considered a spacetime tensor during computations. To see the tensors
predefined you can call Define without arguments

> Define( );

Defined as tensors

{Vw Op X, Y08 (11.1.12)

wv’ Su, v &, B, u, V}

This set includes the special relativity tensors as well as the Pauli and Dirac matrices. In curved
spacetimes the returned set includes also the general relativity tensors.

The default dimension of spacetime is

> Setup (dimension );
[ dimension = 4 ] (11.1.13)

[ To change the value of the spacetime dimension use Setup(dimension = N) where N is any

positive integer greater than 1.

To see the values of the components of the metric you can enter the spacetime metric g_ without
| indices; when you load the package it is of Minkowski type

>e [ » _
1 0 00
0 -1 00
- 11.1.14
Euv 0 0 -10 ( )
0 0 01

:The spacetime indexed differentiation operator
> d_[mu](F(X));

0 (F(X)) (11.1.15)

[ This operator is also a representation for the differential of a function; for that purpose enter it
| without indices

(> d (F(X));
(9,(F(0)) (a (X“) ) (11.1.16)

:Using d_ you can express the differential of any coordinate defined using Coordinates




> d (x0);

a(t) (11.1.17)
> d_(0);
d(14) (11.1.18)
;The differential of everything else is zero
> d_(a);
0 (11.1.19)

:The diff and d_ operators are interconnected
> diff (F(X), X[~mu]);

0 (F(X)) (11.1.20)

> diff (F(X), X[mu]);
IMFD) 11.1.21)

:By applying it two times you get the dAlembertian
> d_[mu](d_[mu](F(X)));

O(F(X)) (11.1.22)

You can enter any pair of contracted indices one covariant and one contravariant, not being relevant
which one is of which kind, so you can also enter both covariant or both contravariant and the
system will automatically rewrite them as one covariant and one contravariant.

> g [mu,nu]"2;
l"|'> v
gu’ V& (11.1.23)

Define two tensors 4 and B for exploration purposes

(> Define(4, B);
Defined objects with tensor properties

{A, B, Yy O Xu’ Yu’ ap, v Su, v € B V} (11.1.24)
jNote the automatic rewriting of repeated indices as one covariant and one contravariant
> g [alpha, mu]* 4[mu]* g [alpha, nu]* B[nu, sigma, sigma |;
°g  g®VyH (11.1.25)

v,o o, u

When a pair of contracted indices is already one covariant and one contravariant, it is left
unchanged. Although it is not recommended, you can switch off the Physics evaluator that performs
this automatic rewriting of contracted indices by entering Setup(usephysicsevaluator = false).

To determine the repeated and free indices in an expression use Check
> Check((11.1.25), all)

The repeated indices per term are: [{...}, {... }, ... |, the free indices are: {...}

[{o, u,v,0}], {} (11.1.26)

The main simplifier in the Physics package is Simplify. The simplification of tensor indices takes
into account the sum rule for repeated indices

P Simplify((11.1.25))
(11.1.27)



VvV, O

L B °4" (11.1.27)

Besides its use in quantum mechanics, the Physics "." operator is also a handy shortcut for
simplifying contracted indices - you use it replacing the product operator *. This is useful when
you want the simplification to happen only in some places. Recalling that multiplication is left
associative, you may need to put parenthesis to get what you want. For example, replace in ??
only the third *** by *."
> g [alpha,mu]* A[mu]* (g _[alpha, nu]. B[nu, sigma, sigma]);
c o U
Ba’ s & 4 A (11.1.28)

Exercises

1. Define a contravariant 4-vector p " having for components [ PoPpPsP t]

Solution
| > restart; with(Physics ) :
(> pl~mu]=[p.p,p.p,]
Py = [Pro Py P Py (11.2.1.1)
> Define((11.2.1.1))

Defined objects with tensor properties

u
{Vw 0028, P8, 8 o V} (11.2.1.2)

| You can now use p[mu] to represent this tensor. For example, compute the value of p2
> p[mu]’
P H (11.2.1.3)

=> SumOverRepeatedIndices ((11.2.1.3))
2 2 2 2
p.—p —p 0P, (11.2.1.4)

You can also retrieve its components giving values to the index, these are the covariant and
| contravariant first components

> p[l]

-p, (11.2.1.5)
> p[~1]'

p! (11.2.1.6)
> %

P, (11.2.1.7)
=>

2. Define two tensors A[mu] and Blalpha, beta] and
a) Symmetrize their product
b) Define B as symmetric and symmetrize again



c¢) Define C[alpha,beta,gamma] as totally antisymmetric, antisymmetrize the product of A with C

and show that due to the antisymmetry of C it contains only 4 terms

YV Solution
:> restart; with (Physics) :
(> Define(4, B)
Defined objects with tensor properties

A4, B d )
{ b 2 ’Yl.,l,, GH, u’ g“’ v)

> A[mu] B[ alpha, beta]

M, v’ Ea’ Ba M, V}

| oo, B
> Symmetrize((11.2.2.2))
1
6 o B 6 o wp 6 B op 6 B o 6 M
1

+EA BBoc

| for the indices

(> Simplify((11.2.2.3))
1

B, 1 wp 6 B op 6 B o 6 M
1

EA BB,oc

:Deﬁning B as symmetric, this result can be simplified
> Define(B, symmetric)
Defined objects with tensor properties

_|_

] {AM, B, 3% 0058, 8 v b V}
> Simplify((11.2.2.3))

A B A, B A B
o Bp B oop o n op
3 3 3
;Or directly
> Symmetrize((11.2.2.2), simplifytensor)
A B A, B A B
% B + B (X,H. + “’ (X’B
3 3 3

> Define(C[mu, nu, rho |, antisymmetric);
Deﬁnea’ objects with tensor properties

{A Ba 5 ,Y,0,0.,g
Al alpha] C[mu, nu, rho |

A C
oWV, p

—A B +LAB +LAB +LAB —I—LAB

fAB +LAB +LAB +LAB —I—LAB

,0 e }
HVP u u WY TV T, B, v

(11.2.2.1)

(11.2.2.2)

(11.2.2.3)

[ This result cannot be simplified further because there are no repeated indices and no symmetries

(11.2.2.4)

(11.2.2.5)

(11.2.2.6)

(11.2.2.7)

(11.2.2.8)

(11.2.2.9)



> Antisymmetrize((11.2.2.9))
1 1 1 1
— A — — 4 ——A — A
24 acu,v,p 24 fxcu,p,v 24 C u,p+ 24 acvyp,u (112.2.10)
1 1 1 1
g A Conv T 24 e Covin T 24 A Covin T 24 A Copy
b AC, —or A C = oA C A C
24 v, 0, p 24 u v, pa 24 u opo,v 24 popv,a
fac  —tac o~ Llyc 4 lyc
24 v o, p 24 o, p, 24 v wo,p 24 v wp,a
+lace Ly Ly +luc
24 v po,p 24 v oppo 24 p o owv o 24 p ooV, U
+ 24 —tac —Luc +luc
24 " p mo,v 24 p wv,o 24 p v,oopn o 24 p v,po
(> Simplify((11.2.2.10))
AOLCMvp AMC0va Avcaup ApCOLMv
1 — 1 + 1 — ) (11.2.2.11)
>

3. Compute Maxwell equations departing from the Action for electrodynamics

\ 4

Solution

Maxwell equations result from taking the functional derivative of the Action.

Let X and Y represent two spacetime points
| > restart; with (Physics ) :
> Coordinates (X, Y)
Default differentiation variables for d , D and dAlembertian are: {X= (xI, x2,
x3,x4)}
Systems of spacetime Coordinates are: {X= (xI1,x2,x3,x4), Y= (y1,y2,y3,v4)}
{X,Y} (11.2.3.1)

;Deﬁne now the 4-D electromagnetic potential
> Define(A[mu](X));
Defined objects with tensor properties

A X,Y 2.3.
] { o Ve Op X Y au, v v V} (11.2.3.2)
| From herein avoid displaying the functionality whenever it is X
> PDEtools:-declare(A(X) );
A(x1, x2, x3, x4) will now be displayed as A (11.2.3.3)

[ Also to avoid having to repeat saying who are the differentiation variables of the operators Gmu

| and O just set them



> Setup (var = X);
* Partial match of 'var' against keyword 'differentiationvariables’

Default differentiation variables for d , D _and dAlembertian are: {X= (xI, x2,
x3,x4)}
[ differentiationvariables = [ X] ] (11.2.3.4)

:Query about the dimension and signature ...
> Setup (dimension, signature);

[dimension = 4, signature = -] (11.2.3.5)
_Everything is set. Let's define the electromagnetic field tensor # ~  in terms of the derivatives
of A
R mu
> F[mu,nu] = d_[mu](A4[nu](X )) - d_[nu](4[mu](X));
F = A (6 A ) (11.2.3.6)
W, v V v H

Define now the Action
> §:= Intc(F[mu, nu]"2, X);

[e¢] [ee] [e¢] [ee]

L . 2
S = (0,(4,) = (9,(4,))) dxl dx2 dx3 dxs (11.2.3.7)

- 0 - 0 - 0 - 0

[ Take now the functional derivative of S (use ' to delay the computation, to see what is that will
| be computed)

> '"Fundiff' (S, A[rtho]);

(Szp ] 0:0 O:o O:O O:O (8,(4,) ~ <6V<AH)))2 xI dx2 dx3 dx4 (11.2.3.8)
> (11.2.3.8)
(2 (au(av(AV))) ) [](AH)) ghP 4 (-2 O(4,) +2 (au(av(Au)))) (11.2.3.9)
g"P

To simplify the contracted spacetime indices, use the Simplify command, resulting in the
Maxwell equations in their familiar 4-D tensorial form

> Simplify(%)
-40 (AP) +4 (GM(GP(A“) )) (11.2.3.10)

4. Compute the geodesics (the shortest line joining two points in space) for a Minkowski spacetime

YV Solution

| > restart; with(Physics) :
> Setup(coordinates = X);
* Partial match of 'coordinates' against keyword 'coordinatesystems’

Default differentiation variables for d , D and dAlembertian are: {X= (xI, x2,
x3,x4)}
Systems of spacetime Coordinates are: {X= (x1,x2,x3,x4)}




[ coordinatesystems = {X} | (11.24.1)

[ The spacetime metric at this point is the one that loads with Physics, i.e. a Minkowski type
metric

>g[] _ _
10 00
0 -1 00
_ 11.2.4.2
Ev 0 0 -10 ( )
0 0 01

[ The geodesics equations for this metric, first as an algebraic equation in tensor notation, then as
| a list of equations for the tensorial components

> Geodesics (tensornotation);

d2
— X"(1) (11.2.4.3)
dr
> Geodesics ( );
2 2 2 2
L) =0, Lm0, L w201 =0, L wi(0) =0 (11.2.4.4)
dt dt dt dt

"I“he straight-lines solution computed directly
> Geodesics (output = solutions );
{x1(t)= _CIt+ C2,x2(1)= C3t+ C4,x3(1)= _C51+ C6,x4(1) (11.24.5)

= C71+ C8}

5. The Killing vectors generate transformations that leave the metric g_ invariant in form. Show that
the components of the Killing vector for a Minkowski spacetime generates translations along the
four axes.

Y Solution
| > restart; with(Physics) :

| The default spacetime is of Minkowski kind

>g[] 7 7
10 00
0 -1 00
- 11.2.5.1
Epv 0 0 -10 ( )
0 0 01

:Set a system of Coordinates

> Setup (coordinates = X);
* Partial match of 'coordinates' against keyword 'coordinatesystems’

Default differentiation variables for d , D _and dAlembertian are: {X= (xI, x2,
x3,x4)}




Systems of spacetime Coordinates are: {X= (x1,x2,x3,x4)}

[coordinatesystems = {X} | (11.2.5.2)
:Deﬁne a tensor with one index to represent the Killing vector
> Define(V);
Defined objects with tensor properties
v, X,0 ) 11.2.5.3
{ Yy O X 008, 8, B V} ( )

The covariant components V’
alpha

B KillingVectors (V, output = equations );

a?d V,(X) = —(624 v, (X)), aaxz V,(X) = -(624, Vz(X)), i3 V(X)) (1.2.5.4)
:_(aV(X)J,aV(XFO,aZV(X)=O,6V(X)=
oxd 3 s 4 s Oxl 3
_(GV(X)j,aV(X)Z—(aV(X)),aV(X)—Oa -
ox3 1 ox2 3 ox3 2 ox3 3 Ox3>
Vz(X)o,azV(X)OsazV(X)O’GV(X)_(a

0x30x4 2 x> 2 axl 2 Ox2
) o B0 =0 Lm0 B rm -0 2

2 2 ot ! 0x20x3 1 0x20x4
na=0 -2 rn=0 - r=0 L rm=0

0x3 Ox30x4 1 oxd> ! 0x1
VI(X)—Ol

=> KillingVectors (V');

[V (X)=_CIx2+ _C2x3+ _C3x4+ _C4,V,(X)=-_Clxl + _C5x3

+ C6x4+ _C7,V,(X)=-_C2x] — C5x2+ _C8x4+ _C9,V,(X)=

(11.2.5.5)

~_C3xl = _C6x2— _C8x3+ _CI0)

To understand this result, recall that the Killing vectors generate transformations that leave the
metric g_ invariant in form; these are isometries. The result (11.2.5.5) generates translations
along the four axis that leave invariant the distance between two points and thus invariant in
form the metric.

ks

¥ 8. Quantum Mechanics

Command
S

Annihilation, AntiCommutator, Bra, Bracket, Check, Coefficients, Commutator,
Creation, Dagger, Dgamma, Fundiff, GrassmannParity, Gtaylor, Intc, Inverse,



Ket, KroneckerDelta, LeviCivita, Normal, Parameters,
PerformOnAnticommutativeSystem, Projector, Psigma, Setup, Simplify,
ToFieldComponents, ToSuperfields, Trace, dAlembertian, d_
To apply an operator to a Ket, or to take the scalar product of a Bra with a Ket use the
dot operator .

Manipulati | Setup and Simplify
on
commands

Table 8: Quantum Mechanics

Dirac Notation

Kets and Bras

|:> restart; with (Physics) :
The quantum state of a system, belonging to a space of quantum states, is represented in Dirac
notation by a Ket state-vector.

> Ket(u);
| u) (12.1.1.1)
The above is the quantum analog of a non-projected vector u of a 3-D Buclidean space.

* The norm of a generic Ket | « ) is not predefined and can be indicated by setting a bracket
rule, as shown below.

* Every Ket can be projected onto a basis of state-vectors

* The Kets conforming a basis (analogous to 3-D unit vectors) are distinguished from a generic
Ket | u ) by the fact that they have one or many quantum numbers, as in

> Ket(v,n);
v > (12.1.1.2)

Kets having quantum numbers are always assumed to belong to a basis of quantum states, are
orthogonal to each other, have norm equal to 1, and are distinguished from each other by the
values of these quantum numbers. For example, an orthonormal basis of a two dimensional
| space of quantum states is

> Ket(v,0), Ket(v, 1);

‘ Vo >, 2 > (12.1.1.3)
[ There are no restrictions on the number of quantum numbers that a Ket can have. This is a Ket
| belonging to a basis of a space that depends on four quantum numbers.

> Ket(v,j, k,m,n);

Y mn) (12.1.1.4)

You can associate a space of states with each quantum number, so a Ket with many quantum
| numbers represents a state in a space constructed as a tensor product of spaces.

There is a Bra associated with each Ket, obtained from the Ket by performing the Hermitian




| conjugate, or Dagger, operation.
> %Dagger(%);

| Vikomon) (12.1.1.5)
> value(%)

(Vikmn] (12.1.1.6)
> Dagger(%);

| Vickomon ) (12.1.1.7)
:You can enter Bras directly by using the Bra function.
> Bra(v,j, k,m,n);

(Vikmnl (12.1.1.8)
=The space of Bras of a system is the dual of the space of Kets of that system.

Discrete and continuous basis of states

[ Kets belong to either a discrete or a continuous spaces of quantum states.

A discrete space of states is one where the quantum numbers of its Kets vary discretely. These
Kets thus belong to discrete bases of quantum states.

A continuous space is one where the quantum numbers vary continuously and its Kets belong
to continuous bases of quantum states.

Unless explicitly stated otherwise, Kets are assumed to belong to discrete space of states.

You can indicate that a label R identifies a continuous space of states by using the Setup
command.

> Setup (continuous = R);
* Partial match of 'continuous' against keyword 'quantumcontinuousbasis'

[ quantumcontinuousbasis = {R} | (12.1.2.1)

:Kets of a continuous space of states can also have any number of quantum numbers.
> Ket(R, x);

| R,) (12.1.2.2)
=> Ket(R,x,y,z);
i | R 2 ) (12.1.2.3)
> Dagger(%);
(R, (12.1.2.4)

Scalar product and orthonormalization relation

The scalar product is defined between a Bra and a Ket, in that order, and can be performed by
using the dot operator "." of the Physics package, or by using the Bracket function; both
| represent the same object.




> Bra(u) . Ket(v);
(ulv) (12.1.3.1)

=> Bracket(Bra(u), Ket(v));
(ulv) (12.1.3.2)

Note that when the scalar product is just represented, not actually computed, as in the above,
the result is always expressed in terms of the Bracket function. A shortcut notation for entering
| the scalar product using the Bracket function is
> Bracket(u, v);

(u|v) (12.1.3.3)

| Under the Dagger operation, (1 * B)T = 5%« 4T s0 that the Bracket becomes
> Dagger(%);
(v]u) (12.1.34)

;For the Bracket, the same happens under conjugation:
> conjugate(%);
(u|v) (12.1.3.5)

Two generic Kets such as the above may or not belong to the same space. To make practical
use of Kets, depending on the problem you may want to set a bracket rule, stating the value of
| the Bracket between them, by using the Setup command.
> Setup (% =f(u,v));

[bracketrules = { (u|v) =f(u,v)}] (12.1.3.6)

After that, both the dot operator of the Physics package and the Bracket function know how
| to perform their scalar product.
> Bracket(u, v);
f(u,v) (12.1.3.7)

[ Kets belonging to a discrete basis of states satisfy an orthonormalization relation involving
the KroneckerDelta symbol, and when the quantum numbers are present, you do not need to
| specify a bracket rule.

> %Bracket(Bra(u,n) , Ket(u,m)) = Bra(u,n) . Ket(u, m);
u \ =29 (12.1.3.8)

n m m, n

Note in the above the inert form % Bracket. It is sometimes useful to represent mathematical
operations without having them actually performed. For that purpose, use any command with
the name prefixed by the symbol %. To have the inert operation performed, use the value

| command.

> value(%);
& =90 (12.1.3.9)

m, n m, n

;Evaluate the output two operations above at m = n.
> eval(%%, m =n);
u \=1 (12.1.3.10)

n n

The Bracket of state-vectors depending on many quantum numbers results in products of
KroneckerDelta symbols. The shortcut notation of the Bracket function also works in the
presence of quantum numbers (tip: to avoid typographical mistakes, it is practical to group the
objects visually, by leaving spaces or not after the commas).




> Bracket(u, i,j, k, u, n,m,l);
i 8/.7 o, 8k,1 (12.1.3.11)
[ Kets of a continuous basis of states satisfy an orthonormalization relation involving the
Dirac function (recall that R has been set as a label of a continuous space, by using the Setup
| command, above).

> Bracket(R, x, R, y);

d(y —x) (12.1.3.12)
B %Bracket(R, x,y,z, R, a, b, c) :
% = value(%);
(3)
(R | Ry o) =8 (la—xb—yc—z]) (12.1.3.13)

:In the above, the 3-dimensional Dirac function can be expanded using expand
> expand (%)
=d(a—x)d(b—1y)d(c—2) (12.1.3.14)

X, Y,z a, b, c

Closure relation, Projectors

Every Ket of a space of states can be expanded into a basis of that space. The operator that
performs the expansion is called a Projector. To construct these projectors, information about
the basis dimension is necessary. You can indicate this dimension directly to the Projector
command, or set it by using Setup. The information available at this point is

> Setup (basisdim, cont);
* Partial match of 'basisdim' against keyword 'quantumbasisdimension’

* Partial match of 'cont' against keyword 'quantumcontinuousbasis’
[ quantumbasisdimension = none, quantumcontinuousbasis = {R} ] (12.14.1)

_By default, continuous bases are assumed to range from - % to %, so this information on R is
| enough to compute its Projector.

> P[R] := Projector(Ket(R, x,y,z));

[ee] [ee] [ee]

Po= | | | R (R, ey (12.1.4.2)

[ This expression P, for the projector is also called the closure relation; together with the

orthonormalization relation < R | R > — delta® ([a —x,b—y,c—z]), ittells that
X, Y, Z a, b, c
the set of Kets {| Rx )z > } containing all the possible values of x, y, and z forms a basis, and

so any | psi ) has a unique expansion onto { Rx’ )z > }

Note that the scalar product of P, with itself is equal to itself.
(> P[R].P[R];
> < Rx’ b | x dy dz (12.1.4.3)

‘ X, Vs Z
-~ -0 -0

[ The following is the projector for a basis generically labeled u that has not been set to represent
a continuous basis. By default, if nothing is known about the label of a basis, it is assumed to




be related to a discrete space of states. The dimension of the basis can be indicated directly to
| the Projector command.
> Plu] = Projector (Ket(u, n), dimension = N );
N-—1
P = ‘ u, > < u, | (12.1.4.4)
n=0
[ The information passed to Projector is automatically tracked by the system, so you do not need
 to give it again.
> Setup (quantumbasisdimension, quantumcontinuousbasis );
[ quantumbasisdimension = {R = %, u = N}, quantumcontinuousbasis = {R}] (12.1.4.5)

[ To change this information, see Setup and its redo option.

In order to compute scalar products of Kets belonging to a basis with other Kets of the same
| space, you can define a bracketrule.

> %Bracket(Bra(R, x, y, z), Ket(psi)) = psi(x, y,z);

R, b2 V)= y(x,y,2) (12.1.4.6)
> Setup (%0);
[bracketrules = { ulv)=f(u,v), (R b2 | V)= v(x,,z) H (12.1.4.7)

Now Bracket and the "." operator of the Physics package know how to compute a number of
| related operations.

> Bracket(Bra(R, a, b, c), Ket(psi) );

Y(a,b,c) (12.1.4.8)
[> P[R].Ket(psi);
y(x, ), z) ‘Rx’y’z> x dy dz (12.1.4.9)
> Bra(psi) . P[R];
y(x,y,z) <Rx )z ‘ xdydz (12.1.4.10)
> Bra(psi) . P[R]. Ket(psi);
h(x, , 2)| dx dy dz (12.1.4.11)
=> %Bracket(Bra (R, x,y, z), Ket(pht) ) = phi(x, y, z)
R, .10)=0(xy2) (12.1.4.12)
> Setup (%)
[bracketrules = { ulv)=f(u,v), (R )z O)=0(x»2z), (R bz |V (12.1.4.13)
- \II X ».z }]
(> Bra(psi) . P[R]. Ket(phi);
V(5 7,2) 0(x, 3, 7) dx dy dz (12.1.4.14)

- 0 - 0 - 0




> Bra(phi) . P[R]. Ket(psi);

(o]

O(x,3,2) Y(x,p,z) dxdydz (12.1.4.15)

:This is a bracket rule for the scalar product of a state-vector of the discrete basis v and | psi ).
> %Bracket(Bra(u,n), Ket(psi)) = psi(n);
u |y )=y(n) (12.1.4.16)

n

=> Setup (%);

[bracketrules = { ulv)=f(u,v), 0)=0(x,»2), (R v (12.1.4.17)

X, V, Z X, V, Z

=V(6pz), (u, V) =y(n)}]
[ This rule for < u, | psi > permits projecting ( psi| psi ) onto the u basis, which is equivalent to

| inserting a projector between ( psi| and | psi ).
> %Bracket(psi, P[u], psi);

v ) (|| w (12.1.4.18)

=> value(%o)

N—1
ZO ()| (12.1.4.19)

[ A Ket can have different types of spaces associated with its quantum numbers. In the following
example, Kets from a basis B have four quantum numbers, two of which, B3 and B 4> are

associated with continuous spaces, and the dimension of the space associated with each
| quantum number is different.
> Setup (quantumcontinuousbasis = {B[3 ], B[4 ]}, quantumbasisdimension =
{B[1]=-1/2.1/2,B[2]=0.N,B[3]= -a..a, B[4]= -infinity ..infinity});

1 1
quantumbasisdimension = {R =00, yu=N, B1 = - DR 32 =0.N, B3 =-a (12.1.4.20)
.a, B4 = -0 ,00 }, quantumcontinuousbasis = {R, B3, B4}}

:This is the projector onto the basis B:
> Projector (Ket(B,n, m,x,y));

4 N 1
B 1 B 1
n—;,m,x,y n—;,m,x,y

[ee]

x dy (12.1.4.21)

- m=0n=0
-a

Quantum operators, eigenvectors, eigenvalues and commutators

To indicate to the system that a letter represents a quantum operator, use the Setup command;
| this sets B as a quantum operator.
> Setup(op = B);
* Partial match of 'op' against keyword 'quantumoperators’
[ quantumoperators = {B} | (12.1.5.1)




Note that noncommutative objects are displayed in different colors. To change this color, see ?
Setup.

Because B is now a quantum operator,

s by Ay

B . . y > is an eigenvector of the four operators
B, B,, 83, and B m with eigenvalues m, n, x, and y, respectively. For example,

(> B[2].Ket(B, m, n,x,);

n | Bm’ poy > (12.1.5.2)
_Quantum operators can also be 3-D Euclidean vectors; for that purpose, you must load the

| Physics[Vectors] subpackage.

> with(Vectors);

[&x, "+, ., ChangeBasis, Component, Curl, DirectionalDiff, Divergence, (12.1.5.3)
Gradient, Identify, Laplacian,N, Norm, Setup, diff]

[~ -
Set the vectors L, ?, andl_; as quantum operators (note the use of the option redo to erase
| previous definitions of quantum operators).
> Setup(op = {L_, FLPs% 02D PP, L, Ly, L, }, redo );
* Partial match of 'op' against keyword 'quantumoperators’

[quantumoperators = {L, Lx, Ly, LZ, ;, PPy P, 1_"), X, ¥,z H (12.1.5.4)

L . N
Define L as the angular momentum operator /. = 7 x ;, and set commutation rules for the

components of 7 and ;
>L =r &p;

L =7x) (12.1.5.5)

=> ro=x* i+ y* j+z* k ) ) )
F=ix+jy+tkz (12.1.5.6)

> p_ =pritp*jtp* K A
p=ip.+J p,+kp, (12.1.5.7)

To enter the commutation rules between each component of 7 and E with each other, you can
write these commutators and pass the whole set to Setup. When there are many, as in this case,
it is more convenient to use a Matrix and an indexing function. Enter the core information as a

| procedure: C represents the Commutator of the Components of the vectors a and b.
> C:= (a_,i,b_,j) = %Commutator (Component(a_, i), Component(b_,j));

Co= (aib) = | (@), (b),

i (12.1.5.8)

So, given i and j from 1 to 3 identifying the components of 7 and 77, an algebra can be set as set
| as follows.
> algebra == (i,j) — (
C(r_,i,p_,j) =1*KroneckerDelta[1i, ],
Cr ,i,r ,j)=0,
Clp_ip_.j)=0); o .

algebra == (i, ]) — (C(?, i,p.j) =18, »CUL T, j) =0,C(p, i, 7, 7) =0) (12.159)

Now all of the commutators between each component of 7 and; can be constructed with one



=call to Matrix.
> Matrix(3, 3, algebra);
H( xp.| =L[xx]_=0,[p.p | = )( Np,| =005y =0,p,p (12.1.5.10)

_=O>,< xp | =0,[xz|_=0, px,pZ_ZO)],
Dy

[ ( b%

PP, | =0Y, ([P, |_=0. 121 =0, [p,p. | =0)]

_ =0 nxl =0 [pep | =0Y. ([2p,]_ =L Dny]-=0,
[( zp,| =0,[zx]_=0,|p,p, _ZO),( %D, =0, [zy]_=0,
pz,py_ZO),( zp,| =Lzz]_=0, pz,pZ_ZO)”

;Pass this Matrix to Setup to set the algebra rules.
> Setup(%);
[algebrarules = { PP = 0,|p.p.| =0, [p.p | =0, xp | =L[x (121.511)

p

y_:O’ x:pz_:()’ })7px_:0’ ))7p

Z,px_:()a Z’py_:()a Z,pz_:I, Z,X_ZO, Z,}/‘ :0}]

- -
Set, for instance, the values of Lx, Ly, and LZ, the components of ..

> L = i.L;
L =p_y —P,c (12.1.5.12)

> L= j.L
Ly =p z—pX (12.1.5.13)

=> L = k.L;
) L = p,X—p.y (12.1.5.14)

B -
| Verify the commutator algebra for these components of L.
> Commutator(Lx, Ly) =] LZ;

> Commutator(LZ, Lx) =] Ly;
-Ip x+1p z=1 (pxz—pzx) (12.1.5.16)

> Commutator(Ly, LZ) =] Lx;
—Ipyz +1p y=1 (pzy—pyz) (12.1.5.17)

The three equations above are identically true.

Annihilation and Creation operators

Other operators frequently used in different contexts are the Annihilation and Creation
operators: they augment or diminish the value of a quantum number by one. These operators




are suitable, for instance, for working with multi-particle vector states; in that context the
quantum numbers are called occupation numbers.

This constructs a pair of annihilation/creation operators acting on the basis 4 involving only one
| quantum number.

> am = Annihilation(4);
I (12.15.18)

> ap = Creation(A);
ap ‘= a+ (12.1.5.19)

[ Annihilation and Creation operators act on Kets belonging to discrete bases and assume that
the "lower" state happens when the quantum number is equal to zero (frequently called
| "vacuum": a ket with occupation number equal to zero represents a state with "no particles").

> K := Ket(4, n)
K = |An > (12.1.5.20)

> am . K;
|4, ) (12.1.5.21)
> am . %;

\/7,/ n—1 ‘An ) > (12.1.5.22)

> am’. K assuming k :: nonnegint, n .. nonnegint

[r=F+ 1), |4, _,) (12.1.5.23)

> amk. K assuming nonnegint
(n—k+1), |4, ) (12.1.5.24)

> convert((12.1.5.24), factorial

n!

= kf)! |An . > (12.1.5.25)
=> ap . K;

Jn+1 ‘An 4 > (12.1.5.26)
=> ap . %;

VnF T n+2 |4, ) (12.1.5.27)

> apk. K assuming nonnegint
(n+k)!
n!

4, 1) (12.1.5.28)

[ The Commutator of the operators ¢- and « + are automatically set when these operators are
| constructed, and satisfy

> (%Commutator = Commutator) (am, ap);
a-,a+|_=1 (12.1.5.29)

To indicate that the Kets of a basis are fermionic, use an anticommutative variable to label the




| basis. To set the prefix identifier of anticommutative variables use the Setup command.
> Setup (anticommutativeprefix = Theta);
| anticommutativeprefix= {©, L}| (12.1.5.30)
> type(Theta, anticommutative);
true (12.1.5.31)
> Ket(Theta);
|©) (12.1.5.32)

Construct Annihilation and Creation operators acting on this basis; use the option notation =
| explicit so that the basis and the quantum numbers onto which these operators act are explicit.

> Am = Annihilation (Theta, notation = explicit);

Am = a- (12.1.5.33)
G)1

> Ap = Creation(Theta, notation = explicit);
Ap = a+ g (12.1.5.34)
1
| The AntiCommutator of these operators satisfy
> (%AntiCommutator = AntiCommutator) (Am, Ap);
aty | =1 (12.1.5.35)
P4

a_
@9
1

_According to Pauli's exclusion principle, only one fermionic particle can be in a given state, so
| starting from the vacuum,

> Ket(Theta, 0);

1, ) (12.1.5.36)
_> Ap . %;
1©,) (12.1.5.37)
=> Ap . %;
0 (12.1.5.38)
(> Am . %%:
1, ) (12.1.5.39)

;And as is always the case, the annihilation operator acting on the vacuum returns zero
> Am . %;
0 (12.1.5.40)

jFrom where: powers of anninilation/creation operators of fermionic types are equal to zero
> [Ap2 , Amz]
; 2 2

[a + 0 a- 3 } (12.1.5.41)
(> Simplify (%)
[0,0] (12.1.5.42)
;For fermionic operators, thus, the occupation number operator is idempotent
> N := A4p Am

(12.1.5.43)



N = a—|—®1 a—gl (12.1.5.43)

> NNN=N
a—|—®1 a- 1 a+®1 a—(91 (1—1—61 a—G)1 = a+®1 a—(91 (12.1.5.44)

> Simplify (%)
a+® a-g =a—|—® a-g (12.1.5.45)

[

V Exercises

2

1. Show that the commutator relation [ O, P]_ =1 & implies % < Dclta(P)2 ) ( Dcl‘[a(Q)2 )

\ 4 Solution

| > restart; with(Physics ) :
[ Consider two conjugate observables O, P, and the corresponding Hermitian operators
| satisfying [0, P]_ =14
:> macro(h="h") :
> Setup (Hermitian = {Q, P}, %Commutator (Q, P) =1*h);
* Partial match of 'Hermitian' against keyword "hermitianoperators’

[algebrarules = {| O, P|_ =1}, hermitianoperators = {P, O} ] (12.2.1.1)

_Suppose now that the system where O and 7 act is in some state | psi ) normalized to 1, and set
| | pst ) as the default state for computing Brackets.

> Setup (%Bracket(psi, psi) = 1, bracketbasis = psi);
| bracketbasis =y, bracketrules = { (¢ |y ) =1}] (12.2.1.2)

:The mean values of the operators O and 7 in the state | psi ) are then given by:

> Om = Bracket(Q);

Om:= (0) (12.2.1.3)
(> Pm = Bracket(P);

Pm = (P) (12.2.14)
[ Let's introduce another Hermitian operator, Delta, and denote Delta(Q) and Delta(7) the

| operators representing the observable deviations from these mean values by ( O ) and ( 7).

> Setup (her = Delta);
* Partial match of 'her' against keyword 'hermitianoperators’

| hermitianoperators = {A, P, O'}] (12.2.1.5)
> DO = Delta(Q) = O - Bracket(Q);
DO = A(Q)=0—(0) (12.2.1.6)
> DP = Delta(P) = P - Bracket(P);
DPi= A(P)=P— (P) (12.2.1.7)

[ The value of the Commutator between Delta(Q) and Delta(7) is a consequence of the value of




the Commutator between O and 7, and so it can be computed by rewriting the deviations in
| terms of O and 7.

> %Commutator (Delta(Q), Delta(P));

A(Q), A(P) | (12.2.1.8)
=> eval(%, {DQ, DP});
O—=(0),P—=(P)]_ (12.2.1.9)
> value(%);
In (12.2.1.10)

[ Track this result as an algebra rule, so that in what follows we compute directly with Delta(Q)
| and Delta (7).
(> Setup(%%% = %);

[algebrarules = { O,P|_=1n, |A(O),A(P)|_=1 h}] (12.2.1.11)

2
To show now that [0, P]_ =1 # implies % < (Delta(P)? ) ( Delta(0)? ), consider the

action of these deviation operators Delta((O) and Delta(/7) on the state of the system | psi ),
and construct with them a new Ket involving a real parameter lambda. When entering the
following command, you will be asked whether it represents a function definition or a
remember table assignment, choose remember table assignment (to perform these assignments
with a function on the left-hand side without being asked questions enter first you can also

| enter Typesetting:-Settings ( 'functionassign = false') )

> Ket(Psi, lambda) := (Delta(Q) + [* lambda* Delta(P)) . Ket(psi);

“PU = AQ) | W) +IA(AP)|y)) (12.2.1.12)

[ The square of the norm of | Psi,

ambda >, for lambda real, is

=> Dagger (%) . % assuming lambda :: real;
2\ .2 2
| (A )N = L(AP) A)) A+ IR (A)AP) ) + (A0)) (122113
Simplify this norm, taking into account the commutator [ Delta(Q), Delta(”)]_ =1h, setin
[(6.2.12)
> Simplify(%);
2\ .2 2

(AP )N =an+ (A©0)) (12.2.1.14)
;This is a polynomial in lambda of second degree; its discriminant is negative or zero.
> discrim (%, lambda) < 0;

2 —4{ap)) {(a0)) <o (12.2.1.15)

2
isolating %, we obtain the lower bound for Delta(P)2 ) ( Delta(Q)2 ).

> isolate(%, h"2) / 4;
hZ

T < (ap)?) (A0)) (12.2.1.16)

[ Note that this result is a consequence of [Delta(Q), Delta(”)]_ =1h, which in turn is a

2
consequence of [0, P]_ =11, so that O and 7 too satisfy ffT < P ) ( Q2 ), and in fact




the product of any two conjugate Hermitian operators, as well as of the root-mean square
deviations of them, satisfy this inequality.

[>

2. Let] =7 x 7. Show that if

- -

(1) ()] =Tdelia . [(7), (D),] =0 [(D)n(D),] =0,
then

-2 .
[ IZ]", Li]_ =0 and [Ll., Lj]_ =1 epsﬂonl.’j L
V¥ Solution




