Magnetic traps in cold-atom physics

Pascal Szriftgiser¹ and Edgardo S. Cheb-Terrab²
(1) Laboratoire PhLAM, UMR CNRS 8523, Université Lille 1, F-59655, France
(2) Maplesoft

We consider a device constructed with a set of electrical wires fed with constant electrical currents. Those wires can have an arbitrary complex shape. The device is operated in a regime such that, in some region of interest, the moving particles experience a magnetic field that varies slowly compared to the Larmor spin precession frequency. In this region, the effective potential is proportional to the modulus of the field: $\|\vec{B}(x, y, z)\|$, this potential has a minimum and, close to this minimum, the device behaves as a magnetic trap.

Figure 1: Schematic representation of a Ioffe-Pritchard magnetic trap. It is made of four infinite rods and two coils.

Following [1], we show that:

a) For a time-independent magnetic field $\overrightarrow{B}(x,y,z)$ in vacuum, up to order two in the relative coordinates $X_i = [x,y,z]$ around some point of interest, the coefficients of orders 1 and 2 in this expansion, $v_{i,j}$ and $c_{i,j,k}$, respectively the gradient and curvature, contain only 5 and 7 independent components.

- b) All stationary points of $\|\overrightarrow{B}(x, y, z)\|^2$ (nonzero minima and saddle points) are confined to a curved surface defined by $\det(\partial_j(B_i)) = 0$.
- c) The effective potential, proportional to $\|\vec{B}(x, y, z)\|$, has no maximum, only a minimum.

Finally, we draw the stationary condition surface for the case of the widely used Ioffe-Pritchard magnetic trap.

Reference

[1] R. Gerritsma and R. J. C. Spreeuw, *Topological constraints on magnetostatic traps*, <u>Phys. Rev. A</u> 74, 043405 (2006)

▼ The independent components of $v_{i,j}$ and $c_{i,j,k}$ entering

$$B_i = u_i + v_{i,j}X_j + \frac{1}{2}c_{i,j,k}X_jX_k$$

- > restart
- > with (Physics):
- > Setup (coordinates = cartesian, dimension = 3, metric = Euclidean, spacetimeindices = lowercaselatin, quiet, minimizetensorcomponents = true) [coordinatesystems = {X}, dimension = 3, metric = {(1, 1) = 1, (2, 2) = 1, (3, 3) = 1}, minimizetensorcomponents = true, spacetimeindices = lowercaselatin]
- > g_[]

$$g_{a, b} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (2)

We are interested in determining the location of the stationary points of $\|\vec{B}(x, y, z)\|^2$, around which the device behaves as a magnetic trap.

Up to order two in the <u>relative coordinates</u> $X_i = (x, y, z)$ around a point of interest x_i within this region (that we take as origin of the system of references),

>
$$\mathbb{B}[i] = u[i] + v[i,j]X[j] + \frac{1}{2}c[i,j,k]X[j]X[k]$$

$$\mathbb{B}_{i} = u_{i} + v_{i,j}X_{j} + \frac{1}{2}c_{i,j,k}X_{j}X_{k}$$
(3)

where \mathbb{B}_i is the truncated expansion of B_i (computers are picky, don't like recursive definitions) and, following [1], we introduce the notation

$$\begin{aligned} u_i &= B_i(X) \\ | X_j &= 0 \end{aligned}$$

$$\begin{aligned} v_{i,j} &= \partial_j \left(B_i(X) \right) \\ | X_j &= 0 \end{aligned}$$

$$\begin{aligned} c_{i,j,k} &= \partial_j \left(\partial_k \left(B_i(X) \right) \right) \\ | X_i &= 0 \end{aligned}$$

Here, $v_{i,j}$ denotes the gradient tensor and $c_{i,j,k}$ the curvature of \overrightarrow{B} at the point $x_i = 0$.

 $> CompactDisplay(\mathbb{B}[i](X), B[i](X))$

$$\mathbb{B}(X)$$
 will now be displayed as \mathbb{B}

$$B(X)$$
 will now be displayed as B (4)

> Define(B[i], (3))

Defined objects with tensor properties

$$\left\{ \mathcal{B}_{i}, \mathcal{B}_{i}, \mathbf{\gamma}_{a}, \mathbf{\sigma}_{a}, X_{a}, c_{i,j,k}, \partial_{a}, g_{a,b}, u_{i}, v_{i,j}, \delta_{a,b}, \epsilon_{a,b,c} \right\}$$
 (5)

At this stage, the gradient tensor $v_{i,j}$ has no known symmetry; it thus has up to 9 independent components and, in general, a rank 3 tensor like $c_{i,j,k}$ has $3^3 = 27$ independent components,

> Library:-NumberOfIndependentTensorComponents(v);

 $\gt Library:-Number Of Independent Tensor Components (c)$

but $c_{i,j,k} = \partial_j (\partial_k (B_i(X)))$ is invariant by a permutation of its second and third indices; $X_j = 0$

indicate this symmetry and this last number is reduced to 18:

> $Define(redo, c[i, j, k], symmetric = \{2, 3\}, quiet)$

$$\left\{ \mathcal{B}_{i}, B_{i}, \mathbf{\gamma}_{a}, \mathbf{\sigma}_{a}, X_{a}, c_{a, b, d}, \partial_{a}, g_{a, b}, u_{i}, v_{i, j}, \delta_{a, b}, \epsilon_{a, b, c} \right\}$$
 (8)

> Library:-NumberOfIndependentTensorComponents(c)

> c[1, j, k, matrix]

$$c_{1,j,k} = \begin{bmatrix} c_{1,1,1} & c_{1,1,2} & c_{1,1,3} \\ c_{1,1,2} & c_{1,2,2} & c_{1,2,3} \\ c_{1,1,3} & c_{1,2,3} & c_{1,3,3} \end{bmatrix}$$
(10)

For a stationary magnetic field \vec{B} in vacuum, we also have

$$\nabla \cdot \overrightarrow{B} = 0$$

$$\nabla \times \stackrel{\rightarrow}{B} = 0$$

so that the number of independent components of $c_{i,j,\,k}$ can be further reduced.

>

$$\nabla \nabla \times \overrightarrow{B} = 0$$

Starting with $\nabla \times \overrightarrow{B} = 0$, from (3)

> (3)

$$\mathcal{B}_{i} = u_{i} + v_{i,j} X_{j} + \frac{1}{2} c_{i,j,k} X_{j} X_{k}$$
 (11)

> $LeviCivita[a, b, i] \cdot d_[b](\mathbf{3})$

$$\epsilon_{a, b, i} \, \partial_{b} \left(\mathcal{B}_{i} \right) = \epsilon_{a, b, i} \left(v_{i, j} \, g_{b, j} + \frac{c_{i, j, k} \left(X_{j} \, g_{b, k} + g_{b, j} \, X_{k} \right)}{2} \right) \tag{12}$$

> Simplify((12))

$$\epsilon_{a,b,i} \, \partial_{b} \left(\mathbb{B}_{i} \right) = \left(-X_{j} \, c_{i,j,k} - v_{i,k} \right) \, \epsilon_{a,i,k} \tag{13}$$

The right-hand-side of (13) must be zero no matter what the X_j are. This means that the following two terms, the coefficients of X_j , are equal to 0.

> Coefficients ((13),
$$X[j]$$
)
$$\epsilon_{a,b,i} \partial_b(\mathbb{B}_i) = -\epsilon_{a,i,k} v_{i,k} 0 = -c_{i,j,k} \epsilon_{a,i,k}$$
(14)

From the first of these equations, one can then see that $v_{i,j}$ is actually symmetric:

> 0 = rhs((14)[1])

$$0 = -\epsilon_{a, i, k} v_{i, k} \tag{15}$$

> TensorArray(%)

Add this symmetry to the definition of $v_{i,j}$

> Define(redo, v[i, j], symmetric, quiet)

$$\left\{ \mathcal{B}_{i}, B_{i}, \gamma_{a}, \sigma_{a}, X_{a}, c_{a,b,d}, \partial_{a}, g_{a,b}, u_{i}, v_{a,b}, \delta_{a,b}, \epsilon_{a,b,c} \right\}$$
 (17)

Check that the symmetry is explicitly there

> v[]

$$v_{a, b} = \begin{bmatrix} v_{1, 1} & v_{1, 2} & v_{1, 3} \\ v_{1, 2} & v_{2, 2} & v_{2, 3} \\ v_{1, 3} & v_{2, 3} & v_{3, 3} \end{bmatrix}$$
 (18)

 $\gt Library:-Number Of Independent Tensor Components (v)$

From the second equation in (14),

> (14)[2]
$$0 = -c_{i,j,k} \epsilon_{a,i,k}$$
 (20)

 $c_{i,j,\,k}$ is also symmetric under permutation of its 1st and 3rd indices, and because it is already symmetric under permutation of its 2nd and 3rd indices, $c_{i,j,\,k}$ is actually fully symmetric. Although this is sort of obvious, it can be verified as follows: redefine $c_{i,j,\,k}$ indicating the symmetries $\{1,\,3\},\,\{2,\,3\}$ and check the symmetries of the resulting tensor:

> Define(redo, c[i, j, k], symmetric = { {1, 3}, {2, 3}})

Defined objects with tensor properties

$$\left\{ \mathcal{B}_{i}, B_{i}, \gamma_{a}, \sigma_{a}, X_{a}, c_{a, b, d}, \partial_{a}, g_{a, b}, u_{i}, v_{a, b}, \delta_{a, b}, \epsilon_{a, b, c} \right\}$$
 (21)

> Library:-GetTensorSymmetryProperties(c)

$$\{[1,2,3]\}, \varnothing$$
 (22)

Or, directly count the number of independent components:

Indeed, a fully symmetric tensor constitutes a vector space with a dimension given by the binomial of the dimension + rank - 1 and the rank; that is

>
$$VectorSpaceDim := (dimension, rank) → \begin{pmatrix} dimension + rank - 1 \\ rank \end{pmatrix}$$
:

>

$$\nabla \nabla \cdot \vec{B} = 0$$

Again, starting from (3)

> (3)

$$\mathbb{B}_{i} = u_{i} + v_{i,j} X_{j} + \frac{1}{2} c_{i,j,k} X_{j} X_{k}$$
 (25)

> d [i]((3))

$$\partial_{i}(\mathbb{B}_{i}) = v_{i,j} g_{i,j} + \frac{c_{i,j,k} (X_{j} g_{i,k} + g_{i,j} X_{k})}{2}$$
 (26)

> Simplify((26))

$$\partial_{i}(\mathcal{B}_{i}) = X_{k} c_{j,j,k} + v_{j,j}$$

$$\tag{27}$$

The right-hand-side of (27) must be zero no matter what the X_j are. This means that the following two terms, the coefficients of X_k , are equal to 0.

> Coefficients ((27),
$$X[k]$$
)
$$\partial_i \left(\mathbb{B}_i \right) = v_{j,j}, \ 0 = c_{j,j,k}$$
(28)

This time the resulting equations don't increase the symmetry of the tensors as in $\nabla \times \overrightarrow{B} = 0$, but

permit reducing the number of independent components.

From the first of these equations, $v_{i,j}$ is traceless

 $\rightarrow v[trace] = 0$

$$v_{1,1} + v_{2,2} + v_{3,3} = 0 (29)$$

> isolate((29), v[3, 3])

$$v_{3,3} = -v_{1,1} - v_{2,2} \tag{30}$$

> Library:-RedefineTensorComponent((30))

$$v_{a, b} = \begin{bmatrix} v_{1, 1} & v_{1, 2} & v_{1, 3} \\ v_{1, 2} & v_{2, 2} & v_{2, 3} \\ v_{1, 3} & v_{2, 3} & -v_{1, 1} - v_{2, 2} \end{bmatrix}$$
(31)

> Library:-NumberOfIndependentTensorComponents(v)

From the second equation in (28),

> TensorArray((28)[2])

$$\begin{bmatrix} 0 = c_{1,1,1} + c_{1,2,2} + c_{1,3,3}, 0 = c_{1,1,2} + c_{2,2,2} + c_{2,3,3}, 0 = c_{1,1,3} + c_{2,2,3} \\ + c_{3,3,3} \end{bmatrix}$$
 (33)

Redefine one component using each of these equations:

> $map(u \rightarrow isolate(u, op(-1, rhs(u))), (33))$ $\begin{bmatrix} c_{1,3,3} = -c_{1,1,1} - c_{1,2,2} & c_{2,3,3} = -c_{1,1,2} - c_{2,2,2} & c_{3,3,3} = -c_{1,1,3} - c_{2,2,3} \end{bmatrix}$ (34)

> Library:-RedefineTensorComponent((34))

$$\begin{bmatrix} c_{a, b, d} = \begin{bmatrix} 1..3 \times 1..3 \times 1..3 & Array \\ Data Type: anything \\ Storage: rectangular \\ Order: Fortran_order \end{bmatrix}$$
(35)

> c[i, j, 3, matrix]

$$c_{i,j,3} = \begin{bmatrix} c_{1,1,3} & c_{1,2,3} & -c_{1,1,1} - c_{1,2,2} \\ c_{1,2,3} & c_{2,2,3} & -c_{1,1,2} - c_{2,2,2} \\ -c_{1,1,1} - c_{1,2,2} & -c_{1,1,2} - c_{2,2,2} & -c_{1,1,3} - c_{2,2,3} \end{bmatrix}$$
(36)

Now count the number of independent components of the curvature:

> Library:-NumberOfIndependentTensorComponents(c)
7
(37)

By the way, due to the symmetries of the curvature, \overrightarrow{B} is not just Curl and Divergence free, but also Laplacian free. From (3),

> SubstituteTensor $(B_i = B[i](X), (3))$

$$B_i = u_i + v_{i,j} X_j + \frac{1}{2} c_{i,j,k} X_j X_k$$
 (38)

> dAlembertian ((38))

$$\Box \left(B_{i} \right) = c_{i, k, k} \tag{39}$$

> TensorArray((**39**))

$$\left[\Box \left(B_1 \right) = 0 \ \Box \left(B_2 \right) = 0 \ \Box \left(B_3 \right) = 0 \right]$$
 (40)

>

▼ The stationary points are within the surface $\det\left(\partial_{j}\left(B_{i}\right)\right)=0$

In order to determine the location of the stationary points of the square of the potential, $U \sim \|B\|^2$, we need a copy of B_i , with different repeated dummy indices.

> SubstituteTensorIndices $(\{j=m, k=n\}, (3))$

$$\mathcal{B}_{i} = u_{i} + v_{i, m} X_{m} + \frac{1}{2} c_{i, m, n} X_{m} X_{n}$$
(41)

> (3) · (41)

$$\mathcal{B}_{i}^{2} = \left(u_{i} + v_{i,j}X_{j} + \frac{1}{2}c_{i,j,k}X_{j}X_{k}\right)\left(u_{i} + v_{i,m}X_{m} + \frac{1}{2}c_{i,m,n}X_{m}X_{n}\right)$$
(42)

> Simplify((42))

$$B_{i}^{2} = \left(\frac{1}{4} X_{k} X_{a} X_{m} X_{n} c_{i, m, n} + X_{k} X_{a} u_{i} + X_{j} X_{k} X_{a} v_{i, j}\right) c_{a, i, k} + v_{i, j} X_{j} v_{i, m} X_{m} + 2 v_{i, j} X_{j} u_{i}$$

$$+ u_{i}^{2}$$

$$+ u_{i}^{2}$$

$$(43)$$

Removing higher order terms (> 2) with respect to the coordinates,

> $STV := [op(indets(\mathbf{43}), specfunc(SpaceTimeVector)))]$ $STV := [X_a, X_i, X_k, X_m, X_n]$ (44)

> $select(u \rightarrow degree(u, STV) :: identical(3, 4), expand(rhs((43))))$

$$\frac{1}{4} X_k X_a X_m X_n c_{a, i, k} c_{i, m, n} + X_j X_k X_a c_{a, i, k} v_{i, j}$$
 (45)

> $U(X) = Simplify(rhs(\mathbf{43})) - \mathbf{(45)})$: $SubstituteTensorIndices(\{a = i, m = k\}, expand(\%))$

$$U(X) = X_{i} X_{k} c_{i,j,k} u_{i} + v_{i,j} v_{i,k} X_{j} X_{k} + 2 v_{i,j} X_{j} u_{i} + u_{i}^{2}$$
(46)

 \rightarrow CompactDisplay(U(X))

$$U(X)$$
 will now be displayed as U (47)

> collect((46), STV, distributed)

$$U = \left(c_{i,j,k} u_i + v_{i,j} v_{i,k}\right) X_i X_k + 2 v_{i,j} X_j u_i + u_i^2$$
(48)

For U to be stationary, all of its first derivatives $\partial_p(U)$ must cancel at X = 0.

>
$$d_{n}[n](48)$$
)
$$\partial_{n}(U) = \left(c_{i,j,k}u_{i} + v_{i,j}v_{i,k}\right)\left(X_{j}g_{k,n} + g_{j,n}X_{k}\right) + 2v_{i,j}u_{i}g_{j,n}$$
(49)

> Simplify((49))
$$\partial_{n}(U) = \left(2X_{i}c_{i,j,n} + 2V_{i,n}\right)u_{i} + 2X_{i}V_{i,j}V_{i,n}$$
(50)

Evaluation at X = 0:

Evaluation at
$$X = 0$$
:
> SubstituteTensor($X[j] = 0$, (50))
$$\partial_n(U) = 2 v_{i,n} u_i$$
(51)

Except for the trivial solution $u_i = 0$, for U to be stationary, u_i must be an eigenvector of $v_{i,j}$ with eigenvalue 0.

Now, the determinant of $v_{i,j}$ is the product of its eigenvalues, hence the stationary points occur where $det(v_{i,j}) = 0$. In turn, $v_{i,j} = \partial_j(B_i(x_k))$ where x_k is some point within the magnetic trap, hence the stationary points are the x_k of the 2D surface

$$\det\left(\partial_{j}\left(B_{i}\right)\right)=0$$

>

$\nabla U = \|\overrightarrow{B}\|^2$ has only minima, no maxima

To see that U has no maxima, only minima, we need to insert $u_i v_{i,n} = 0$ in the definition (46) of U and consider the second derivative with respect to the coordinates:

> (46)

$$U = X_i X_k c_{i,j,k} u_i + v_{i,j} v_{i,k} X_j X_k + 2 v_{i,j} X_j u_i + u_i^2$$
(52)

>
$$0 = v[i, j] u[i]$$

$$0 = u_i \, v_{i,j} \tag{53}$$

$$0 = 2 v_{i,j} X_i u_i$$
 (54)

$$U = X_i X_k c_{i,j,k} u_i + v_{i,j} v_{i,k} X_j X_k + u_i^2$$
(55)

The second derivative is given by the coefficient with respect to $X_k X_i$

>
$$t[j,k] = Coefficients(rhs((55)), X[j] \cdot X[k], 1)$$

 $t_{j,k} = c_{i,j,k} u_i + v_{i,j} v_{i,k}$ (56)

Now, U has only minima, no maxima, if this second derivative is always positive (its trace is positive definite). So take the trace of this expression:

> Define((56))

Defined objects with tensor properties

$$\left\{ \mathcal{B}_{i}^{2}, \mathcal{B}_{i}^{2}, \mathbf{\gamma}_{a}^{2}, \mathbf{\sigma}_{a}^{2}, X_{a}^{2}, c_{a,b,d}^{2}, \partial_{a}^{2}, g_{a,b}^{2}, t_{j,k}^{2}, u_{i}^{2}, v_{a,b}^{2}, \delta_{a,b}^{2}, \epsilon_{a,b,c}^{2} \right\}$$
(57)

> t[trace]

$$2v_{1,1}^2 + 2v_{1,1}v_{2,2} + 2v_{1,2}^2 + 2v_{1,3}^2 + 2v_{2,2}^2 + 2v_{2,3}^2$$
(58)

Add and subtract:

>
$$(v[1,1] + v[2,2])^2$$
 $(v_{1,1} + v_{2,2})^2$ (59)

>
$$t[trace] + (59) - expand((59))$$

 $v_{1,1}^2 + 2v_{1,2}^2 + 2v_{1,3}^2 + v_{2,2}^2 + 2v_{2,3}^2 + (v_{1,1} + v_{2,2})^2$ (60)

This trace is a sum of the squares of real quantities. It is therefore always positive. This recovers a well known result: there is no local maximum of a static magnetic field in free space. Indeed, such a maximum would require the three eigenvalues of $v_{i,j}$ to be negative, which would also imply a negative trace. Therefore, the stationary condition can only be a local minimum or a saddle point. See [1] for a more thorough discussion.

>

▼ Drawing the Ioffe-Pritchard Magnetic Trap

The magnetic field of the Ioffe-Pritchard trap, quadratic in the relative coordinates [x,y,z], is approximated as

>
$$B[j] = \begin{bmatrix} 0 \\ 0 \\ U \end{bmatrix} + A \cdot \begin{bmatrix} x \\ -y \\ 0 \end{bmatrix} + \frac{C}{2} \cdot \begin{bmatrix} -x \cdot z \\ -y \cdot z \\ z^2 - \frac{1}{2} \cdot (x^2 + y^2) \end{bmatrix}$$

$$Ax - \frac{1}{2} Cxz$$

$$-Ay - \frac{1}{2} Cyz$$

$$U + \frac{C(z^2 - \frac{x^2}{2} - \frac{y^2}{2})}{2}$$
(61)

> Define((61))

Defined objects with tensor properties

$$\left\{ \mathcal{B}_{i}, \mathcal{B}_{i}, \mathbf{\gamma}_{a}, \mathbf{\sigma}_{a}, X_{a}, c_{a,b,d}, \partial_{a}, g_{a,b}, t_{j,k}, u_{i}, v_{a,b}, \delta_{a,b}, \epsilon_{a,b,c} \right\}$$
 (62)

The surface of stationary points is defined by

>
$$d_{j}[B[i]]$$
 (63)

The matrix behind:

> TensorArray((63))

$$A - \frac{Cz}{2} \qquad 0 \qquad -\frac{Cx}{2}$$

$$0 \qquad -A - \frac{Cz}{2} \qquad -\frac{Cy}{2}$$

$$-\frac{Cx}{2} \qquad -\frac{Cy}{2} \qquad Cz$$

$$(64)$$

The stationary condition $\det(\partial_i(B_i)) = 0$:

> factor(LinearAlgebra:-Determinant((64))) = 0

$$-\frac{C(-C^2 x^2 z - C^2 z y^2 - 2 C^2 z^3 - 2 C x^2 A + 2 A C y^2 + 8 z A^2)}{8} = 0$$
(65)

is scaled by a single parameter $\epsilon = \frac{2 A}{C}$.

>
$$simplify\left(\frac{8}{C^3} \text{ (65)}, \left\{\frac{2 A}{C} = \epsilon\right\}\right)$$

 $2 z^3 + \left(-2 \epsilon^2 + x^2 + y^2\right) z + \epsilon \left(x^2 - y^2\right) = 0$ (66)

from which we can deduce the 2D stationary manifold. For $\epsilon = 1$:

> plots:-implicitplot3d(subs (epsilon = 1, (66)), x = -4..4, y = -4..4, z = -1.5..1.5, style = surface, scaling = constrained, grid = [50, 50, 50], caption = (The Ioffe - Pritchard magnetic trap for epsilon = 1));

The Ioffe-Pritchard magnetic trap for $\epsilon = 1$