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We consider a device constructed with a set of electrical wires fed with constant electrical currents. Those 
wires can have an arbitrary complex shape. The device is operated in a regime such that, in some region of 
interest, the moving particles experience a magnetic field that varies slowly compared to the Larmor spin 
precession frequency. In this region, the effective potential is proportional to the modulus of the field: 

B x, y, z , this potential has a minimum and, close to this minimum, the device behaves as a magnetic 
trap. 



    

Figure 1: Schematic representation of a Ioffe-Pritchard magnetic trap. It is made of four infinite rods and 
two coils.

_________________________________________

Following [1], we show that:

a) For a time-independent magnetic field  B x, y, z  in vacuum, up to order two in the relative 
coordinates Xi = x, y, z  around some point of interest, the coefficients of orders 1 and 2 in this 
expansion, vi, j and ci, j, k , respectively the gradient and curvature, contain only 5 and 7 independent 
components.
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b) All stationary points of B x, y, z
2
 (nonzero minima and saddle points) are confined to a curved 

surface defined by det
j

Bi = 0.

c) The effective potential, proportional to B x, y, z , has no maximum, only a minimum.

Finally, we draw the stationary condition surface for the case of the widely used Ioffe-Pritchard magnetic 
trap.
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restart
with Physics :
Setup coordinates = cartesian, dimension = 3, metric = Euclidean, spacetimeindices 

= lowercaselatin, quiet, minimizetensorcomponents = true
coordinatesystems = X , dimension = 3, metric = 1, 1 = 1, 2, 2 = 1, 3, 3 = 1 ,

minimizetensorcomponents = true, spacetimeindices = lowercaselatin

g_

ga, b =

1 0 0

0 1 0

0 0 1

We are interested in determining the location of the stationary points of B x, y, z
2
, around which 

the device behaves as a magnetic trap. 

Up to order two in the relative coordinates  Xi = x, y, z  around a point of interest xi within this region 
(that we take as origin of the system of references),

i = u i v i, j  X j
1
2

 c i, j, k  X j  X k

i
= ui vi, j Xj

1
2

 ci, j, k Xj Xk

where 
i
 is the truncated expansion of Bi (computers are picky, don't like recursive definitions) and, 

following [1], we introduce the notation
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ui = Bi X
Xj = 0

  vi, j =
j

Bi X
Xj = 0

 
ci, j, k =

j k
Bi X

Xj = 0

Here, vi, j denotes the gradient tensor and ci, j, k the curvature of  B at the point xi = 0. 

CompactDisplay i X , B i X
 X  will now be displayed as 
 B X  will now be displayed as B

Define B i , (3)
Defined objects with tensor properties

i
, Bi, a, a, Xa, ci, j, k, a

, ga, b, ui, vi, j, a, b,
a, b, c

At this stage, the gradient tensor vi, j has no known symmetry; it thus has up to 9 independent 

components and, in general, a rank 3 tensor like ci, j, k has 33 = 27 independent components,

Library:-NumberOfIndependentTensorComponents v ;
9

Library:-NumberOfIndependentTensorComponents c
27

but   ci, j, k =
j k

Bi X
Xj = 0

 is invariant by a permutation of its second and third indices; 

indicate this symmetry and this last number is reduced to 18:
Define redo, c i, j, k , symmetric = 2, 3 , quiet

i
, Bi, a, a, Xa, ca, b, d,

a
, ga, b, ui, vi, j, a, b,

a, b, c

Library:-NumberOfIndependentTensorComponents c
18

c 1, j, k, matrix

c1, j, k =

c1, 1, 1 c1, 1, 2 c1, 1, 3

c1, 1, 2 c1, 2, 2 c1, 2, 3

c1, 1, 3 c1, 2, 3 c1, 3, 3

For a stationary magnetic field B in vacuum, we also have

B = 0
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B = 0

so that the number of independent components of ci, j, k can be further reduced.  

B = 0

Starting with B = 0, from (3)
(3)

i
= ui vi, j Xj

1
2

 ci, j, k Xj Xk

LeviCivita a, b, i d_ b (3)

a, b, i
 

b i
=

a, b, i
 vi, j gb, j

ci, j, k Xj gb, k gb, j Xk

2

Simplify (12)

a, b, i
 

b i
= Xj ci, j, k vi, k  

a, i, k

The right-hand-side of (13) must be zero no matter what the Xj are. This means that the following 
two terms, the coefficients of Xj, are equal to 0.

Coefficients (13), X j

a, b, i
 

b i
=

a, i, k
 vi, k, 0 = ci, j, k a, i, k

From the first of these equations, one can then see that vi, j is actually symmetric:

0 =  rhs (14) 1
0 =

a, i, k
 vi, k

TensorArray %
0 = v2, 3 v3, 2 0 = v1, 3 v3, 1 0 = v1, 2 v2, 1

Add this symmetry to the definition of vi, j

Define redo, v i, j , symmetric, quiet

i
, Bi, a, a, Xa, ca, b, d,

a
, ga, b, ui, va, b, a, b,

a, b, c

Check that the symmetry is explicitly there
v  

va, b =

v1, 1 v1, 2 v1, 3

v1, 2 v2, 2 v2, 3

v1, 3 v2, 3 v3, 3

Library:-NumberOfIndependentTensorComponents v
6

From the second equation in (14),
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(14) 2
0 = ci, j, k a, i, k

 ci, j, k is also symmetric under permutation of its 1st and 3rd indices, and because it is already 
symmetric under permutation of its 2nd and 3rd indices, ci, j, k is actually fully symmetric. Although
this is sort of obvious, it can be verified as follows: redefine ci, j, k indicating the symmetries 

1, 3 , 2, 3  and check the symmetries of the resulting tensor:
Define redo, c i, j, k , symmetric = 1, 3 , 2, 3

Defined objects with tensor properties

i
, Bi, a, a, Xa, ca, b, d,

a
, ga, b, ui, va, b, a, b,

a, b, c

Library:-GetTensorSymmetryProperties c
1, 2, 3 ,

Or, directly count the number of independent components:
Library:-NumberOfIndependentTensorComponents c

10

Indeed, a fully symmetric tensor constitutes a vector space with a dimension given by the binomial 
of the dimension + rank - 1 and the rank; that is

VectorSpaceDim dimension, rank
dimension rank 1

rank :

VectorSpaceDim 3, 3
10

B = 0

Again, starting from (3)
(3)

i
= ui vi, j Xj

1
2

 ci, j, k Xj Xk

d_ i (3)

i i
= vi, j gi, j

ci, j, k Xj gi, k gi, j Xk

2

Simplify (26)

i i
= Xk cj, j, k vj, j

The right-hand-side of (27) must be zero no matter what the Xj are. This means that the following 
two terms, the coefficients of Xk, are equal to 0.

Coefficients (27), X k

i i
= vj, j, 0 = cj, j, k

This time the resulting equations don't increase the symmetry of the tensors as in B = 0, but 
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permit reducing the number of independent components.

From the first of these equations, vi, j is traceless

v trace  = 0
v1, 1 v2, 2 v3, 3 = 0

isolate (29), v 3, 3
v3, 3 = v1, 1 v2, 2

Library:-RedefineTensorComponent (30)

va, b =

v1, 1 v1, 2 v1, 3

v1, 2 v2, 2 v2, 3

v1, 3 v2, 3 v1, 1 v2, 2

Library:-NumberOfIndependentTensorComponents v
5

From the second equation in (28),
TensorArray (28) 2

0 = c1, 1, 1 c1, 2, 2 c1, 3, 3, 0 = c1, 1, 2 c2, 2, 2 c2, 3, 3, 0 = c1, 1, 3 c2, 2, 3

c3, 3, 3 ,

Redefine one component using each of these equations:
map u  isolate u, op 1, rhs u , (33)

c1, 3, 3 = c1, 1, 1 c1, 2, 2 c2, 3, 3 = c1, 1, 2 c2, 2, 2 c3, 3, 3 = c1, 1, 3 c2, 2, 3

Library:-RedefineTensorComponent (34)

ca, b, d =

 1..3 x 1..3 x 1..3 Array

Data Type: anything

Storage: rectangular

Order: Fortran_order

c i, j, 3, matrix

ci, j, 3 =

c1, 1, 3 c1, 2, 3 c1, 1, 1 c1, 2, 2

c1, 2, 3 c2, 2, 3 c1, 1, 2 c2, 2, 2

c1, 1, 1 c1, 2, 2 c1, 1, 2 c2, 2, 2 c1, 1, 3 c2, 2, 3

Now count the number of independent components of the curvature:
Library:-NumberOfIndependentTensorComponents c

7

By the way, due to the symmetries of the curvature, B is not just Curl and Divergence free, but also 
Laplacian free. From (3),

SubstituteTensor
i
 = B i X , (3)
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Bi = ui vi, j Xj
1
2

 ci, j, k Xj Xk

dAlembertian (38)
Bi = ci, k, k

TensorArray (39)
B1 = 0 B2 = 0 B3 = 0

The stationary points are within the surface det
j

B
i

= 0

In order to determine the location of the stationary points of the square of the potential, U ~ B 2,  we 
need a copy of 

i
 with different repeated dummy indices.

SubstituteTensorIndices j = m, k = n , (3)

i
= ui vi, m Xm

1
2

 ci, m, n Xm Xn

(3)  (41)

i
2 = ui vi, j Xj

1
2

 ci, j, k Xj Xk  ui vi, m Xm
1
2

 ci, m, n Xm Xn

Simplify (42)

i
2 =

1
4

 Xk Xa Xm Xn ci, m, n Xk Xa ui Xj Xk Xa vi, j  ca, i, k vi, j Xj vi, m Xm 2 vi, j Xj ui

ui
2

Removing higher order terms (> 2) with respect to the coordinates,
STV  op indets (43), specfunc SpaceTimeVector

STV Xa, Xj, Xk, Xm, Xn

select u  degree u, STV identical 3, 4 , expand rhs (43)
1
4

 Xk Xa Xm Xn ca, i, k ci, m, n Xj Xk Xa ca, i, k vi, j

U X = Simplify rhs (43) (45) :
SubstituteTensorIndices a = i, m = k , expand %

U X = Xj Xk ci, j, k ui vi, j vi, k Xj Xk 2 vi, j Xj ui ui
2

CompactDisplay U X
 U X  will now be displayed as U

collect (46), STV, distributed
U = ci, j, k ui vi, j vi, k  Xj Xk 2 vi, j Xj ui ui

2

For U to be stationary, all of its first derivatives 
p

U  must cancel at X = 0.

d_ n (48)

n
U = ci, j, k ui vi, j vi, k  Xj gk, n gj, n Xk 2 vi, j ui gj, n
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Simplify (49)

n
U = 2 Xj ci, j, n 2 vi, n  ui 2 Xj vi, j vi, n

Evaluation at X = 0 :
SubstituteTensor X j  = 0, (50)

n
U = 2 vi, n ui

Except for the trivial solution ui = 0,  for U to be stationary, ui must be an eigenvector of vi, j with 
eigenvalue 0.

Now, the determinant of vi, j is the product of its eigenvalues, hence the stationary points occur where 
det vi, j = 0. In turn,  vi, j =

j
Bi xk  where xk is some point within the magnetic trap, hence the 

stationary points are the xk of the 2D surface

det
j

Bi = 0 

U = B
2
 has only minima, no maxima

To see that U has no maxima, only minima, we need to insert ui vi, n = 0 in the definition (46) of U and 
consider the second derivative with respect to the coordinates:

(46)
U = Xj Xk ci, j, k ui vi, j vi, k Xj Xk 2 vi, j Xj ui ui

2

0 = v i, j  u i
0 = ui vi, j

2 (53) X j
0 = 2 vi, j Xj ui

(46) (54)
U = Xj Xk ci, j, k ui vi, j vi, k Xj Xk ui

2

The second derivative is given by the coefficient with respect to Xk Xj

t j, k  = Coefficients rhs (55) , X j X k , 1
tj, k = ci, j, k ui vi, j vi, k

Now, U has only minima, no maxima, if this second derivative is always positive (its trace is positive 
definite). So take the trace of this expression:

Define (56)
Defined objects with tensor properties

i
, Bi, a, a, Xa, ca, b, d,

a
, ga, b, tj, k, ui, va, b, a, b,

a, b, c

t trace
2 v1, 1

2 2 v1, 1 v2, 2 2 v1, 2
2 2 v1, 3

2 2 v2, 2
2 2 v2, 3

2
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Add and subtract:
v 1, 1   v 2, 2 2

v1, 1 v2, 2
2

t trace  (59) expand (59)
v1, 1

2 2 v1, 2
2 2 v1, 3

2 v2, 2
2 2 v2, 3

2 v1, 1 v2, 2
2

This trace is a sum of the squares of real quantities. It is therefore always positive. This recovers a well 
known result: there is no local maximum of a static magnetic field in free space. Indeed, such a 
maximum would require the three eigenvalues of vi, j to be negative, which would also imply a negative
trace. Therefore, the stationary condition can only be a local minimum or a saddle point. See [1] for a 
more thorough discussion.

Drawing the Ioffe-Pritchard Magnetic Trap

The magnetic field of the  Ioffe-Pritchard trap, quadratic in the relative coordinates [x,y,z], is 
approximated as 

B j =

0

0

U
A

x

y

0

C
2

x z

y z

z2 1
2

x2 y2

Bj =

A x
1
2

 C x z

A y
1
2

 C y z

U
C z2 x2

2
y2

2
2

Define (61)
Defined objects with tensor properties

i
, Bi, a, a, Xa, ca, b, d,

a
, ga, b, tj, k, ui, va, b, a, b,

a, b, c

The surface of stationary points is defined by
d_ j B i

j
Bi

The matrix behind:
TensorArray (63)
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(65)(65)

A
C z
2

0
C x
2

0 A
C z
2

C y
2

C x
2

C y
2

C z

The stationary condition det
j

Bi = 0 :

factor LinearAlgebra:-Determinant (64) = 0
C C2 x2 z C2 z y2 2 C2 z3 2 C x2 A 2 A C y2 8 z A2

8
= 0

is scaled by a single parameter =
2  A
C

. 

simplify
8
C3  (65),

2  A
C

=

2 z3 2 2 x2 y2  z  x2 y2 = 0

from which we can deduce the 2D stationary manifold. For = 1:
 plots:-implicitplot3d
subs epsilon = 1, (66) ,
 x = 4 ..4, y = 4 ..4, z = 1.5 ..1.5,
style = surface, scaling = constrained, grid = 50, 50, 50 ,
caption = The Ioffe Pritchard magnetic trap for  epsilon = 1 ;
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The Ioffe-Pritchard magnetic trap for = 1


