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Abstract:

The key idea in this project is to learn through exploration using a web of user-friendly Highly Interactive
Graphical Interfaces (HIGI). The HIGIs, structured as trees of interlinked windows, present concepts
using a minimal amount of text while maximizing the possibility of visual and analytic exploration. These
interfaces run computer algebra software in the background. Assessment tools are integrated into the
learning experience within the general conceptual map, the Navigator. This Navigator offers students self-
assessment tools and full access to the logical sequencing of course concepts, helping them to identify any
gaps in their knowledge and to launch the corresponding learning interfaces. An interactive online set of
HIGIS of this kind can be used at school, at home, in distance education, and both individually and in a

group.

Computer algebra interfaces for High-School students of
"Colegio de Aplicacao" (UERJ/1994)

* Pilot experience with high-school students of grades 10 and 11 of the "Colegio de Aplicagdo of the
State University of Rio de Janeiro". Interview of 4/July/1994, from the archives of the "Jornal do
Brasil" (at that time a sort of Brazilian version of "The New York Times").
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Cheb-Terrab considera excelentes os resultados obtidos unto aos alunos do Colégio de Aplicagao da Uerj

Computador ajuda alunos a
entender fisica e matematica

m Sistemas criados pela Uerj facilitam o ensino no 2° grau

ALICIA IVANISSEVICH
Computadores com tela colori-
da. imagens ¢m MoOvVImento. pro-
eramas inteligentes ¢ teclados pa-
ra conversar com as maguinas
estio sendo adotados por profes-
sores da Universidade do Estado
do Rio de Janeiro (Uerj) parit mo-
tivar alunos de segundo grau ¢ de
graduagio a aprender conceitos
complexos de matematica ¢ fisica.
Consideradas matérias aridas pela
maioria dos estudantes — siio res-
ponsivels por alto indice de re-
provagio —. 4 matemiatica e o
fisica passam agoru a fazer parte
. . sr_me Vol d il o

Laboratorio de Fisica Computa-
cional (Lafic) do Instituto de Fisi-
ca da Uerj resolveram testar sofi-
wares junto a alunos das primeira
¢ segunda »séries do segundo graa
do Colégio de Aplicagiio da Uerj.

“Testamos programas instruti-
VoS ¢ interativos com quatro alu-
nos”. aponta Edgardo Cheb-Ter-
rab. coordenador do Lafic. Ele
explica que os softiwares instruti-
vos sido especificos para determi-
nados tipos de problemas., como o
estudo do movimento de um pen-
dulo ou da trajetoria de um plane-
ta a0 redor do Sol. Ja os interati-

vive Aasrmitom ane o echudante

Edgardo ndo dispensa a figura
do professor. O contato humano
¢ imprescindivel”. afirma. “Mas
o0s programas complementam o
aprendizado. As respostas sio
instantineas e satisfazem de ime-
diato a curiosidade do aluno. Ele
consegue entender todo o precedi-
mento de um cilculo sem se per-
der pela atengio obsessiva de nio
errar sinais e contas.”

Em quatro meses de trabalho,
os resultados foram considerados
excelentes pela equipe do Lalfic.
“Propusemos lemas tratados no
primeiro ano da universidade. co-
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Motivation

When we are the average high-school student facing mathematics, we tend to feel

* Bored, fragmentarily taking notes, listening to a teacher for 50 or more minutes

» Anguished because we do not understand some math topics (too many gaps accumulated)

* Powerless because we don't know what to do to understand (don't have any instant-tutor to ask
questions and without being judged for having accumulated gaps)

» Stressed by the upcoming exams where the lack of understanding may become evident

Computer algebra environments can help in addressing these issues.

* Be as active as it can get while learning at our own pace.

* Explore at high speed and without feeling judged. There is space for curiosity with no
computational cost.

* Feel empowered by success. That leads to understanding.

* Possibility for making of learning a social experience.

Interactive interfaces

Interactive interfaces do not replace the teacher - human learning is an emotional process. A good
teacher leading good active learning is a positive experience a student will never forget

Not every computer interface is a valuable resource, at all. It is the set of pedagogical ideas
implemented that makes an interface valuable (the same happens with textbooks)

A course on high school mathematics using interactive interfaces - the Edukanet
project

— Brazilian and Canadian students/programmers were invited to participate - 7 people worked in
the project.

— Some funding provided by the Brazilian Research agency CNPq.
Tasks:

*Develop a framework to develop the interfaces covering the last 3 years of high school



mathematics (following the main math textbook used in public schools in Brazil)
* Design documents for the interfaces according to given pedagogical guidelines.

* Create prototypes of Interactive interfaces, running Maple on background, according to design
document and specified layout (allow for everybody's input/changes).

The pedagogical guidelines for interactive interfaces

* [t is key to address the lack of preparation: provide clear information on the pre-requisites to
understand a given topic and help in switching to study the pre-requisites when appropriate
(the Navigator).

* Restrict the presentation contents to core knowledge, leave derived knowledge to the
exercises.

* Minimize the amount of text, maximize the possibility of algebraic exploration with
visualization.

* Minimize the requirements to understand a new concept (Example: explain derivatives
without requiring understanding of physics)

* Clearly distinguish "definitions" (as words of a dictionary - provide links to them) from
"mathematical concepts" (the topics being presented).

The Math-contents design documents for each chapter
Example: complex numbers

Complex numbers

Part 1) Algebra

Properties and operations: addition, subtraction, multiplication, exponents, conjugates,
division (using conjugates and linear systems);

Window 1 - The Imaginary Unit

Panel Definitions:

The imaginary unit is i = \/—_1 , such that i* = - 1.

The imaginary unit is a new concept: a number whose square is negative. We will see
that the properties of exponents, for complex numbers, are a generalization of the
properties of exponents of real numbers.

By convention, we use the variable z to indicate a complex number, z = x + y i, where
The real partofzisa € R, thatis,a=N(z)
The imaginary part of zis b € R, the coefficient of i, thatis, b = J(z).

Daniel, it would probably look nice if you'd make a box witha =R (z) and b = J(z) ,
with the explanations below the box.



We can thus think of all real numbers as complex numbers for which b = 0.
When a =0, z = b i is a purely imaginary number.

Panel Exercises:

1. Given z =m — 2 + 4 i, find the value of m such that z is a purely imaginary

number, m= ...

2.and 3. Two more examples for practicing the real/imaginary part of a number.

4. Given two complex numbers, z, =3 + biand z, = ¢ — 2 i, find the values of b and

csuch thatz, =z,. Message: Note that z, =z, implies that % (z1 ) =3 (z

S(21) =3(%2)-

Notes:

2) and

- the exercises need buttons alongside for correction, etc.

- the message should appear in the box with the correction, whether the exercise was

done correctly or not.

File Edit Help
Definition of Complex Number
Define imaginary unittobe ;—./_1 ,suchthat 7 =—1

The imaginary unit is a new concept: a number whose square is negative. We
will see that the properties of exponents, for complex numbers, are a
generalization of the properties of exponents of real numbers.

By convention, we use the variable z to indicate a complex number:

Thereal partof zisain ® , thatisa = R (2)

|
z=a+bi
|

The imaginary partof zisbin ® , thatisb = 5 (2)

Exercise 1

Given z =m - 2 + 4i, find the value of m such that zis a purely imaginary

number,

Exercise 3

Given z =m -n +pi, find the real and imaginary parts.

R@)= 3@-=

Explore Further

Properties of Complex Number
Two complex numbers z, =2z, implies that:
R(z,)=R(z,) and 3(z,)=3(z,)
We can thus think of all real numbers as complex numbers for which b = 0.

When &z =0, z =5 is a purely imaginarynumber.

Complex Number

b=0 a=0,b#0

real number purely imaginary number

Exercise 2

Given z = 3 - (p+5)i, find the value of p such that z is a real number.

Exercise 4
Given two complex numbers, z,= 3 +bi and z,= ¢ - 2 find the values of b
and csuch thatz, =z,.

Addition and Substraction ] [ Multiplication ]

[ Complex Conjugate ] [

Advanced Algebra

¥V Window 2 - Addition and Subtraction of Complex Numbers

Panel "Addition"

When we add two complex numbers,

>z, =a-+ bl

z, =c+dl



z. '=a+1b

1
zy=c+1ld (3.1.2.1.1.2.1)
> zy =z, + z,
zy=a+lb+c+ld (3.1.2.1.1.2.2)
what do you notice about the real part of z, and the imaginary part of z,?
n (23 ) =..
I (23 ) = ...

When these are filled out, there should appear a message showing that
a+c= ER(Z]) + 9‘%(22) and b+ d= S(zl) + S(zz).
Panel "Subtraction"

When subtracting, we need to make sure to use the distributive rule:
zy—z,=a+tbi— (ctdi)

>z —z
1 2
a+1b—c—1d (3.1.2.1.1.2.3)
" 1 n
Panel "Exercises
>
| % Addition and Subtraction of Complex Numbers =)
Addition Subtraction
let zy=a=+bi and z,=c+di then let zy=a+bi and z,=c+di then
z,=z+z,=a+bi+c+di 7, =z -z, =a+bi—c—di
what do you notice about the real part of z,and the imaginary part of z,? what do you notice about the real part of z,and the imaginary part of z,?
%)= | =99 6= [ -85
3(z,)= =5(z)+3(z,) (z,)= =3(z)-3(z,)
Exercise 1 Exerdse 2
Givenzy=3-5iand z,=-2-i, findz; =2z, +2,. Givenz,=-3 +4iand z; +2z,= 12 +9, find z,.
Exerdse 3 Exercise 4
Given z=a+ 2i and 7= 13 - bi, 2;-2,= 2+3i.Findaandb. Given 7= 2-4i, 2,= 1-2, and 2= 5+ 7, find 2,=2,-2,+2;

¥V Window 3 - Multiplication of Complex Numbers

Panel "Product"
Let us multiply two complex numbers:

>z, =a-+ bl

z, =c+dl

z, =a+1b

z,=c+1d (3.1.2.1.1.3.1)

Daniel, the idea is for you to show the product with arrows pointing towards where
each term came from.



> expand(z1 22)
actlad+1bc—bd (3.1.2.1.1.3.2)

and stress the fact that i* = - 1.
Then, ask the student to write the imaginary part and the real part of the result.

Panel "Aplications"
1. Let us find the real partof z z, whenz = -i,z, =2 + 1.

)
>z =i
zy=2+1i:
R(-i(2+1i))=..

(Buttons Correct and Calculate...)

2. Given z, = 1 +iand zy= 1 — i, let's find Z, Z,.
Z1 22 = ...

(Buttons Correct and Calculate...)

Observe that z| and z, differ only in the sign of their imaginary parts. These numbers

are called complex conjugate. Y ou can verify [ link to the window of Complex
Conjugates ] that the product of two complex conjugates is always a real number.



£/ Multiplication of Complex Number ==

Product

Review: From the definition of complex number, we know that 7 = —1

let z,=a+bi and z,=c=+di ,then
Click the terms in the result to s how it 1z obtained
z, -z, =(a+bi)-(c+di)=ac+ adi+cbi—bd

As a result, the real part and imaginary part of the product is:

a2
Application 1

Let's find the real part of zlzzwhen z,=- and z,=2+i.

R(z,-z,)= [ Verify ][ Answer

Application 2

Givenz,=1+i and z,=1-i, let's find z,2,.

z,-z,= [ Verify ][ Answer

¥V Window 4 - Complex Conjugates

Panel "Using Complex Conjugates"
1. Write a complex number z and its conjugate z and find the product:

Daniel, you could put three boxes here, one for z = ... ,the other for z = ... , and the
lastforzz = ...

Button: CALCULATE which does the multiplication step by step, if the person typed
in the number and its conjugate correctly, or gives an example otherwise; and a button
CORRECT.

1 . . . . .
2.Letz = T—=7" Just like when we rationalize a fraction to avoid square roots in

denominators, we will also avoid imaginary numbers in denominators. Since a

complex number multiplied by its conjugate gives a real result, we rationalize z, using



the conjugate of its denominator:

1 1+17

z, = * =

L 1—=7 1+1

(Buttons Calculate and Correct)

Note that now z, is in the form a + bi.

Complex conjugates are useful, for instance, in the division between complex
numbers.

Daniel, the word division should link to the next window.

Window 5 - Division of Complex Numbers
Panel "Division"

z
1
Let's take two complex numbers z, =a + bi,z, =c + diand find —.
z
2
% a+bi . . o
We'll have — = 4 but how do we write this as a complex number, that is, in
z c [
2

the form x + y i? We use the complex conjugate of the denominator:

21 at+bi a+bi c—di
z c+di c+di c—di

z
The result is that L

%

[button Calculate shows the multiplication step-by-step, button Correct]
Panel "Exercises"

Consider the complex numbers z, =3 +i,z, =4 — 2 1.

z

1. Calculate L
%

z -1—22

2. Calculate 1—

lZ1

Window 6 - Exercises

[Daniel, here go some exercises where the student can apply all that has been learned
so far.



Part 2) Advanced Algebra

Module, phase and exponential representation

Window 1 - Graphic Representation of a Complex Number

Panel "The Gauss Plane"
A complex number z can be represented graphically on a Cartesian plane where the
horizontal axis represents }i (z) and the vertical axis represents J(z):

[Daniel, the idea is to have a graph showing a point labeled z = a + b i with dotted
lines dropping to the horizontal axis showing a = R (z) and to the vertical axis
showing b = J(z)]

The plane above is also called the Gauss plane, and its axes are called real axis and
imaginary axis.

Panel "Exercises"

[Daniel, here go a couple of simple exercises to make sure the student knows how to
write the complex number corresponding to a point on the Gauss plane and on which
axis a pure imaginary number would lie |

Window 2 - Module and Phase of a Complex Number
Panel "Module"

>

Each math topic: a interactive interrelated interfaces (windows)

For each topic of high-school mathematics (chapter of a textbook), develop a tree of interactive
interfaces (applets) related to the topic (main) and subtopics

Example: Functions

* Main window
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datines a function In the following domaing

Properties

Chck on each button 1o analyze properties of the function

(oot | [ swn | | Poey | | Maxmsandmoma | | _Siope gnesr tunctions) |
(e ] [[cioze ]

* Parity window



Chck 10 selact an option,

if the Tunction is 0dd o even

O bvery O odd

* Visualization of function's parity

JS(-x)=f(x) S(-x)=-f(x)

and is odd 'when

S-x)=x*-1

Substtuting x for -x in the given function, we obtain

S(x)=x%-1
Comparing to the function

even
we see that the function Is

V' The Navigator: a window with a tile per math topic




* Click the topic-tile to launch a smaller window, topic-specific, map of interrelated sub-topic
tiles, that indicates the logical sequence for the sub-topics, and from where one could launch
the corresponding sub-topic interactive interface.

* This topic-specific smaller window allows for identifying the pre-requisites and gaps in
understanding, launching the corresponding interfaces to fill the gaps, and tracking the level
of familiarity with a topic.

Navigator SO X
Eile Tools Help
s (%)
Linear Systems Combinatorics lm -~ ks
AR
= - iy Complex - o
’ ‘ Determinants Qﬁ& Geometry v N {  Inkegrals
Geomet
Conks
Matrices |-~ Trigon o \\\\
[ O
o i) M
~ | |
Geometry - Circle o | E -t | P—
e
e
S
I need to study Line before I can start Circle ——
[~ | pythagoras
Theorem
\ Reset
ave

V' The framework to create the interfaces: a version of NetBeans on steroids ...
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Complementary classroom activity on a computer algebra worksheet

This course is organized as a guided experience, 2 hours per day during five days, on learning the
basics of the Maple language, and on using it to formulate algebraic computations we do with paper
and pencil in high school and 1st year of undergraduate science courses.

Explore. Having success doesn't matter, using your curiosity as a compass does - things can be
done in so many different ways. Have full permission to fail. Share your insights. All questions are
valid even if to the side. Computer algebra can transform the learning of mathematics into interesting
understanding, success and fun.

1. Arithmetic operations and elementary functions

Operators

+7_9 *9/5/\

Functions

exp, In, sin, cos, tan, csc, sec, cot, arcsin, arccos, arctan, arccsc, arcsec, arccot. For
the hyperbolic functions put an h at the end as in sinh, arctanh, etc.

Manipulat
ion
command
S

Related to numerical evaluation: evalf, Digits.

The complex components: Re, Im, conjugate, abs, argument

Related to functions: series, convert (any function to any other one when
possible), FunctionAdvisor

Related to plotting: plot, plot3d, plots:-plotcompare




v Examples
Blank spaces mean multiplication.
Function application is represented with rounded parenthesis (), as in f'(x).
Indexation, as used in tensors, is represented with squared brackets [], as in A[mu] displayed
as A
mu

Numerical approximation is obtained applying evalf

> restart; interface(imaginaryunit =1i) :

>4+4+5i
4451 3.2.1.1.1)
> Re((3.2.1.1.1))
4 3.2.1.1.2)
> conjugate((3.2.1.1.1))
4—51 (3.2.1.1.3)
> evalf (P1)
3.141592654 3.2.1.1.4)
> Digits
10 3.2.1.1.5)

> evalf[50](Pi)
3.1415926535897932384626433832795028841971693993751 (3.2.1.1.6)

> FunctionAdvisor ()
The usage is as follows:

> FunctlonAdV1sor( topic, function, ... );
where 'topic' indicates the subject on which adv1ce is
required, 'function' is the name of a Maple function, and
" represents possible additional input depending on
the 'topic' chosen. To list the possible topics:

> FunctionAdvisor( topics );
A short form usage,

> FunctionAdvisor( function );
with just the name of the function is also available and
displays a summary of information about the function.

> FunctionAdvisor (topic)

* Partial match of "topic" against topic "topics"

The topics on which information is available are:

[ DE, analytic_extension, asymptotic_expansion, branch_cuts, branch_points,  (3.2.1.1.7)
calling sequence, class_members, classify function, definition, describe,
differentiation_rule, function _classes, identities, integral form,
known_functions, periodicity, plot, relate, required _assumptions, series,
singularities, special_values, specialize, sum_form, symmetries, synonyms,

table |

> FunctionAdvisor (classes)
[ trig, trigh, arctrig, arctrigh, elementary, GAMMA related, Psi_related, Kelvin, (3.2.1.1.8)

Airy, Hankel, Bessel related, OF 1, orthogonal polynomials, Ei_related,



erf related, Kummer, Whittaker, Cylinder, 1F1, Elliptic related, Legendre,
Chebyshev, 2F1, Lommel, Struve related, hypergeometric, Jacobi_related,
InverseJacobi_related, Elliptic_doubly periodic, Weierstrass_related,
Zeta_related, complex _components, piecewise related, Other, Bell, Heun,
Appell, trigall, arctrigall, integral transforms |

> FunctionAdvisor (ele)
* Partial match of "ele" against topic "elementary".
The 26 functions in the "elementary" class are:

[arccos, arccosh, arccot, arccoth, arccsc, arccsch, arcsec, arcsech, arcsin, arcsinh, (3.2.1.1.9)
arctan, arctanh, cos, cosh, cot, coth, csc, csch, exp, In, sec, sech, sin, sinh,
tan, tanh |

> FunctionAdvisor (identities, sin)

sin(arcsin(z)) =z, sin(z) = -sin(-z), sin(z) =2 sin( ;J Ccos ( % ), sin(z) (3.2.1.1.10)

> FunctionAdvisor (display, In)

Vin

» describe

» definition

» classify function
» symmetries
» periodicity

» plot

» singularities
» branch points
» branch cuts
» special values
» identities



» sum form

» series

> asymptotic expansion
» integral form

» differentiation rule

» DE

> cos(x) + 1sin(x)

cos(x) + 1sin(x) 3.2.1.1.11)
> convert(%, €xp) .
e’ 3.2.1.1.12)
> convert(%, trig)
cos(x) + isin(x) 3.2.1.1.13)

> FunctionAdvisor (relate, arcsin, In)

arcsin(z) = —iln(iz+ /-2 +1) (3.2.1.1.14)

> FunctionAdvisor (specialize, arcsin )

. 1 1 3
arcsin(z) =z F|

ER 0, 5 , (3.2.1.1.15)

0, z ) , With no restrictions on (z)

. 1 1 3
arcsin(z) =z F2 ER 0, bR 1, ER 0, 22), with no restrictions on (z) |,
. 1 1 3 2 . .
arcsin(z) =zF3 0, ER 0, 5 0, z" |, with no restrictions on (z) |,
_ I 1 3 2 . .
arcsin(z) =2F4 5 1, o 0,z |, with no restrictions on (z) |,
2
1 1 z
zHC|0, —,0,0, —,
. 2 47 72— ]
arcsin(z) = ,
-2 +1

with no restrictions on (z) |, |arcsin(z) =z HG (O, 0,

with no restrictions on (z) |, |arcsin(z) = >

am_l(arcsec(z)|1) (z—1)

+ ,R(z) € (0,7) |, |arcsin(z)

~(z—1)°



with no restrictions on (z)

with no restrictions on (z)

with no restrictions on (z)

with no restrictions on (z)

1
T2 2
(227 41)
2
1]4 ’
L.
272
ZG;’2 —22 1
2 0__
. T2
, |aresin(z) = ,
2ym

, T
, |arcsin(z) = 5T arccos (z),

arccosh(z) (z — 1)

, T
, |arcsin(z) ?-l-

~(z—1)°

, |arcsin(z) =T

, with no restrictions on (z) |,

— 2 arccot z
1+ -2 +1
. 1
arcsin(z) =
iz+y -2 +1 +1

—iz

(2i-Z+1 +2i

-2 z) arccoth

1+ -22+1

+in(1

. 2
1Z

+JT+1>/-

with no restrictions on (z)

with no restrictions on (z)

1+

2

.

. 1
arcsin(z) = arccsc ( — j,
z

3

)

l\ll'—-

, [arcsin(z) =1 arccsch(

3



. T 1
with no restrictions on (z) |, | arcsin(z) = 5 arcsec(— ],
z

. .. . T
with no restrictions on (z) |, |arcsin(z) = 5

1
arcsech(?) (-1+2z2)

+ , With no restrictions on (z) |, [arcsin(z)
2
1
IRENIE
z
= —iarcsinh(1z), with no restrictions on (z) ], |arcsin(z)
= 2 arctan - , With no restrictions on (z) |, |arcsin(z) =
1+ -2 +1
-2 iarctanh — , With no restrictions on (z) |, | arcsin(z)
1+ -2 +1
1 1.3 2) . - .
=z 2F1 E’ 5; ?;z , With no restrictions on (z) |, [arcsm(z)
= —1 ln(iz + - +1 ), with no restrictions on (z)]
v Plotting
2D plotting

> plot(exp)
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Complex algebraic expressions F'(z) of a complex variable z can be represented by two
3D plots: the value of R (F'(z)) and J(F (z)) (so the real or imaginary parts of the
expression) on the vertical axis and the real and imaginary parts of the variable z on the
two horizontal axes (PlotExpression uses plots[plotcompare] with the option
expression_plot)

> PlotExpression = f — plots:-plotcompare( f, 0, rest, 'expression_plot', 5) :
> PlotExpression(exp(z), scale_range=P1, 5)



> PlotExpression(In(z), scale_range=P1, 5)



So In is a multivalued function with a cut over
> FunctionAdvisor (branch_cuts, In)
[In(z),z < 0]

> epsilon := 10.00°%)

¢ := 1.000000000 10~°
> In(-ie€)
—13.81551056 — 1.570796327 i
> In(ie€)
—13.81551056 + 1.570796327 i

(3.2.1.1.2.1)

(3.2.1.1.2.2)

(3.2.1.1.2.3)

(3.2.1.1.2.4)

If you know in advance that z is real, or imaginary then the two 3D plots transform into

two 2D plots:

> PlotExpression(In(z), scale_range=P1i, 5) assuming z :: real



R(In(z)) S(In(z))
1- 31
T N
. )
_2-
m 3-2-10 1

> PlotExpression(In(z), scale_range = P1, 5) assuming z :: imaginary



R (In(z)) J(In(z))
1.51
1-
1-
_.3._.2._ .O . . 2. . :.3 0.5.
Y
| 3-2-100 1 2 3
- y
-0.5-
_2- _1-
-1.51
>
Exercises

Choose one exercise, try to solve it in up to 10 minutes. If there is time, move to next
problem. Or, feel free to use the time to explore the help pages about any related topic more
of your interest.

1. Use the convert command to express the functions of the following groups in terms of
each other

a. [exp, sin, cos, tan, sec, csc, cot]
b. [In, arcsin, arccos, arctan arcsec, arccsc, arcot]

c. Advanced: choose a couple of the relations between functions say A = B
obtained and verify that A and B have the same series expansion

Solution




2. Plot the sin function between — pi and pi, then:

1. Click the plot to select it

2. Go to the menu Plot —> Probe Info —> Cursor position to access the probe tool;

3. Use the probe to identify the coordinates of points of the plot between , as in

[ 21 | X222 s[5 20 ]

4. Search the Kelp system for 'interpolate' and choose a command to interpolate a
polynomial approximating sin(x) between — pi and pi. How many points do you need

to obtain an approximation more or less acceptable?

Solution

3. Use plots:-plotcompare to determine for which values of z you have —— #

e

Try it with the options same_box, assuming z::real and assuming z::imaginary

Solution

2. Algebraic Expressions, Equations and Functions

Algebraic | any mathematical object built with numbers, symbols and functions combined
expression | using arithmetic operations
Equation | a construction using the = sign, typically with algebraic expressions on the left-
hand and right-hand sides
Function | It can be a known function (of type 'known') as In(z) or J (z), or an unknown
function (of type 'known') for example f'(x, y, z, t)
Mapping | maps variables into constructions that involve these variables, typically algebraic
expressions, for example f:= (x,y,z) — X+ y2 + 27
Manipulati | « T represent function application use (), as in f'(x)
on . . .
commands | ¢ To construct expressions, equations gnd mappings use: =, :=, ->, and unapply
to convert an expression into a mapping,
* Related to expressions: numer, denom, collect, coeff, degree
* Related to equations and inequations: =, <>, <=, >= and to get each side use
lhs, rhs,
* Basic manipulation of expressions and equations: subs, eval, map, collect,
1solate, solve

Examples

Table 2: Algebraic expressions, equations and functions




An algebraic expression
> restart,

X

>ax2+e—
b

X

ax’ + % (3.2.2.1.1)

Note you can think of the labels as names assigned any visible output.

You can also give any name to an expression (assign a name to it) in order to refer to it, and
also if the expression is not displayed. Y ou do that by using the assign operator :=

> fi= (3.2.2.11)

X

fi=ad 4 (32.2.12)
Now you can refer to the expression (3.2.2.1.1) using the given name
>f
e)C
ax’ + — (3.2.2.1.3)

b

Different from an expression, an equation always has left and right-hand sides with the "=’
operator in between. For example
> =0

X

ax’ + % -0 (3.2.2.1.4)

Y ou get each of the sides using the lhs and rhs commands
> lhs((3.2.2.14))

X

ax + % (3.2.2.1.5)
> rhs((3.2.2.1.4))
0 (3.2.2.1.6)
You can assign names to everything, also to an equation
> h=f=g;
hi=ax + % —g (3.2.2.1.7)
ex
What we call "the function of x equal to a 2+ > " is implemented in the computer as a
mapping, using the arrow operator ->
> x — (3.2.2.1.1)
X a4+ — (3.2.2.1.8)

b

To use a mappings it is also practical to assign a name to it
> h=x— (3.2.21.1)



X

hi=x o ax + — (3.2.2.1.9)

b
> h(x)
ax’ + eb (3.2.2.1.10)
> (3.2.2.1.8) (x)
ax’ + Zx (3.2.2.1.11)

Note however that the mapping h not really a function of x, but also of whatever argument
you pass to it, as in

> h(y)
ay + i (3.2.2.1.12)
> h(alpha)
o
a0’ + % (3.2.2.1.13)
> (3.2.2.1.8)(beta)
2 GB
ap +— (3.2.2.1.14)

Y ou can convert an expression or equation into a mapping using unapply
> (3.2.2.1.01)

X

ax’ + % (3.2.2.1.15)
> unapply(%, x)
X
x> ax’ + % (3.2.2.1.16)
> unapply((3.2.2.1.1), x, a, b)
X
(x,a,b) —ax’ + % (3.2.2.1.17)
Returning to the expression f
> f
ex
ax’ + o (3.2.2.1.18)

You can get the numerator, denominator or the coefficient of a or of A

maximum and minimum degrees with respect to any variable
> numer (f)

, or compute the

ax’b+e (3.2.2.1.19)

> denom (f)
b (3.2.2.1.20)



> coeff (f,a)

. (3.2.2.1.21)
> coeff (f, b, -1)
& (3.2.2.1.22)
> degree(f, b), ldegree( f, b)
0, —1 (3.2.2.1.23)
> degree( f, x)
FAIL 3.2.2.1.24)
> degree( JA ex)
1 3.2.2.1.25)
> frontend (degree, [ f, x])
) (3.2.2.1.26)

You can substitute into or solve expressions and equations

> subs(x=0,f)

0
€

B (3.2.2.1.27)

Note the difference with eval: it evaluates the function
> eval(f,x=0)

1
i (3.2.2.1.28)

Most functions automatically return a value for their simplest special cases, as e Inert
functions are useful to avoid these automatic simplifications, for example:

> [%exp(0) =exp(0), %asin(0) =sin(0), %cos(0) = cos(0) ]
[”=1,5in(0) =0, cos (0) = 1] (3.2.2.1.29)

Y ou can activate inert functions using the value command

> value((3.2.2.1.29))
[1=1,0=0,1=1] (3.2.2.1.30)
The mathematical properties of the inert functions are understood by the system
> %sin(%cos(z))
(cos(z)) (3.2.2.1.31)

> diff ((3.2.2.1.31), z)
-sin(z) cos(cos(z)) (3.2.2.1.32)

You can solve expressions or equations or systems of them. When solving, an expression is
considered an equation with right-hand side equal to zero

>f

X

ax’ + % (3.2.2.1.33)

> isolate(f, b)
(3.2.2.1.39)



b=-— (3.2.2.1.34)
ax
> solve(f, {b})
[b == ] (3.2.2.1.35)
ax

isolate however only returns one solution. To get all the solutions use solve
> isolate( f, x)

x=-2w| -7 (3.2.2.1.36)

> solve(f, {x})

x=-2W|-—7— ||, [x=-2W| —F— (3.2.2.1.37)

> Iprint((3.2.2.1.37))
{x = -2*LambertW(-(1/2)*(-1/(a*b))"(1/2))}, {x = -2*
LambertW((1/2)*(-1/(a*b))"~(1/2))}

> solve( f, {x}, AllSolutions)

[ [
v=-ow| z2, -V A0 1o | g3 Y ab (3.2.2.1.38)

2 2

> PlotExpression := f — plots:-plotcompare( f, 0, rest, 'expression_plot', 5) :
> PlotExpression(LambertW(z))



N (LambertW (z)) 3 (LambertW(z))

F F

> FunctionAdvisor (cuts, LambertW)
* Partial match of "cuts" against topic "branch cuts".

v <L

W(a,z), (a#0Az<0)V (aZO/\z < —%” 3.2.2.1.39)

> PlotExpression(In(z))



F F

> FunctionAdvisor (def, LambertW (z))
* Partial match of "def" against topic "definition".

@ | (_kl —1n—In( k) +In(z) ]
kI +1n —1In( kI) + In(z)
kI + 1

—

d kI

|

-0
Wiz)=1+e i (-1 +1In(z)), — z: (3.2.2.1.40)

V' Exercises
1. Consider what we call f (x) = cos(x)2 + g(x)



a. Enter the expression cos (x)2 + g(x)

b. Use % to refer to this expression and assign the name F to it
c. Compute the value of F' for: x=piandx=17a

d. Transform F into a mapping of x and assign the name G to it

e. Use the mapping G to compute the values of item ¢

Solution

2. Construct a polynomial of 2nd degree taking the product of monomials of the form (
X — alphaj) where alphaj are the roots and compute the maximum and minimum degrees with

respect to x, then the coefficients of x to the powers 2,1 and 0, one at a time (coeff) or all at
once (coeffs)

Solution

3. Consider the transformation equations between cartesian and spherical coordinates

x = r sin(theta)cos(phi), y=r sin(theta)sin(phi), z=r cos(theta)

Use the commands isolate, map and subs - and assuming to tell the domain of 7, theta
and phi - in order to invert these equations

Solution

3. Limits, Derivatives, Sums, Products, Integrals, Differential Equations

Comman
ds

limit, diff and D, sum, product, int, dsolve, pdsolve

Manipul
ation
comman
ds

PDEtools:-dchange, PDEtools:-casesplit,
the inert forms %limit, %int, etc. and the related value command

Table 3: Calculus

Examples

The commands to compute limits, derivatives, sums and products are limit, diff, sum,
product. The D command also represents derivatives - more about this afterwards.

> restart,

> 'limit'(m,xz 0]
X

sin(x)

(3.23.1.1)

x—0 X

> (3.2.3.1.1)

1 (3.2.3.1.2)




All Maple commands have an inert version of them, that represent the mathematical object
but does not perform the computation until you require it using the value command. Inert
subexpressions always have some part displayed in grey:

> %limit( sm)gx) ,xZO)

sin(x) (3.2.3.1.3)
x—0 X
> value((3.2.3.1.3))
1 (3.2.3.1.4)
> subs(x=1t, %diff (g(x) + exp(xz), x))
(e + &) (3.2.3.1.5)
> value((3.2.3.1.5))
gt g(t) +2 re’ (3.2.3.1.6)

Handy: functionality is distributed over the sides of equations, so you can write this:
x}’l

(%osum = sum) (—', n=0 ..inﬁniljy)
n!

directly as

> (%osum = sum) [;C—', n=0 ..inﬁnityj

[02]
n
X x

—¢ (3.2.3.1.7)

n=0 n!

All the family of sum, int, solve, dsolve and pdsolve are rather powerful commands
nowadays. In the case of summation, note that it can also be performed in the indefinite case
with the meaning:

‘ f(k)=g(k) where g(k+1)—g(k)=f(k)

When entering the following command, you will be asked whether it represents a function
definition or a remember table assignment, choose remember table assignment (to perform
these assignments with a function on the left-hand side without being asked questions enter
first you can also enter Typesetting:-Settings ('functionassign = false'))

> f(k) = (g)!k

f=kw (12{)' k (3.2.3.1.8)

> %sum (f(k), k);
k
— |1k 3.2.3.1.9
% ( 2 j ( )



> value((3.2.3.1.9))

k k 1
| — — |
2 ( 7 j +2 ( > + > J (3.2.3.1.10)
> eval((3.2.3.1.10), k.=k + 1) - (3.2.3.1.10)
k k
— | — — |
2 ( > + 1). 2 [ > ) (3.2.3.1.11)
> simplify (%)
(]; j 'k 3.2.3.1.12)

Results are frequently expressed in terms of not-so-familiar special functions
_ 2
> %int(e * ,x);
e dx (3.2.3.1.13)
> value((3.2.3.1.13))
f
W (3.2.3.1.14)

1
sqrt(2 /4 =374 —2)

> %int[ ,t=2..3)

t 3.2.3.1.15)

> value((3.2.3.1.15))

R R ey
5 5

(3.2.3.1.16)

> Iprint(%)

(1/5)*5"(1/2)*EllipticF((1/3)*7"(1/2), (1/5)*5"(1/2))-
(1/5)*5"~(1/2)*E1llipticF((1/2)*2~(1/2), (1/5)*5"(1/2))
Most of these commands have options to workaround special cases

1
> im‘(—,xza.l
X

Warning, unable to determine if 0 is between a and 2;
try to use assumptions or use the AllSolutions option

2

1
J — dx (3.2.3.1.17)
X
(1 .
> mt( o x=a.2, 'AllSolutzons')
undefined a<o0
0 a=0 (3.2.3.1.18)

-In(a) +In(2) 0<a



The assuming command is also handy in these cases

> (3.2.3.1.17) assuming a > 0;
-In(a) + In(2) 3.2.3.1.19)

> (3.2.3.1.17) assuming a < 0;
undefined (3.2.3.1.20)

The ordinary and partial differential equation commands have by now concentrated so much
solving power that themselves are used to develop new solving algorithms

> restart,
> infolevel|dsolve] :== 5
infolevel =35 (3.2.3.1.21)

Isolve

> PDEtools:-declare(y(x), prime = x)
y(x) will now be displayed as y

derivatives with respect to x of functions of one variable will now be displayed  (3.2.3.1.22)
with '
/ 2 :
> ode, == y'(x) —y(x)” + (y(x) sin(x)) — cos(x) =0
ode, == y' —y” + ysin(x) — cos(x) = 0 (3.2.3.1.23)

> dsolve(ode[2])
Methods for first order ODEs:
-—-— Trying classification methods ---
trying a quadrature
trying lst order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
Chini's absolute invariant is: (1/4)*sin(x)"2*(2*cos
(x)-1)"2/cos(x)"3
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:

<- Riccati with symmetry of the form [0, exp(-Int
(£,x))/P*(y*P-£)"2] successful

e—cos(x)
y R P + sin(x) (3.2.3.1.24)

x(—x—1+x2—2x2y(x)+ (2x4))

(=) r+1))
x(xz—x—1—2x2y—|—2x4)

(¥ —y) (x+1)

> ode, ==y’ (x) =

ode, == y'= (3.2.3.1.25)

3
Computing an integrating factor

> DEtools|intfactor](ode[3])
-> Computing symmetries using: way = 2



LI U - B
> Sy XTy—x —x +xy

(" =») (x+1)

<- successful computation of symmetries.
—x24-y

2 +2y—1

0,

(3.2.3.1.26)

The product of an ode and its integrating factor results in an total derivative
> (3.2.3.1.26) (3.2.3.1.25)

2 , 2 2 4 2 4
( : +y)y _ (ex +§)x(x ol 2x y+24) (3.23.1.27)
2P +2y—1 (2x"4+2y—1) (x* =y) (x+1)

From where

> dsolve((3.2.3.1.27))

Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying lst order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful

y=-———— (22— 8x — 135" — 12 — 8% (3.2.3.1.28)
2(x+1)
453
3 4. 3
W () o +4; —4x2—4 Cl+4x—1
+e (exz) (e*C1)4(X+1)4 —4x—1
> simplify((3.2.3.1.28))
%x3—4x2—4_cz+4x—1
(¥
2 "1 (x+1)* 1
y=x" + 5 + (3.2.3.1.29)

The notation for special functions is frequently unfamiliar - use Iprint

> [print((3.2.3.1.29))
y(x) = x"2+(1/2)*LambertW(-exp((4/3)*x"3-4*x"2-4* Cl+4*
x=-1)/(x+1)"4)+1/2

Laplace equation in spherical coordinates:
> restart,
> PDEtools:-declare(F (r, theta, phi) )
(3.2.3.1.30)



F(r,8,d) will now be displayed as F

> PDE := %diff (r"2* %diff (F (r, theta, phi), ), r)
+ 1/sin(theta) * %diff (sin(theta) * %diff (F (r, theta, phi), theta), theta)
+ 1/sin(theta) ~2 * %diff (F (r, theta, phi), phi, phi) =0

o (sm(e) o Fj — F
PDEx=(ﬁ F)+— , ;0 7 =0
r r sin(0) sin(0)
> PDE := value(PDE)
cos(0) F. +sin(0) F F
PDE::szr+r2Fr}‘+ e. %8 + ¢’¢2 =0
’ sin(0) sin(0)

The standard solution separating variables by product

> Physics:-Setup (auto = true)
* Partial match of 'auto' against keyword 'automaticsimplification’

[ automaticsimplification = true |

> pdsolve( PDE, build)

1

) Jr csgn(sin(0))

+_C600s(\/z¢)) Clr .

F

ﬁ(—sin(e)z) ’ <_C5 sin(\/jd))

+ csgn(sin(0)) C4 F

JIH4e4 1 1 cos(26) +1]]]

DA
Laplace equation also admits a solution separable by sum
> pdsolve(PDE, HINT = "+ ")
-2 _FI r+ _c
Fl = ,

— rr 2
r

(F= FI(r)+ F2(0) + F3(0)) &where

(3.2.3.1.30)

(3.2.3.1.31)

(3.2.3.1.32)

(3.2.3.1.33)

(3.2.3.1.34)

(3.2.3.1.35)



cos(0) _F2e <
F2. =-c — - — , F3 = ¢
) S C)

Y ou transform these structures into a concrete solution using the build command, or using
the build option as in pdsolve(PDE, build). For example

> PDEtools:-build (%)

N Y N = L R £ 123136
7 | =5 T0 r r(_cl B ) Jo (3.2.3.1.36)
16
— — 1 e — —
r( < _C3) n[ (Ie+l)2 r(_cl
e'? 2
+_C3)ln ( ™ 1)2 —4_C1 111(2)1’—|-2_cl In(r)r+ (_C3¢

+2_C5¢+2_C2+2_C4+2_C6) r—2_C1]

Symmetry methods and systems of partial differential equations, linear and nonlinear, can be
solved in many cases.

A nonlinear ODE and the linear PDE system for its symmetries
> PDEtools:-declare( (X1, eta) (x, y), y(x), prime = x)
& (x, y) will now be displayed as &

N (x, y) will now be displayed as M
v(x) will now be displayed as y
derivatives with respect to x of functions of one variable will now be displayed  (3.2.3.1.37)
with '
> ode , =y" (x) + (ax"y(x)") =0
ode , = y"+a X y'=0 (3.2.3.1.38)

> sys = map(u — u=0, [ DEtools|gensys |( ode[11], [xi, eta](x,V) )]);

sys = E,,y’y =0n, -2 &x,y =0,3) &yx a+2m - E',X’ =0, (3.2.3.1.39)
XY nxm | ryg
r y 7
n, yx+2x §.xy— 2 + > + 2 ay L
yx
> PDEtools:-casesplit(sys)
_ Sy(r+2) . 8, _
=S b 6 0| &where [ ] (3.2.3.1.40)




> pdsolve(sys)
Cly(r+2
n—1

n=- ) &= _Clx 3.2.3.1.41)

A solution for this system such that r is a parameter (so, also a solving variable) and n is
different from 1

> sys, = [DEtools[gensys]( ode[11], [xi, eta](x,y)),n # 1];

o— n 14
sysy = (&, om, =28 3V E N atan & (3.2.3.1.42)

2 * 2 2

yx

n xy
nxxyx—I—Zxr g xy— = AXN ryé)ay"

,n#*1
> pdsolve(sys 2 [x1, eta, r])

{r==2,1=0,&= Cix},{r=-n—3,n=0,§=0}, {rZ -n—3,1m (3.2.3.1.43)

—(Clx+ C2)yE= x(n( Clx+ C2)+ Clx— C2) } {r

n+1

— = ClyE=- Clx(n—1) }

r+2
Indeed if you take r as a solving variable, using differential algebra techniques the problem
splits into three different problems (so called: the general and the singular cases:
> PDEtools:-caseSplit(sys 2 [xi, eta, 7], caseplot)
========= Pjyots Legend =========
pl=(r+2)(r+n+3)
p2=n
p3=r+2



Rif Case Tree

3 4
_ NMx(e—1) _n r
li__ y(r+2) ’nx—O,ny— ) }&Where[(r-i-Z)x #0,(r+n (3.2.3.1.44)
) _x(2nxx+n(n—1)) - o
+3)x iO],[&— A ) ,nx’x—O,ny—;,r——n

—3]&Where [n+#0],[§=0,1=0,r=-n—3]&where [ ], &, = >

&yZO,nZO,VZ —2}&Where[]

>

Exercises

There is no much to say about all these commands but for dsolve and pdsolve, the solvers for
ordinary and partial differential equations, as well as the PDEtools:-casesplit command for
triangularizing systems of equations. So the exercises for this section are about exploration.

1. Open the help page for dsolve/education ,

a. Transform the page into a worksheet (one of the icons on the toolbar);



b. Go to the menu View -> Collapse All Sections, and choose a section you want to
explore. My recommendation according to how useful it could be in physics computations:

* If you are not familiar with symmetry methods, the corresponding section can give
you a rapid glimpse on how to tackle ODEs by discovering their symmetries and using
them to construct solutions

* The section on singular solutions may open your eyes to something you are probably
not aware of regarding differential equations. Singular solutions are frequently the ones
that are relevant in physics models. The relevant command here is PDEtools:-casesplit

* The section on using "this or that method" has no mathematical insights but is useful
information regarding flexibility for computing different forms of general ODE solutions

2. The same with the help page for PDEtools:-InvariantSolutions

3. The product of an integrating factor an a differential equation is a Total Derivative. Use
DEtools[redode] to construct a second order ODE family having an integrating factor

mu = F'(x) -- an arbitrary function -- such that the reduced ODE has the same integrating
factor.

Solution

4. An ODE of order n™ admits n integrating factors. Use DEtools[redode] to construct the
most general third order ODE admitting the
following three integrating factors:

11
—Z+Zm -— — — /29
y(x) x, x y(x), x

then use DEtools[mutest] to verify that the obtained ODE admits these 3 expressions as
integrating factors

Solution

4. Algebraic manipulation: simplify, factorize, expand

Comma | simplify, factor, expand, combine, collect and convert
nds

Table 4: Algebraic manipulation
Examples

Simplification is not really a well defined operation, but one based on common sense, and the
desired result sometimes depends on particularities of the problem.

Among the most typical simplifications there is the one that makes use of functions identities




> sin(x)2 + cos(x)2

sin(x)? + cos (x)? (3.2.4.1.1)
> simplify((3.2.4.1.1))
1 (3.2.4.1.2)
Another typical simplification is the simplification in size
1213 123 12 305
e P 2%x* le? 24ﬁ pi F(x) le® 2% x? /pi F(x)
> + +
4 8
2 XZ
7! | 4 ( 1) Flx 4 26 4 )
Jx (x + J— Je t2e (3.2.4.1.3)

> simplify (%, size)

2
1/4( 4 T4 j
\/_2 x —|—1 \/—F e  +2e X (3.2.4.1.4)

In other cases, it all depends on what is preferred
> 6 (x+4) (x-1)
(6x+24) (x—1) (3.2.4.1.5)
> 6x* +18x—24
6 + 18x — 24 (3.2.4.1.6)

These two expressions are equal, and both are 'simplified', so simplify does nothing
> simplify((3.2.4.1.5))

6 (x+4)(x—1) (3.24.1.7)
> simplify((3.2.4.1.6))

6x° + 18 x— 24 (3.2.4.1.8)

To rewrite one as the other one, the operations to be performed are: to factor or to expand
> factor((3.2.4.1.5))

6 (x+4)(x—1) 3.24.1.9)
> expand((3.2.4.1.9))

6> + 18x — 24 (3.2.4.1.10)
In this case the expanded form is also a form where powers of x are collected, as in
> collect((3.2.4.1.9), x)

6x° + 18x — 24 3.24.1.11)
One of the most powerful simplifications is to simplify with respect to given equations, for
example: "simplify 6 X+ 18x—24 taking x+4=alpha and x-1=beta
> simplify((3.2.4.1.11), {x + 4 = alpha})

60 — 300 (3.2.4.1.12)

Both expand and combine take into account the properties of mathematical functions, with the
combine command rewriting powers of trigonometric functions as expressions linear in other



trigonometric functions

> sin(x)?-cos (x)*
sin(x)? — cos (x)* (3.2.4.1.13)
> combine((3.2.4.1.13))
-cos(2x) 3.24.1.14)
> %sum (a[ j]-cos(j-x)’ + b[j]sin(jx)*/,j=1.2)
2
<a/. cos(jx)j + b/. sin(jx)zj) 3.24.1.15)
j=1 |
> value((3.2.4.1.15))
a, cos(x) + b, sin(x)” + a, cos(2x)” + b, sin(2x)* (3:2.4.1.16)
> combine((3.2.4.1.16))
(4 a, — 4b2) cos (4 x) . b, cos(2x) N b, cos(8x) N a 324,117
2 a, cos(x) > 2 2(....)
b 3b
1 2
i 2 i 8

We almost always want to 'simplify in size'":
> simplify((3.2.4.1.17), size)

(4a2—4b2)cos(4x) . B b, cos(2x) N b, cos (8 x) +&(324118)
2 a, cos(x) ) 2 , (8241
b 3b
1 2
+ 5+

In this following example the simplification in size is more convenient that a direct
simplification

1 1
> e2:i= — (3 sin(x) * cos(x)? sin(x)mj + (3 sin(x) 2
1

+ (4 sin(x) >
e2 := -4,/ sin(x) cos(x)2 (cos(x)2 — i] (cos(x)" — sin(x)") 3.24.1.19)

> simplify(e2, size)
-4 [sin(x) cos(x)* [cos(x)2 — i) (cos(x)" — sin(x)") (3.2.4.1.20)

> simplify(e2)

cos (x)* cos(x)")

1
cos (x)* sin(x)m) — 4sin(x) 2 cos(x)” cos(x)"

-4/ sin(x) cos(x)2 [cos(x)2

3 ¥ . m
- ) (cos(x)" — sin(x)") (3.2.4.1.21)
Other times what we really want is not a simplification but to have an expression rewritten
with powers of same variables factored out (we say 'collected"), for example
>p=by+6gx+xy
p=(6g+y)x+by (3.2.4.1.22)



> collect(p, [x,y])
(6g+y)x+by 3.2.4.1.23)

> collect(p, [y, x])
(6g+y)x+tby (3.2.4.1.24)

Sometimes all what we want is to cancel factors that appear in the numerator and
denominator of an expressions, for example:

> num = expand((x —a) (x — b))

num = (b —x) (a —x) 3.2.4.1.25)
> den := expand((x —a) (x — c))
den == (¢ —x) (a —x) (3.2.4.1.26)
num
den
b—x

(3.2.4.1.27)
c—Xx

To cancel common factors in the numerator and denominator we use normal

> normal((3.2.4.1.27))
b—x

cC— X

(3.2.4.1.28)

Finally what we sometimes want is just to rewrite an expression in terms of different
functions, for example

1
1 2 4
> - (ex) - P
‘ O
(2) E— . (3.2.4.1.29)
4 (&)
> simplify((3.2.4.1.29))
2 x -2x
e e
1 2 (3.2.4.1.30)
> convert((3.2.4.1.29), trig)
(cosh(x) + sinh(x) )2 B 1 (3.2.4.131)
4 4 (cosh(x) + sinh(x) )2
> simplify((3.2.4.1.31))
cosh (x) sinh(x) (3.2.4.1.32)

You can try converting any function into any other one, and the conversion will (almost
always) proceed when the conversion is possible
>

Exercises

1. Show, algebraically, using simplify and assuming, that \/ z* =z when z is real and
positive and discover the most general domain for z such that the identity holds



V' Solution
> sqrt(zz) =z
J2 =z (3.2.4.2.1.1)

You can see this expression is not equal to z by comparing both expressions using plots

[plotcompare]

> plots| plotcompare]((3.2.4.2.1.1), same box)
8‘%<\/ (x—I—Iy)2> and S<\/ (x—I—Iy)2) and
R(x+1y) S(x + 1y)

My T

1

iy ¥

Rotating the plots you see that these two functions are equal when 0 < z. To simplify
algebraically assuming thatz> 0 , use
> simplify((3.2.4.2.1.1)) assuming z > 0;

z=z 3.24.2.1.2)

To discover the most general domain for z such that the identity holds, by trial an error the
first thing one could do is to try simplifying the expression as given:

> simplify((3.2.4.2.1.1))
csgn(z)z=z 3.2.4.2.1.3)

and, from its help page, csgn(z) is equal to 1 only when



0<R(z)or (R(z)=0and 0 < J(z)).

So the following also simplifies to an identity
> simplify((3.2.4.2.1.1)) assuming R (z) =0 and 0 < J(z)
csgn(z)z=z 3.24.2.1.4)

>

2. Use a simplification taking into account that sin® + cos” = 1 (see simplify.siderels) to
show that

8 sin(x 4 cos(x) + 15 sin(x)2 cos(x)3 — 15 sin(x)2 cos(x) +7 cos(x)5 — 14 cos (x)3

)
+ 7 cos(x)
is equal to 0.
Solution

> =38 sin(x)4 cos(x) + 15 sin(x)2 cos(x)3 — 15 sin(x)2 cos(x) +7 cos(x)5
— 14 cos(x)3 + 7 cos(x)

f=cos(x) (8 sin(x)2 +7 cos(x)2 —17) (cos(x)2 + sin(x)2 —1) (3.24.2210)
> eq = {sin(x)2 + cos(x)2 =1}
eq = {sin(x)* + cos(x)* =1} (3.2.4.2.2.2)
> simplify(/; q)
0 (3.2.4.2.2.3)

>

5. Matrices (Linear Algebra)

Comman | Matrix, Vector is the same as Vector[colum], Vector[row], or matrix and vector.

ds

Use + and . for operations

Manipula | LinearAlgebra package: conjugate, Transpose, HermitianTranspose, Determinant,
tion Trace, Eigenvalues, Eigenvectors, MatrixExponential, LinearSolve
command | linalg package: conjugate, transpose, htranspose, det, trace, eigenvalues,

S

eigenvectors, exponential, linsolve

Table 5: Linear Algebra

Examples

There is a whole LinearAlgebra package with 130 commands to manipulate Matrices and
solve linear algebra problems.
There is also the older linalg package with 114 matrix algebra commands.

Here we restrict to a small subset of matrix commands that are used more frequently, and for



the rest: just consult help pages when necessary.
For historical and other reasons, there are two kind of matrices in Maple.

* The old ones, represented by the lowercase word matrix have the advantage that you can
compute with them without displaying their contents.

* The new ones, represented by the word Matrix have the advantage of performing
component computations faster

First matrix
> A4 := matrix(2,2, [a, b, c,d])

a b
A= (3.2.5.1.1)
c d
Invoking the matrix does not show its components
> 4
A 3.2.5.1.2)

You can refer to an unspecified component (this is useful when setting brackets rules in
Quantum Mechanics), as in
> Ali,]]

'y (3.2.5.1.3)

Y ou any specified component by attributing values to the indices
> eval((3.2.5.1.3), [i=1,/=2])

b 3.25.14)
The same with Matrix
> B := Matrix(2, 2, [a, b, ¢, d])
a b
B = 3.2.5.1.5)
c d
Invoking it shows its components
> B
“r 3.2.5.1.6
2.5.1.
. d ( )

You cannot refer to an unspecified component
> B[i,]]

The LinearAlgebra package is all about Matrix, while there also exists the old /inalg package
about matrix. So you can do operations with both packages according to whether you need
more symbolic capabilities (linalg) or faster computations (LinearAlgebra).

There are routines to convert a matrix into a Matrix and the other way around
> C := convert(B, matrix)



a b
C:= 3.25.1.7)
c d
> C
C (3.2.5.1.8)
> C[i/]
Iy 3.2.5.1.9)
> M = convert(A4, Matrix)
a b
M = (3.2.5.1.10)
c d
> M
“ 0 3.2 11
2.5.1.
o 4 ( )
> Mli,j]
Error, bad index into Matrix
Vectors can be represented using the vector and Vector commands
> yi= vector( [va, vb])
y = [va v, ] (3.2.5.1.12)
>v
v (3.2.5.1.13)
> v[Jj]
v, (3.2.5.1.14)
> y[2]
v, 3.2.5.1.15)
> )= Vector([Va, Vb])
Va
V= 3.2.5.1.16
v ( )
>V
Va
3.2.5.1.17
v, ( )

When using Matrix and Vector, summation and product are performed using *+* and ".".
When using matrix and vector, it is the same but you need to enclose the operation with
evalm
>v.4

veA (3.2.5.1.18)

> evalm((3.2.5.1.18))

M1 100N



v,atvoc v b+ vy d (3.2.5.1.19)

Note that for Vector there are row and colum vectors, so

> V. B
Error, (in LinearAlgebra:-Multiply) cannot multiply a
column Vector and a Matrix

> V. ., = Vector[row](V)

Ve = [ Va Vs ] (3.2.5.1.20)

row ’

Va a-—+ Vb c Va b + Vb d ] (3.2.5.1.21)

The typical operations: conjugate, Transpose, HermitianTranspose, Determinant, Trace,
Eigenvalues

> LinearAlgebra:-Determinant(B)
ad—bc (3.2.5.1.22)

> LinearAlgebra:-Eigenvalues (B)

d a \/a2—2ad+4bc—|—d2
-+ +

2 2 2
(3.2.5.1.23)
d + 2 _ \/a2—2ad+4bc—|—d2
2 2 2
> conjugate(A) B
4 3.2.5.1.24)
> evalm (%)
ab
_ - (3.2.5.1.25)
c d

> LinearAlgebra:-Trace(B)
d+a (3.2.5.1.26)

Note these do not work with matrix for which you can use the old linalg

> Trace(A)
Trace(A) (3.2.5.1.27)

> linalg[trace](A4)
d+a (3.2.5.1.28)

For solving linear systems there is the LinearSolve command.
V Exercises

1. Determine the characteristic matrix, eigenvalues and then: step by step the eigenvectors, of
the following matrix:



0 -1J2 0
M=|1/2 0 -1J/2
0 IJ2 0
V Solution

> restart

> with (LinearAlgebra)
[ &x, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, (3.2.5.2.1.1)

BidiagonalForm, BilinearForm, CARE, CharacteristicMatrix,
CharacteristicPolynomial, Column, ColumnDimension,
ColumnOperation, ColumnSpace, CompanionMatrix,
CompressedSparseForm, ConditionNumber, ConstantMatrix,
ConstantVector, Copy, CreatePermutation, CrossProduct, DARE,
DeleteColumn, DeleteRow, Determinant, Diagonal, DiagonalMatrix,
Dimension, Dimensions, DotProduct, EigenConditionNumbers,
Eigenvalues, Eigenvectors, Equal, ForwardSubstitute, FrobeniusForm,
FromCompressedSparseForm, FromSplitForm, GaussianElimination,
GenerateEquations, GenerateMatrix, Generic, GetResultDataType,
GetResultShape, GivensRotationMatrix, GramSchmidt, HankelMatrix,
HermiteForm, HermitianTranspose, HessenbergForm, HilbertMatrix,
HouseholderMatrix, IdentityMatrix, IntersectionBasis, Is Definite,
IsOrthogonal, IsSimilar, Is Unitary, JordanBlockMatrix, JordanForm,
KroneckerProduct, LA _Main, LUDecomposition, LeastSquares,
LinearSolve, LyapunovSolve, Map, Map2, MatrixAdd,
MatrixExponential, MatrixFunction, MatrixInverse,
MatrixMatrixMultiply, MatrixNorm, MatrixPower,
MatrixScalarMultiply, MatrixVectorMultiply, MinimalPolynomial,
Minor, Modular, Multiply, NoUserValue, Norm, Normalize,
NullSpace, Outer ProductMatrix, Permanent, Pivot, PopovForm,
ProjectionMatrix, QRDecomposition, RandomMatrix, Random Vector,
Rank, RationalCanonicalForm, ReducedRowEchelonForm, Row,
RowDimension, RowOperation, RowSpace, ScalarMatrix,
ScalarMultiply, ScalarVector, SchurForm, SingularValues,
SmithForm, SplitForm, StronglyConnectedBlocks, SubMatrix,
SubVector, SumBasis, SylvesterMatrix, SylvesterSolve, ToeplitzMatrix,
Trace, Transpose, TridiagonalForm, UnitVector,
VandermondeMatrix, VectorAdd, Vector Angle, VectorMatrixMultiply,
VectorNorm, VectorScalarMultiply, ZeroMatrix, ZeroVector, Zip |



> M := Matrix(3, (i,j) — ifabs(i - j) = 1 then -1sqrt(2) else O fi, shape
= antisymmetric)

M =

> CharacteristicMatrix(M, x)

> Eigenvalues (M)

All eigenvectors satisfy

where A is an eigenvalue and V is an eigenvector, of the form
> V= Vector( [vl, V.,V

3)

29

0 —-IJ2 0
12 0o —-1J2
0 1J2 0
X /2 0
-1J2  x 12
0 —-I1J2 «x
0
2
-2
M-V=\-V
Vi
V= Vg
\%

and the V., are the unknowns to be determined.

First eigenvector corresponding to the eigenvalue 0

>SM.V=0-V

> lhs (%) — rhs (%)

-Zv, |,

1J2v, =12 v, |=|0

12 v, 0
—I\/Tv2

Iﬁvl—lﬁvj
I\/jv2

(3.2.5.2.1.2)

(3.2.5.2.1.3)

(3.2.5.2.1.4)

(3.2.5.2.1.5)

(3.2.5.2.1.6)

3.2.5.2.1.7)



> convert(%, set)

[~IV2 v, 12 v, 12y, =12 vy (3:2.5.2.1.8)
> solve(%)
{vl =v,v,=0,v,= v3} 3.2.5.2.1.9)
> V, = subs(%, V)
V3
V,=10 (3.2.5.2.1.10)
v

For the second and third eigenvalues it is the same process, so copy the block of
operations above and paste

>M. V=2 -V
_IﬁVZ 2\}[
12 v, =12 v, [=| 2V, (3.2.5.2.1.11)
12, 2,
> lhs (%) — rhs (%)
—Iﬁv2—2v1
12 v, =12 v, =2, (3.25.2.1.12)
I\/?vz—2v3

> convert(%, set)
[V v, =2y, 2y, =2y, 12y, =12 v =20} (3252.1.13)

> solve(%)

I I
{V] = Ty = 2T Vz} (3.2.5.2.1.14)
>V, = subs(%, V)
I
- ? \/7\/2
V, = v, (3.2.5.2.1.15)
I
E \/7\/2

Now for the third eigenvalue (again copy and paste)
>M.V=-2-V



—Iﬁvz —2v1
I\/?v]—l\/?v3 =1 ~2v,
I\/Tv2 2V,

> lhs (%) — rhs (%)

> convert(%, set)

{—I\/?v2+2v1,1\/7v2+2v3,1\/7v1—I\/?v3+2v2}

> solve(%)

—I\/?v2+2v1
Iﬁvl—lﬁv3+2v2

I\/?v2+2v3

| I
{v]: VT vy == ﬁv2}

> V, = subs(%, V)

So the three eigenvectors are

> Vl, VZ, V3

-E\/?VZ E\/?VZ
, 1§ , 1§

(3.2.5.2.1.16)

(3.2.5.2.1.17)

(3.2.5.2.1.18)

3.2.5.2.1.19)

(3.2.5.2.1.20)

(3.2.5.2.1.21)

V' Advanced students: guiding them to program mathematical concepts on a
computer algebra worksheet

D.T. Alves, J. V. Amaral, E.S. Cheb-Terrab and J.F. Medeiros Neto, “Learning Electromagnetism
via Programming using Symbolic Computation”, Special issue of the Revista Brasileira de Ensino
de Fisica (2002),



Status of the project
Prototypes of interfaces built cover:

* Natural numbers

* Functions

* Integer numbers

* Rational numbers

* Absolute value

* Logarithms

» Numerical sequences

* Trigonometry

* Matrices

* Determinants

* Linear systems

* Limits

* Derivatives

* Derivative of the inverse function
* The point in Cartesian coordinates
* The line

* The circle

* The ellipse

* The parabole

* The hyperbole

¢ The conics

More recent computer algebra frameworks: Maple Mobius for online courses and
automated evaluation

The Maple system has a new framework for developing an integrated experience: interactive
interfaces + evaluation + databases of topics, (concepts, problems and solutions)



