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Abstract:
Computer algebra implementations of Differential Algebra typically require that the systems of equations

to be tackled be rational in the independent and dependent variables and their partial derivatives, and of
course that 4 B = B A, everything is commutative.

It is possible, however, to extend this computational domain and apply Differential Algebra techniques to
systems of equations that involve arbitrary compositions of mathematical functions (elementary or special),
fractional and symbolic powers, as well as anticommutative variables and functions. This is the subject of
this presentation, with examples of the implementation of these ideas in the Maple computer algebra
system and its ODE and PDE solvers.
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> casesplit(sys)
[n =0,§ =0, éy = O] &where [ ] k)]

Differential polynomial forms for mathematical functions
(basic)
Consider the exponential and the square-root functions, both non-polynomial objects which however
admit a differential polynomial representation:
> g(x)=oxp(x) |
i g(x)=¢ @
> dpolyform((4))

[g(x) — FI(x)=0, FI_— FI(x)=0], [_FI(x) # 0], [ _FI(x) =¢'] (5)
[ In the above there is a sequence of 3 lists. The first list contains the "Equations" of the problem; the

second list contains the "Inequations" and the third list contains the "back-substitution equations",
telling which non-polynomial object is represented by each auxiliary function Fn.

> f(x) = sqrt(x)
i flx)=x (6)
(> dpolyform ((6))
[f(x) = FI(x)=0, FI(x)> —x=0], [ FI(x) # 0], [ FI(x)=x] (7)

>

Differential polynomial forms for compositions of
mathematical functions

;What happens with their composition?
> ee := h(x) =exp(sqrt(x))

ee = h(x)= eJ)T )
> dpolyform ((8))
[h(x) — _FI(x)=0,2_F2(x) _FI_— _FIl(x)=0, _F2(x)2 —x= O], [ FI(x) # 0, 9
F2(x) £ 0], | F2(x) =%, Fl(x)=e" |
__F2(X) is an auxiliary function introduced to represent the (inner) sqrt.

The non-obvious equation of the first list is obtained by changing variables: from the differential
| polynomial form for the (outter) exponential

> dpolyform ((4), no_Fn)

am



[gx =g(x) ] &where [g(x) # 0] (10)

> tr= {x=sqrt(u), g(x)=h(u)}
i iri= {x=\u,g(x)=hu)} (11)
> dchange(tr, (10))

[2\/7hu=h(u)]&where [h(u) # 0] (12)

> subs (sqrt(u) = _F2(x),h=_Fl,u=x,(12))
[2_F2(x) _FI_=_FI(x) ] &where [ FI(x) # 0] 13)

:Moreover, take the list of equations in (9)
> O[]
[h(x) = _FI(x)=0,2_F2(x) _FI,~ _FI(x) =0, CF2(x)* —x= 0] (14)

;_The auxiliary functions can always be eliminated: rank them higher than the rest:
> casesplit((14), [ _F2, FI, h])
2

1) () = hixy, 2 = 2O

2 (x) = 2h x 4x

&where [, # 0] | F2(x)*=x, FI(x) (15)

=0, h(x) =0] &where [ F2(x) # 0]

Jx

| From where the differential equation satisfied by /1 (x) = ¢
> op([1,1,3], [(A5)])

is

2_ h(x)
= 1
ho= = (16)
[ > eval((16), ee)
2 2
Vo Vo
() _ () -
4 x 4 x
;All this process was encoded in the Maple system in 1998.
> ee
h(x)=e/* 18)
> dpolyform (ee, no_Fn)
h(x)2
2= 07 g where [h, # 0] (19)
X 4 x b

Summarizing: if we compose algebraic blocks that admit differential polynomial representations,
their composition also admits a differential polynomial representation

Generalization to many variables

The generalization to many variables is straightforward

1
> tam(Zx-l—y2 j



\ 4

tan(2x—|—\/;) (20)
:Call this a function of x, y
> Gi=g(xy)=%

G=g(xy)=tan(2x+ ) 1)
:To have functionality ommited from the display and derivatives displayed with indexed notation,

> declare(g(x,y), Fl(x,y), F2(x,y), F3(x,y))
g(x,y) will now be displayed as g

_FI(x,y) will now be displayed as F1
_F2(x,y) will now be displayed as F2
_F3(x,y) will now be displayed as F3 22)

(> dpolyform(G)
[g— _FI1=0,2_F2 FI —1~ FI’=0,-2 FI*+ FI_—2=0, F2’ —y=0, F2 (23)

=0], [LF2 # 0, _FI_# 0, _F2_FI #0],|_F2=y, FI=tan(2x+y)]

[ > PDE sys for G = dpolyform (G, no_Fn)
4 2
S A 2_ 8 g 1 2
PDE sys for G = [gx—Zg + 2,gy = 4y + 2y + 4y l&where [g +1+# O,gy 24)

qt()]

;Verify that G satisfies this non-linear - however differential polynomial - PDE system
> pdetest(G, PDE sys_for G)
[0,0] (25)
[ CAVEAT: while G satisfies the differential polynomial form, the solution of the latter is more general
than G:
> pdsolve(PDE sys_for G)
{g=tan(2x+y +2 c1)} (26)
;Moreover, due to the nonlinear character of this example, if one excludes the inequations
> op(l, PDE sys_for G)
4 2
1
2 +2,g2=5 4 & 27
§=28 T8 = T Ty, 27

;then pde_sys also admits singular solutions not related to G
> pdsolve(%)

(g=—i), {g=i} {g=tan(2x+y +2_CI)} (28)

>

[> (¥ +20))

Arbitrary functions of algebraic expressions

(¥ +e0)) 29)



| Call this F (x, y)

> F(x,y)=%
i Fxy)=f(* +g()) (30)
B dpolyform (%, no_Fn)
F = fes, l Swhere [ ] @31
y 2x

E o, we know nothing about the mapping fbut, because of the algebraic structure of its dependency,
we know the PDE system satisfied by F'(x, y) =f(x + g(»))

Once the mechanism is understood, it becomes clear that one can do differential eliminination mostly
every possible object, it is all about representing it first in differential polynomial form using auxiliary
| functions; derivatives and integrals are naturally represented the same way

> F(xy)=D(f) (* +g(»))

! F(xy)=D() (¥ +g(»)) (32)
> dpolyform (%, no_Fn)
F
_ _x°y
] [Fy— ’ &where [ ] 33)
> F(xy)=In(f( +g(»)), )
Flry) = |f( +2() dr (34)
=> dpolyform (%, no_Fn)
[F Dy here [F 3
oy oy &where [F(x,y) # 0] 35)

More complicated examples present no problem: provided that, from the inner expressions to the
outer ones, each mathematical block admits a differential polynomial form, the arbitrary function
| satisfies a differential polynomial PDE system

> F(x,y) =f(exp(sqrt(x)) + g(»y))
] Fxy) =f(e™ +e0n) 36)
> dpolyform (%, no_Fn)

FF,,  Fg,, , (2F] F,, 2 F’ g, F
F:v,y: F - g ’F:v,x - F2 o g F _7 Fx,x (37)

y y y vy
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X
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4x2
2
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> pdetest((36), (37))

(38)



| [0,0] (38)
[>

Examples of the use of this extension to include mathematical
functions

Identities for special functions, or relations between them and simpler
Liouvillian functions
> declare(y(x), prime = x)
y(x) will now be displayed as y
derivatives with respect to x of functions of one variable will now be displayed with ' 39
(> 43 := ¥(x) =hypergeom([1], [2],-2ix);
a3 = y= F (1;2;-21x) (40)

;A polynomial (in this case linear) ODE satisfied by y(x) is given by:

> e3 = dpolyform (a3, no_Fn)

(-2ix—2)y' 21y
X X

el = |y'= &where [y # 0] 41)

[ The ODE above also admits a solution in terms of Liouvillian functions, which can be obtained by
| using Kovacic's algorithm. See DEtools[kovacicsols].
> a3 bis := dsolve(e3)[1]

c2e "+ I

a3 _bis = y= = . = (42)

[ This means that the hypergeometric function appearing in a3 is equal to the right-hand side of
a3 bis for some particular values of C1and C2.

To determine  C1 and C2, equate these expressions, expand in series and with the first terms
| construct a system of equations for them

> e4 == a3 — a3 bis:

> series (rhs(e4),x,2) :

> sys := map(eq—eq =0, {coeffs (convert(%, polynom), x) })

sys == {1+21 C2=0,- C2— CI=0} (43)
;resulting n:
> ans_C := solve(sys, {_ CI, C2})
i i
ans C:= 3 Cl=- ER _C2= 5 (44)

;At these values of Cland C2,

> eval(e4,ans C)
i e—2 ix

0= F (1;2;-2ix) — . (45)

from where the hypergeometric function can be isolated, resulting in the desired identity.



> isolate(%, hypergeom([1], [2],-2ix));
ie—21x i
. 2 2
F (2 -21x) = . (46)
> simplify ((ths — rhs) (%))
0 47)
[

¥ Solving non-polynomial, non-differential systems using differential

algebra
> declare(prime=t)
derivatives with respect to t of functions of one variable will now be displayed with ' (48)
> sys = [t —tan(y(1) +2(1) — In(y(1))) =0, y(r) — e~ M A TR — o]
sys = [t+tan(-y(¢) — z(1) + In(p(2))) = 0, p(r) — e 1) T Farctan(t) _ ] (49)

;We solve sys as follows. First compute a DPF for it
> DP sys = dpolyform (sys,no_Fn);
1 1
DP sys = |y'= — ,z'= 5 &where [y(t) + 1 # 0,y(¢) # 0] (50)
r+1 y(t) (£ +1)
;Second, solve DP_sys
> sol DP _sys = dsolve(DP _sys, explicit)
sol DP sys := {y(t) =arctan(t) + C2,z(t) =In(arctan(z) + C2)+ CI} (51)

[ This solution includes the solution of the original sys for some particular values of the integration
constants { C1, C2}.

To determine their value, briefly, a system is built for the integration constants C1 and _C2 by
inserting this solution into the system, equating to zero, computing series, and taking the first terms

> sys_C = eval(sys, sol DP sys)
sys C:= [t —tan(arctan(z) + C2 + Cl)=0,arctan(t) + C2 (52)
. e—_CZ + In(arctan(z) + _C2) + _CI _ O]
(> 21 = map (lhs, sys_C) :
z2 = map (series,zI,t, 1) :
z3 = {op(map(eq—eq = 0, simplify(map (convert, z2, polynom))) ) }
z3:={-tan(_C2+ CI1)=0, C2— C2¢-“T-“=0} (53)

;Now solve for { C1, C2}:
> sol C := solve(z3, {_Cl, C2}, allsolutions)

72 72
sol C=={ Cl=n _ZI, C2=0},{ CI= ni +in 73, C2= 1=

(54)

—in Z3




\ 4

where in Maple, by convention, Z1~ is an integer. The first solution is included in the second
one.

The above leads to the solution for the original non-differential sys by directly evaluating
| sol_DP_sys at these values of the integration constants

> sol sys = eval(sol_DP_sys, sol_Cz)

Z2 Z2
sol_sys = {y(z‘) = arctan(?) + ni —1in _Z3,z(t) = ln(arctan(t) + T > (55)
Z2
— iTE_Z3) + RE +in Z3
i‘his solution can be verified by substituting into sys.
> sys
[+ tan (- (1) — z() + In(p(2))) = 0,p(r) — 1 T Tt =] (56)
> expand (eval(sys, sol_sys))
[0=0,0=0] 57
>
Taking symbolic powers as variables using differential polynomial
forms
Consider the following nonlinear ODE example 11 from Kamke's book, involving symbolic
| powers
> declare(y(x), prime = x)
y(x) will now be displayed as y
derivatives with respect to x of functions of one variable will now be displayed with ' (58)
> ode = —5 y(x) + ax y(x)"=0
dx
ode,, = y"+a X y'=0 59)
> with (DEtools, gensys)
[gensys ] (60)
The PDE system satisfied by the symmetries, that is, infinitesimals [&, 1) | of the symmetry
generator, of the ODE above is given by
> declare( (&) (x, 7))
& (x, y) will now be displayed as &
N (x, y) will now be displayed as n (61)

> sys = [gensys (odey ., [E0](x,0))
> for eqin sys do
eq=0
end do
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This is a second order linear PDE system, with two unknowns {1 (x, ), (x, y) } and four
equations, involving non-polynomial objects x” and y(x)".

Its general solution is computed using differential polynomial representations for the symbolic
powers results in

> PDEtools:-casesplit(sys)

_rEy—28y . _ & . _
] [n— P ,&x—x,iy—O}&where[] (63)
[> ol = pdsolve(sys)

sol = {n=——C];(_’"l+2),§=_czx} (64)

Now, the difficult problem: are there other solutions, not included in the general solution, related to
particular values of the parameters n and r?

Also, in this particular problem, from the form of the ODE )" + a x" )" = 0, the case n = 1 is of no
interest since the ODE would become linear, and so, computing its symmetries is the same as
computing its solution. Add this inequation to the PDE system.

> sysl == [op(sys),n + 1]

sysl = 1§ .M  —2§

AL ron ron
vy My 728, 38 0 atan, —8 28 XY a—n x)a (65)

n nax y'n L Eax ry"
% x

Next we run a differential elimination process splitting into cases, this is what pdsolve does
internally

-I-T]x’x,ni 1

> casesplit(sysl, parameters = {n, r}, caseplot)
========= Pjyots Legend =========

pl=n—2
p2=n+r+3
p3=50xraynx2+yr(r+5)
p4=49 1" 4490 ¥ 4+ 1525 r + 1500
pi=r—+35
p6="Tr—+20




Rif Case Tree

- 2
n= rii—x&’yé—‘ié }&where[n—ZvﬁO,n—l7&0,”4"’4‘37&0, (66)
- 4 2
n#0,r#0]|n = nretrSyoAnyt2gy =g =
* 25 oy
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2yx Y
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[49x’ﬂ+2ayn—6y¢0], n,

B —98nxray"x3+84xray"§x2y—42nxy+36§y2

343 ay' 5t — 42X Ty
. -343ma a0y X +368)°
—343xraynx3y+42y2x’ *
—49T]xraynx3+14Oxrayn§x2y—12§y2 20
- v n 3 2 ’gy:(),nzz’,,:_7 &where
RVxay xy—12y x

- -nx+38&y n -nx+58&y
4 +2 n__ + _ nx —_ b —
(49X " ay' =6y # 0], lnx SRR S I

=0,n=2,r= —5]&where []
[ This is what pdsolve does internally, then tackling each of the PDE systems above to obtain the

| general and singular solutions
> soll := pdsolve(sysl1, parameters = {n, r})

soll == {n=2,r==5n=y( C2x+3 CI),E=x( C2x+ Cl)}, {n=2,r= (67)
20 2(-62 c1—98x87 Clay—147 C2axy) . 8 |7
B 343xa 67 Ol
+_C2x}, [n=2,r=— 175,11:
49 Claxy—147:°17 C2ay+12 C2x

- _ 67 _
33 1 ,E= Clx+ C2x }, {n=2,

r=r,n=-_Cly(r+2),§=_C1x}, {nz—r—?,,,f:,,,n

2 1 4 C2 2 ClI
_ (r(C2x+ C )r-+—|—_4_c x+2 C )y,ﬁzx(_CZX‘F_C])}a {nzn,rzr,

he - Cly(r+2) ,§=_C1x}

n—1

> map ( pdetest, [soll ], sys1)
[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]] (68)
So there exist particular values of » and » for which the system has additional solutions. The
solution set with n and  integers and with xi linear in x is in fact a particular case of the general
solution computed previously, but the other solution sets are not.

[>

¥ Resolving the equivalence between two solutions to Einstein's
equations in the presence of special functions




| > restart,

This problem is from general relativity, and amounts to found two functions R(u, &, ¢, v) and
T'(u, 9, @, v) that map two apparently different forms of a Schwarzschild solution to Einstein's
| equations - in spherical and in Kruskal coordinates, where the relation between these coordinates is

r—t r+t }

> = {u=\/r—2me4m,v=—e4m Jr—2m
r—t r+t
tr = {u=\/r—2me4m,v=—e4m \/r—2m} (69)

;The inverse transformation involves the logarithm and LambertW functions
> simplify(solve(tr, {r,t}))

—1
[r=2(W[—u;; ]+1]m,t=2ln(—2jm} (70)
> Iprint(%)

| {r = 2*(LambertW(-(1/2)*u*v*exp(-1)/m)+1)*m, t = 2*1n(-v/u)*m}
To set the problem, define two sets of coordinates (we are mapping from spherical to Kruskal
| coordinates)

| > with(Physics ) : with(PDEtools ) :
> Coordinates (X = spherical)
Default differentiation variables for d_, D_ and dAlembertian are: {X= (r, 0, ¢, 1) }

Systems of spacetime Coordinates are: {X= (r, 0, 0,¢)}
| {X} (71)
> Coordinates (K = [u, 9, ¢, v])
Systems of spacetime Coordinates are: {KZ (u, 9, @, v), X= (r, 0, 0, t) }
{K, X} (72)
;And we will search for a transformation of the form
> {r=R(K),t=T(K)}
{r=R(K),t=T(K)} (73)

_Skipping the details of how we arrive at the system of equations to be solved, we have that R and
| 7 must satisfy

> sys = [—4(—%R(K)+m)2(a%T(K)J2+(%
R(K)JZR(K)Z] —R(K1)+2m R(IK) 20’[_4(_%”“
o) (0] + (7)) o




+ (cos () — 1) R(K) (cos(9) + 1) ( — %R(K) —|—mj]j

: 1)=—4(W[—luve_l%J—i—l)zmzsin(f})z,(

) 1 1
R(K))R(K)) —R(K)+2m R(K) 8W(
1 _ 1 ) 1 1 1 [ 0
— —uve — | m — —, | 4| =
2 mj W(—%uve_le-l—l vy (av
2000

9
2 1 |
(£) ] —R(K)+2m R(K) _0’[
2

1 1

2
—R(Kl)+2m R(lK) :O’(_4(W T(K)) [_%R(K)er) (%
T(K)j+ (:_SR(K)) (%R(K))R(K)zj —R(K1)+2m R(IK) =0,
0 2 1 5 0 2
~ (5 REY) RK) = — RO+ (55 7)) (R(EK)
e (- e D)) )

> declare(sys)
R(u, 9, @, v) will now be displayed as R

T(u, 9, @, v) will now be displayed as T (74)

This is a complicated and unsimplifiable system, highly nonlinear and involving special functions

> nops (sys)

10 (75)



> simplify(sys)

R 2 R 2
—4(——+m] T>+R*R —4(——+mj T?+R*R
2 u u 0 2 v v

(-R+2m)R ’ (-R+2m)R

=0,

1 R 2, (R
CRE2m)R —4(—?+mj T,”+2R —;—+(cos(8)

2

—1
— 1) R (cos(9) + 1) [g +m)]]=—4 (W( ”;fn )+1) m? sin(9)2,

2 —1
R
4T [——-i—m) T +R R R 8W[—uve jmz
v 2 u vV o u 2m
-R+2m)R o —1 ’
( m) (W(-”Ve )+1)uv
2m
R 2 5 R 2 5
4T |-=4+m| T +R R R “4T |- +m| Ty+R RyR
v 2 (0] v 0 _0 i\ 2 i 0
(-R+2m)R ’ (-R+2m)R ’
st [-R 2T R R R’ st [-R 2T R R, R’
(-R+2m)R : (-R+2m)R
2
ar (R i) 7 +rRR R 2 2
. N W TRy . Ry R R2+T3 (R—2m)
o (-R+2m)R 7 R—2m R

—1
- -4 [W( AL ) + 1) m’
2m
> indets (sys, specfunc (:-diff ) )
{R\R, Ry, Ry, T, T, T, T

> casesplit(sys, caseplot)

========= Pivots Legend =========
pl = TV
p2=_F2(9) + F3(9)% —1
p3=-R+4m> ((F4(u,v) +1)*
pd=-T v+2m

(76)

(77



Rif Case Tree

> pdsolve(sys)
—1
{R=2 [W{ wre j + 1] m, T=-2mIn(u) + 2 mIn(v) —I—_Cl}, [R=2 (W( (79)

2m

uve !

2m

j+1)m,T=2mln(u)—2mln(V)+_Cl]

=> map (pdetest, [ %], sys)
[{0}, {0}] (80)

>

V¥ Differential Algebra with anticommutative variables
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How it works
| > restart, with(PDEtools ), with (Physics ) :
Set first 6 and Q as suffixes for variables of type/anticommutative (see Physics[Setup])

> Setup (anticommutativepre = {Q, 0})
* Partial match of 'anticommutativepre' against keyword 'anticommutativeprefix'

| anticommutativeprefix={Q, A, 0}] 81)

| Consider this anticommutative function O (x,,0), of commutative and anticommutative variables

> 0(x,.6)
I 0(x,1,6) (82)
It can always be expanded in power series of the anticommutative variable 6

> ToFieldComponents (%)

QOl(xy) + _Fl(x,y) 0 (83)

[>T, oSuperfields (%0)
I 0(x,1,6) (84)
| Consider this partial differential equation

> diff (O (x, y, theta), x, theta)
02

x,¥,0 85
30 0(x,,0) (85)
(> ToF ieldComponents (%)
a
— FlI
o Fl(x.y) (86)
;Its solution using pdsolve
> pdsolve((85))
O(x,»,0) = _F2(x,y) Al + F4(y)0 @87
[ > diff (%, theta, x)
02
x,»,0)=0 88
o0 2(62:0) (88)

Note the introduction of an anticommutative constant A/, analogous to the commutative constants
_Cn where n is an integer. The arbitrary functions Fn introduced are all commutative as usual and
the Grassmannian parity (on right-hand-side if compared with the one on the left-hand-side) is
| preserved
> Physics:-GrassmannParity ((87))
1=1 (89)

So: "To do differential elimination in systems with anticommutative variables and functions we
need to 1) expand in series w.r.t the anticommutative variables, use a noncommutative product
operator to carefully manipulate products of anticommutative functions"

Example: PDE system with one unknown Q(x, 2 61, 92)



To avoid redundant typing in the input that follows and redundant display of information on the
screen, use PDEtools:-declare, and PDEtools:-diff table, that also handles anticommutative
| variables by automatically using Physics:-diff when Physics is loaded

> PDEtools:-declare( Q(x, y,0.,0 ) )

1’72

0 (x, ¥, 0, 62) will now be displayed as Q 90)

:> q = PDEtools:-diﬁitable( Q(x, AL 92) ) :

Now we can enter derivatives directly as the function's name indexed by the differentiation
| variables and see the display the same way; two PDEs

> pdel = qx,y,el +qx,y,92_qy,9 0 =0

2
pdel = Qx,y,@1 +Qx,y,92_Qy,91,92:O (91)
> pde, = qq =0
1
pde, = Qe =0 92)
1
;The solution to this system:
> sys = [pdel,pdez]
Sys 1= [Qx,y,ﬁl + Qx’y’ 0, — Qy: 0.0, =0, Qel =0 93)

> pdsolve(sys)

0= _F4(x,y) A2+ (_F9(x) + _F8(»)) 6, %94)
[ How do we get there?
| The derivatives in pde[2] can be substituted in pde[1] reducing the problem to a simpler one:
> dsubs ( pde,, pde, )
Qx, ¥, 92 =0 (95)
:This one is solved as explained before
> pdsolve((95))
0= _F4(x,y) A2+ F5(x,y) 0, + (_F9(x) + _F8(»)) 0, + (_FII(x) 96)

+ _FI0(y)) _A36, 6,

Substituting this result for O back into pde[2], then multiplying by 6, and subtracting from the
above leads to the PDE system solution returned by pdsolve.

| Using differential elimination techniques pde[2] can be "reduced" using pdef[1]
> PDEtools:-ReducedForm ( pde, pde, )

Qx’ . 62] &where [ ] 97)

| Or: simplify the system taking the integrability conditions into account:



> casesplit( [ pde, pde, ])

[Qx: 2o, = 0, Qe1 = 0] &where [ ] 98)

[

¥ Example: The Lie symmetry infinitesimals of the PDE system for
Q(x, » 0, 62>

Set fthe generic form of the infinitesimals for a PDE system like this one formed by pde[1] and
pde[2].

We need anticommutative infinitesimals for the dependent anticommutative function O and two of
the independent anticommutative variables 61 , 92. We use = (x, v, 91 , 62) and H(x, ¥, 61 , 92) for
the anticommutative infinitesimal symmetry generators and the corresponding lower case greek
letters for commutative ones

> Setup (anticommutativepre = {H, E}, additionally)
* Partial match of 'anticommutativepre' against keyword 'anticommutativeprefix'

[ anticommutativeprefix= {H, O, =, O, A,0}] 99

> 8= [£.5,,5.E,, H|(x.5.6,.6,))
S = [51.1()6,)/, 91,92),5,2()6,)/, 91,92),51()6,)/, 91,62),52(x,y, 91,62>,H(x,y, 0, (100)

%))

B PDEtools:-declare(S

)
H(x, » 0, 92> will now be displayed as H

E (x, » 0, 92> will now be displayed as =

ﬁ(x, ¥, 0, 92> will now be displayed as & (101)

| The corresponding InfinitesimalGenerator

> InﬁnitesimalGenerator(S, Q(x, v, 91, 92> )

0 0 _ 0
[ al(x,y,el,ez) (ax f) +§2(x,y, el,ez) (ay f) +:1(x,y,91,92> (ae (102)

1
5 5
f] +2,(x0.0,.6,) [ae f) + H(x..0,.6,) [GQ j
2

[ The prolongation of the infinitesimal for O is computed with Eta_k, assign it here to the lower case
1N to use more familiar notation (recall g[ ]= O (x, v,0.,0 ))

1’ 72
> = Eia_k(S, q[ ])
n=n (103)

The first prolongations of | with respect to x and 6,

> My, 1]




}3_<§)£%_(@Lﬁ5_Q (E)X_Q%(Eﬁx
" ope)
Hel+'Qx(§1)91+Qy(‘;°z)el“Qel(El>el”Qez<Ez)el
:The second mixed prolongations of n| with respect to x, y and x, 6,
Mg .y ) )
H,=(8),,0(8),,0-0 (B),, -0 (%), = (8),0..
B <§2>y Qx,y— Qx,e1 (El>y_ Qx, 6, (52>y_ (gl)x Qxy— (&2),6 Qy,y
B Qy,e1 (El)x_ Qy 0, (Ez)x
" Nefse]
Hoy +0.(8) , +0(&), ~0 (2) , ~0 (2) , +0..(3),
e 1 1 1 1
O, <§2)91 - Qx,el (51)91 —Q, 0, (52)91 - Qx,el (él)x— Qy,Gl (az)x
_Qel,e2 (EZ)x

The DeterminingPDE for this system
> DeterminingPDE ( [ pde,, pde, ], S )

{‘(%X,:Q'(%)ezoffgﬁe 991_(9)920“«§

1 2 1’2 2

[ To compute now the exact form of the symmetry infinitesimals you can either solve this PDE

(104)

(105)

(106)

(107)

(108)

system for the commutative and anticommutative functions using pdsolve, or directly pass the



| system to Infinitesimals that will perform all these steps automatically
> Inﬁnitesimals( [pdel,pde2 ], ql 1, S)

[1, _F3(y), FI(y) A6, F2(y) A8, F6(x,y) Ad+ (_F5(x)+ F4(y)) 0, ], [x, (109)

F9(y), F7(y) A6+ 0, —0,,_F8(y) A8, FI2(x,y) M+ (_FIll(x)

+ _FI0(y)) 6, ], [0, _FIS(v), _FI3(y) _A6 +6,,_FI4(y) A8 +6,, _FI8(x,
Y) A4+ (LFI7(x) + _FI6(y)) 6]

[ To see these three list of symmetry infinitesimals with a label in the left-hand-side, you can use
map

> for EE in map., (zip, =, S, [(109)]) do EE od;
[&1 =1, &2 =_F3(y),E, =_FI(y) A6, E,=_F2(y) A8, H= F6(x,y) A

[+ (LF5(x) + _F4(y)) 6,

[x1]

[é;l =x,&,= _F9(y),E, = F7(y) A6+6, —0,Z = F8(y) A8, H=_FI2(x,

}) M+ (LF1(x) + _FI10(y)) 6,

[1]
[1]

[6,=0.8,=_FIS(),E, = _FI3(y) A6 +6,,5,= FI4(y) A8+ 6, H=_FI8(x, (110)

%) A+ (_FI7(x) + _FI6(y)) 6,

;To verify this result we use SymmetryTest - it also handles anticommutative variables
> map(SymmetryTest, [(109)], [pdel,pdez])

[{0}, {0}, {0}] (111)

>



