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Abstract—This paper concerns controlled in-phase synchro-
nization of two mechanically coupled metronomes. A Propor-
tional and Derivative feedback control as well as a feedback
linearizing controller are proposed as control laws in order to
minimize the synchronization time. Experiments in a laboratory
prototype show the feasibility of the proposed control law.

Index Terms—Pendulum Synchronization, Feedback Lineariz-
ing Control, PD Control.

I. INTRODUCTION

Synchronization is the process that occurs when two or more
coupled systems tend to display the same motion at the same
time. We can find examples of this kind of phenomena in
biological systems such as fireflies from South-East Asia that
gather together in trees at night to flash in synchrony [1].
Other examples include: pacemaker cells in the mammalian
heart as well as in the nervous system, collective oscillations
of pancreatic beta cells and synchronized menstrual cycles in
behaviorally coupled women [2].

The first documented scientific description of synchroniza-
tion in mechanical systems was made by Christian Huygens
in 1657 when he was developing a pendulum clock in order
to locate the longitude of a ship. Huygens found that two
pendulums attached to the same beam supported by two chairs
would swing in exact opposite directions. He observed this
anti-phase synchronization behavior of the pendulums after
some time regardless of the pendulums initial conditions. A
close version of the Huygens setup conceived to illustrate some
mechanical properties in physics classroom is shown in [3].
In this case the in-phase and anti-phase pendulum phenomena
are studied via the characterization of the system parameters
in the time course for synchronization. The experimental setup
employs two Super-Mini-Taktell metronomes resting on a
light wooden board that sit on two empty soda cans. The
pendulum phases are measured using microphones that allow
the recording of the metronomes ticks. Each pendulum uses
a dedicated microphone. Data acquisition card and signal
analysis software is then employed to process the recording in
order to measure the metronomes phases. The implementation
does not include the measurement of the board displacement.

Reference [4] reconsiders Huygens observations and repro-
duces his original results building an updated version of the
two clock system. In the performed experiments the coupling
strength is studied by changing the ratio of the mass of the

pendulums to the system mass. Authors show that the coupling
strength influences the behavior of the clocks for in-phase,
anti-phase and a “beating death”, this is, when one or both
pendulums cease to run, allowing a better understanding of
Huygens observations. Authors use Poincare maps to study
the non-linear dynamics of the system. The experimental setup
includes two pendulum clocks, a wood beam attached to the
two clocks that are mounted on a low friction cart and then the
whole system mounted on a slotted cart. The angular position
of each clock pendulum is measured using a tracking laser.
The voltage signal from the laser is then read by an analog to
digital converter via a dedicated acquisition card.

Reference [5] is inspired in Huygens observations and in
what is discussed in [4] and [3]. Authors pay attention to the
different regimes: in-phase synchronization, anti-phase syn-
chronization and intermediate regimes. The experimental setup
uses two standard Wittner Maezel metronomes. The prototype
is suspended by leaf springs, allowing frictionless horizontal
displacement with linear damping and stiffness. The pendulum
angles are measured using anisotropic magneto resistance
(AMR) sensor delivering an analog voltage proportional to
the pendulum angle. The velocity of the platform is measured
using a laser vibrometer. Experimental results are obtained for
in-phase, anti-phase synchronization depending on the system
parameters such as coupling and damping ratio.

In this paper we study the in-phase pendulum synchro-
nization using control laws allowing a faster synchronization
of the pendulums. Similar to [3] and [5] we employ two
metronomes; however, the metronomes are mounted on a low
friction moving cart as in [4]. The cart is coupled to a direct
current motor via a timing belt and pulleys allowing then
the reduction of the synchronization time via feedback-based
control of the motion of the cart. In order to measure the
metronomes angular motion as well as the cart position we use
a vision system, inscribing then our exposition in the visual
servoing field domain of study.

The paper is organized as follows. Section II presents the
model of the pendulum system. Section III describes the ex-
perimental setup. Section IV is dedicated to the control design.
Section V presents both the simulation and the experimental
results. We end with some concluding remarks.

II. METRONOME SYSTEM MODEL

In this paper we consider two metronomes resting on a
surface that couples them mechanically mounted on a cart



allowing only horizontal displacement. The synchronization
of the metronomes pendulums will occur naturally due to
energy transmission via the movable platform and when the
difference in natural frequencies is small. Fig. 1 depicts the
system configuration. We consider the metronome as a regular
pendulum with rod and a bob at the end of the arm. In the
non-linear system model we suppose that the rod does not
have mass.

Fig. 1. Two metronomes placed over a movable surface.

The mathematical model is inspired from [3]. The math-
ematical model for a single metronome on the cart is given
by:
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where θ is the angle between the metronome arm and the
vertical line, I is the inertia moment of the metronome bob, m
is the mass of the metronome bob, l is the length of the arm of
the metronome. g is the acceleration due to gravity, and x is the
horizontal position of the cart. The third member of the eq. 1 is
the escapement, i.e., the force transfered from the metronome
spring to the pendulum of the metronome. This term is of the
van der Pol type and it increases the angular velocity when
θ > θ0. For small values of ε the term will produce stable
oscilations. If we consider the bob of the metronome as a
point mass, its inertia moment is:

I = ml2.

So the mathematical model for one metronome results in
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For the equations of two metronomes we have

m
(
l1θ̈1 + gsθ1 + cθ1 ẍ
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where sin θi = sθi and cos θi = cθi . The center of mass for

the two pendulums is:
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where M is de mass of the cart.
We assume that the total external force is cero, then the

equation of motion of the cart is:
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By substituting eq. 3 into eq. 4 and considering the torque
input force given by de DC motor τ we have that:
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The coupled system equation are then given by:
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ẍ (M + 2m) +
2∑
i=1

mli

(
cθi θ̈i − sθi θ̇

2
i

)
= τ, (6)

Using generalized coordinates q1 = θ1, q2 = θ2 and q3 = x
for the above equations we can define the new state variables
as:
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The second order system is then given by:
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III. EXPERIMENTAL SETUP

The mechanical laboratory prototype includes two Bestmay
metronomes model BCM 330, linear bearing guide THK
2560R, custom built aluminum base, DC brushed JDTH-2250-
BQ-IC motor, driven by a Copley Controls analog power
servoamplifier, model 413, configured in current mode. An
optical encoder gives angular position of the DC motor having
10,000 pulses per revolution. The experimental setup is based
on the architecture in [6]. A computer called the Vision
Computer with a 3.0 GHz Intel Pentium IV processor performs
image acquisition and processing using a Dalsa Camera model
CA-1D-128A, which is connected to the vision computer
through a National Instruments 1422 digital interface card.



The Visual C++ language, the image processing library ICE
and the DIAS environment [7] allow programming the image
processing algorithms. The visual sampling was performd at
110 Hz. A second computer, called the control computer that
performs data logging and executes the control algorithm has a
2.0 Ghz Intel Pentium IV processor and uses a MultiQ-3 card
from Quanser Consulting that performs data acquisition. The
Matlab/Simulink software operating with the Wincon 5.2 real-
time environment software from Quanser Consulting serves as
programming platform. The cart control loop was closed at 1
Khz.

Fig. 2. Visual computing setup.

The cart position and the metronomes pendulum angles
are measured using the above architecture. The camera is
positioned in order to visualize the whole workspace. The
image processing software grabs the scene image, given a
fixed image threshold performs image binarization and extracts
the contours in the scene. For each contour perimeter, area,
form factor (area/perimeter) and contour centroid position are
calculated. In order to filter correctly each metronome and the
cart positions, we select different targets for the metronomes
and the moving base. Each target has a different identifying
geometrical figure: one pendulum has a triangle, the other
has a square and the cart has a circle. The targets where
mounted on cardboard and are attached to each part. Each
target will have a specific perimeter and area. Thus, vision
software can correctly identify convex figures and can filter
each position independently. The vision computer transmits
via a RS-232 link the three positions, for each pendulum
and the cart position to the control computer. The angles are
calculated given the position of the metronomes and the cart
using trigonometric relationships. Fig. 2 depicts the position
of the pendulums and the cart using image processing with the
camera. Fig. 3 shows a photograph of the experimental setup.

The vision computer provides the position of the three
targets: square (Sqx, Sqy), triangle (Trx, T ry) and circle

(Crx, Cry). The pendulum angles are obtained via
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)
Velocities and accelerations where estimated using the high

pass filters of the form

H(s) =
as

s+ a

Fig. 3. Experimental setup.

IV. CONTROL DESIGN

Here we present two different control schemes that will be
compared in the sequel: a Proportional Derivate (PD) control
and a Feedback Linearizing Control.

A. PD Control

A PD control loop for the cart position is closed around x
using a sinusoidal reference signal. PD control law is given
by

τ = Kpq̃ −Kdq̇3

q̃ = qd − q3

Where Kp and Kd are derivative and proportional gains.
The reference signal qd is a sine function with a frequency
near to the natural frequency of the metronomes. This control
could be seen as an open loop control regarding θ1 and θ2
due to the fact that the feedback does no come from of the
metronomes positions. The idea of this control is to make
the cart to track a sine reference; thanks to the mechanical
coupling the metronomes will in some time follow the cart
motion and then the whole system will be synchronized.

B. Feedback Linearization Control

The objective of this control is to reduce the synchronization
time. Now we ensure the cart to track a sinusoidal signal
which is provided by one of the metronomes. As cart will
follow one of the metronomes and due to the mechanical
coupling to the other metronome will follow the first allwoing
the system to synchronize. This should reduce the metronome



synchronization time. For the system presented in equation
(7), we propose the following control law

u =M (q) v + C (q, q̇) q̇ +G (q) (8)

We define a desired trajectory, in this case the trajectory
will be defined by one of the metronomes, then the cart will
follow this metronome. Then the desired position are given by
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Since the system is underactuated, the control signal in (8)
is applied to the DC motor that is the only actuator in the
system having state variales q1 = θ1, q2 = θ2 and q3 = x .

V. RESULTS

In this paper we propose two different controllers to improve
the natural time of sincronization of the two metronomes, the
gains of this controllers were obtained by a trial and error
method.

Fig.4 shows the behavior in simulation of the model without
any input control, with initial conditions q1 = 0.9, q2 = 0.25.
This simulation of the mathematical model shows that the
system is synchronized after approximately 27 seconds.

The behavior using the PD controller is shown in fig. 5,
it can be seen in the figure that the metronomes synchronize
in-phase after 10 seconds. Comparing with fig. 4 the sinchro-
nization is achieved in less time.

We can observe that the simulated behavior for the model
in (6) shown in fig. 6 by applying the Feedback Linearizing
Control achieves in-phase synchronization in about 7 seconds.
The system’s parameters used for the simulation were taken
from the experimental setup and from the metronomes specifi-
cations (weight, distance from metronome pendulum to pivot).
The value of the mass of the cart was obtained by weighting
it.

Comparing the responses obtained Fig 7 and 6 we can
observe that the response to Feedback Linearizing control, the

Fig. 4. Simulation result for metronome synchronization without control
input.

Fig. 5. Simulation results using PD control.

simulation and experimental behaviour are quite similar. The
main difference is the signal amplitued and the metronome
synchronization time that is between 6 and 8 seconds.

VI. CONCLUSIONS AND FURTHER WORK

In this paper we presented a mathematical model of coupled
mechanical system for two metronomes and a moving cart.
The model allowed studying in simulation the synchronization
of the metronomes without a control loop and then using
a control loop for the cart. The control loop allowed the
reduction the synchronization time. Two control schemes



Fig. 6. Simulation results using Feedback Linearizing Control.

Fig. 7. Experimental resuts using Feedback Linearizing Control.

were tested, a PD control loop for the cart position and a
Feedback Linearization Control for the metronome position
reducing synchronization time. Experiments in a laboratory
prototype show the feasibility of the proposed control laws.
In future work we shall study the asymptotic stability of the
synchronization error, also other control laws will be studied
such as Sliding Mode Control in order to achieve better

synchronization times.
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