Magnetic traps in cold-atom physics
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We consider a device constructed with a set of electrical wires fed with constant electrical currents. Those
wires can have an arbitrary complex shape. The device is operated in a regime such that, in some region of
interest, the moving particles experience a magnetic field that varies slowly compared to the Larmor spin
prgcession frequency. In this region, the effective potential is proportional to the modulus of the field:
1B(x. 3. 2)
trap.

, this potential has a minimum and, close to this minimum, the device behaves as a magnetic



Figure 1: Schematic representation of a loffe-Pritchard magnetic trap. It is made of four infinite rods and
two coils.

Following [1], we show that:

N
a) For a time-independent magnetic field B(x, y, z) in vacuum, up to order two in the relative
coordinates X =[xz] around some point of interest, the coefficients of orders 1 and 2 in this

expansion, v, ; and c, respectively the gradient and curvature, contain only 5 and 7 independent

b j’ k ’
components.
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b) All stationary points of || B(x,y,z) || (nonzero minima and saddle points) are confined to a curved

surface defined by det( Gj (Bl.) ) =0.

N
c¢) The effective potential, proportional to || B(x,y,z) ||, has no maximum, only a minimum.

Finally, we draw the stationary condition surface for the case of the widely used loffe-Pritchard magnetic
trap.
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The independent components of v. and c_ . entering
l’.] l’ .]9
1

B=u+v X+ —c X X
i Lj J 2 bLjk j k
> restart
> with (Physics) :
> Setup (coordinates = cartesian, dimension = 3, metric = Euclidean, spacetimeindices
= lowercaselatin, quiet, minimizetensorcomponents = true)

[ coordinatesystems = { X}, dimension =3, metric= {(1,1)=1, (2,2)=1, (3,3) =1}, 1)
minimizetensorcomponents = true, spacetimeindices = lowercaselatin |
>g[]
100
8p=| 010 )
001

2 )
, around which

N
We are interested in determining the location of the stationary points of || B(x, v, z) |
the device behaves as a magnetic trap.

Up to order two in the relative coordinates X; = (x, y, z) around a point of interest x, within this region
(that we take as origin of the system of references),

> Bli]=uli] +v[iL /] X[J]+ % c[i, ), k] X[j]1 X[ k]

1
Bi =u, + vl.’j)‘(]. + 5 S, kaXk A3)

where B is the truncated expansion of B, (computers are picky, don't like recursive definitions) and,
1

following [1], we introduce the notation



N
Here, v. ; denotes the gradient tensor and c, ik the curvature of B at the pointx, = 0.

> CompactDisplay(B[i](X), B[i](X))
B(X) will now be displayed as B

B(X) will now be displayed as B

> Define(B[i], (3))
Defined objects with tensor properties

{Bl, Bli Ya’ Ga) Xa) Cl.,j, k’ aa’ ga’ b) u[, vl.,j, 8(1, b’ Ea’ b, C}
At this stage, the gradient tensor Vi has no known symmetry; it thus has up to 9 independent

components and, in general, a rank 3 tensor like ¢, ik has 3° =27 independent components,

> Library:-NumberOfIndependentTensorComponents (v);

9
> Library:-NumberOfIndependentTensor Components (c)
27
but ¢, e aj ( d k(Bl. (X) ) ) is invariant by a permutation of its second and third indices;

X.=0
J

indicate this symmetry and this last number is reduced to 18:
> Define(redo, c[i, j, k], symmetric = {2, 3}, quiet)

{Bl" Bi’ Ya’ Ga’ Xa’ Ca, b,d’ aa’ ga, b’ ui’ vi,j’ 6a, b’ Ea, b, c}

> Library:-NumberOfIndependentTensorComponents (c)

18
> c[1,], k, matrix)
‘L1 S22 G013
—|ec c ¢
€ ik 1.1,2 “1.2.2 €1,2.3

O]

C))

(6)

@)

®

®

(10



so that the number of independent components of ¢, ;. can be further reduced.

>

xB=0

Starting with V x E =0, from (3)
> )

ZEBi =u. + vl.’ij + 5 G, kX]Xk (11)

> LeviCivita[a, b,i]-d [D]((3))
c.. (Xg ,tg AX)
_ i), k ( J©b, k b,j"k
ab,i ab(Bi) ~ b (V8. + 2 (12)

> Simplify((12))
Ea,b,iab(Bi):(_ jci,j»k_vi,k) Sai, k (13)
The right-hand-side of (13) must be zero no matter what the Xj are. This means that the following

two terms, the coefficients of A;., are equal to 0.

> Coefficients ((13), X[ j])

€ b ab(lEBi) = iV 0= Gk ik 14)
From the first of these equations, one can then see that Vi is actually symmetric:
> 0= rhs((A4)[1])
0= wi i Vik 15)
> TensorArray(%)
[0:_V2,3+V3,2 0=v 377, 0:_V1,2+V2,1] 16)
Add this symmetry to the definition of Vi
> Define(redo, v[i,j], symmetric, quiet)
{B; BV O X €4 b, a2 00 8a, 0 Yo Va, b2 O > €4 ) c} a7
Check that the symmetry is explicitly there
> v ]
Viir V12 i3
Vor=| 2 Y22 Y23 (18)
Viiz V2.3 V3.3
> Library:-NumberOfIndependentTensor Components (v)
6 19)

From the second equation in (14),



> (14)[2]

0=- (20)

c. . €
i,j,k “a, i,k

¢, . , 1s also symmetric under permutation of its 1st and 3rd indices, and because it is already

s;ril,nkletric under permutation of its 2nd and 3rd indices, Ciik is actually fully symmetric. Although
this is sort of obvious, it can be verified as follows: redefine ¢k indicating the symmetries
{1,3}, {2, 3} and check the symmetries of the resulting tensor:
> Define(redo, c[i, j, k], symmetric= {{1,3}, {2,3}})
Defined objects with tensor properties
{Bl-v BV O X € b, a0 90 8 o Ui V2 O 2 €40, c} 1)

> Library:-GetTensorSymmetryProperties (c)
{[1,2,3]}, @ (22)
Or, directly count the number of independent components:
> Library:-NumberOfIndependentTensorComponents (c)
10 (23)

Indeed, a fully symmetric tensor constitutes a vector space with a dimension given by the binomial
of the dimension + rank - 1 and the rank; that is

di jon + rank — 1
> VectorSpaceDim := (dimension, rank) — ( Hension T ran j :
rank
> VectorSpaceDim (3, 3)
10 (24)
>
9
«B=0
Again, starting from (3)
> @3)
1
/Bl_ =u. + vl.’ij + 5 S, ka X, (25)

> d_[i](3))

c.. . (Xg ,t+g .X)
_ l,J,k( JCik S,k
0, (B) =¥+ ; 9

> Simplify((26))
ai(B) = ij,j,k+vj,j 27

l
The right-hand-side of (27) must be zero no matter what the Xj are. This means that the following

two terms, the coefficients of X, , are equal to 0.

> Coefficients ((27), X[ k])

9.(By=v,0=¢ 4 (28)

N
This time the resulting equations don't increase the symmetry of the tensors as in Vx B =0, but



permit reducing the number of independent components.

From the first of these equations, v, ; is traceless

> v[trace]=0

VI +v272+v37320

> isolate((29),v[3,3])

3,3 1,1 2,2
> Library:-RedefineTensorComponent((30))
Vit V12 1.3
| v V. %
Vo 1,2 72,2 2,3
VI3 V2,3 TV T V20

> Library:-NumberOfIndependentTensorComponents (v)

5
From the second equation in (28),
> TensorArray((28)[2])
[0=ci 1Tt 33507, T 6,16 ;5305 316,
T3
Redefine one component using each of these equations:
> map(u — isolate(u,op(-1,rhs(u))), (33))
[ 3.3 791010 %22 9203037 TS0 %2.2.2 930337 TG 13T 9023 }

> Library:-RedefineTensorComponent((34))
' | 1.3x1.3x1.3 Array |]

Data Type: anything

a, b, d Storage: rectangular
Order: Fortran_order
> c[i,j, 3, matrix]
€1.1.3 €1.2.3 1 2.2
3 €.,2.3 ©.2.3 27 922
-c —c -c —c -c —c

1, 1,1 1,2,2 1, 1,2 2,2,2 1, 1,3 2,2,3

Now count the number of independent components of the curvature:

> Library:-NumberOfIndependentTensorComponents (c)
7

(29)

(30)

(31

(32)

(33)

(34)

(35)

(36)

37

N
By the way, due to the symmetries of the curvature, B is not just Curl and Divergence free, but also

Laplacian free. From (3),
> SubstituleTensor( B =B[i](X), (3))
1



1
Bl_ =u, + vl.’j)‘(/. + E Ci,j, kX/' Xk

> dAlembertian ((38))

> TensorArray((39))

>

V The stationary points are within the surface det(

In order to determine the location of the stationary points of the square of the potential, U ~ || B|| 2,

need a copy of B, with different repeated dummy indices.
1
> SubstituteTensorIndices ({j=m,k=n}, (3))
1
B=u+v X +—c

i L,m m 2 ,mn m n

> (3) - (41)

1 1
B?Z(u.—kv. X+ —c . X.X)(ui—l—vi X +—c XX)
; i i,j i i,m“m 2 TiymonTm n

2 Lj, kT Tk

> Simplify((42))

4 m n 1,mn

1
B?Z( XXX X c —f—Xqu.—f—X.XXV..JC oty X,
i a i J kT a i, j a, i,k i,]

2
+ul.

Removing higher order terms (> 2) with respect to the coordinates,

> STV := [op/(indets ((43), specfunc(SpaceTimeVector))) |
STV = [Xa,X.,Xk, X, Xn]

> select(u — degree(u, STV :: identical (3, 4), expand (rhs ((43))))
1
Z X X Xm‘Xn a,i, k z m, n +)€Xan Ca, i,kvi,j
> U(X) = Simplify(rhs ((43)) — (45)) :
SubstituteTensorIndices ({a =i, m = k}, expand (%))

_ 2
U(X) —X/.Xk ok + Vi i Vi k)(;. X, +2 vl.’j)‘(/. u, +u;

> CompactDisplay(U (X))
U(X) will now be displayed as U

> collect((46), STV, distributed )

U=(c.. u.+v. .v. )XX—I—ZV. Xu+u
i,], ki i,j i,k 7 i,joj i i

For U to be stationary, all of its first derivatives d (U ) must cancel at X = 0.
> d_[n]((48))

n

J iL,m m

d (U)= (ci’j,kul.—l—vl.’jvi’k) (X/’gk,n —I—gj’nXk) —|—2vl/. u.g ,

(33)

(39)

(40)

w¢E

41)

42)

(43)

(44)

45)

(46)

47)

(48)

(49)



> Simplify((49))
(30)

Evaluation at X=0 :
> SubstituteTensor (X[ j]= 0, (50))

d (U)=2v, u (51)
Except for the trivial solution u. = 0, for U to be stationary, u, must be an eigenvector of v. ; with
eigenvalue 0.

Now, the determinant of v, ; is the product of its eigenvalues, hence the stationary points occur where
det(vl.’j) = 0. In turn, V= 6j (Bl. (xk) ) where x, is some point within the magnetic trap, hence the
stationary points are the x, of the 2D surface

det(9,(B,)) =0

U= ||§ || has only minima, no maxima

To see that U has no maxima, only minima, we need to insert uv. =0 in the definition (46) of U and

consider the second derivative with respect to the coordinates:

> (46)
_ 2
U—Xijcl.’j’kul.+ i szX +2v, Xjui—l—ui (52)
> 0=v[i,jlu[i]
0=u, Vi (53)
> 2(53) X[/j]
0=2v. . X u (54)
L,y J 1
> (46)-(54)
UZ){ijc. u-l—vl].lkXX—l-u 55)

The second derivative is given by the coefficient with respect to X, kX;'

> t[j, k] = Coefficients (rhs ((55)), X[ j]-X[k], 1)

[j,k_clj ku1+v1j i,k (56)

Now, U has only minima, no maxima, if this second derivative is always positive (its trace is positive
definite). So take the trace of this expression:
> Define((56))

Defined objects with tensor properties

{B,B.,y,c X, c 3
P e T T

a0 &a b b o U Vo 1 Oy 2 €, b,c} (57

> t[trace]

2
2v1’1+2

2 2 2 2
vl,l\/2’2—|—2vl’2+2vl’3—|—2\/2’2+2vz’3 (58)



Add and subtract:

> (V[1,1] 4 v[2,2])

(Vi1 +V2,2)2 (59)

> t[trace] + (59)-expand((59))
2 2 2 2 2 2
Vi +2VL2 +2V1,3 +v2’2 +2V2,3 + (Vl,l +v2’2) (60)
This trace is a sum of the squares of real quantities. It is therefore always positive. This recovers a well

known result: there is no local maximum of a static magnetic field in free space. Indeed, such a
maximum would require the three eigenvalues of v. ; to be negative, which would also imply a negative

trace. Therefore, the stationary condition can only be a local minimum or a saddle point. See [1] for a
more thorough discussion.
>

Drawing the loffe-Pritchard Magnetic Trap

The magnetic field of the loffe-Pritchard trap, quadratic in the relative coordinates [X,y,z], is
approximated as

0 ¥ -Xz
C -yz
> B[j]=| 0 |+4-| -y + 1y

U 0 22—3'()62-1‘)/2)

A ! C

X — | Xz
2

-Ay— — Cyz

B.= YU u (61)

> Define((61))

Defined objects with tensor properties
{Bl" Bi’ ya’ Ga’ Xa’ cu, b,d aa’ gu, b’ 6‘, K ui’ Va, b’ Sa, b’ Ea, b, c} (62)

The surface of stationary points is defined by

> d_[j1(B[i])
d.(B)) (63)

The matrix behind:
> TensorArray((63))

(RAN



The stationary condition det( ad (Bl.) ) =

J

0:

_Cy
2

> factor (LinearAlgebra:-Determinant((64))) = 0

(- CXz=Czy =207 —20xX4+424Cy +8:4)

is scaled by a single parameter € =

> simpli]fj/( % (65), {% =€

2z3+(—262+x2+y2)z+e(x2—y2)=0

from which we can deduce the 2D stationary manifold. For € = 1:

> plots:-implicitplot3d (
subs (epsilon = 1, (66)),

2 A4

-

]

x=-4.4,y=-4.4,z=-15.1.5,
style = surface, scaling = constrained, grid = [ 50, 50, 50],

caption = ( The loffe — Pritchard magnetic trap for epsilon=1));

8

0

(64)

(65)

(66)



The Ioffe-Pritchard magnetic trap for e = 1



