
THE DYNAMICS OF AN ELLIPSE

ROLLING WITHOUT SLIPPING ON A HORIZONTAL LINE

WITHIN A VERTICAL PLANE

ROUBEN ROSTAMIAN

Abstract. We derive the differential equation of motion of a homogeneous
ellipse which rolls without slipping on a horizontal line within a vertical plane.

1. Introduction

In this note we derive the equations of motion of a homogeneous elliptic lamina
of mass m and the major and minor axes of lengths of a and b which rolls without
slipping along the horizontal x axis within the vertical xy plane.

In sections 2 and 3 we investigate some geometric properties of an ellipse that
are relevant to this study. In section 4 we apply the Lagrangian formalism to derive
the differential equations of motion.

The elementary geometric analysis presented here contains the germ of the idea
for extending the study to the three-dimensional case of a smooth solid object
rolling without slipping on a horizontal plane but the details are significantly more
complex there. In particular, the Lagrangian approach is not the best choice in that
case since the no-slip rolling constraint is nonholonomic in three dimensions. The
preferred method is Appell’s formulation of dynamics which is quite more effective
with nonholonomic constraints. Some day I may write a followup article on that.

2. The analysis of the geometry – Part I

Figure 1 depicts the rolling ellipse at a generic instance. The ellipse’s orientation
is measured through the angle α between its major axis and the x axis. The ellipse’s
point of contact with the x axis is marked P , while the foot of the perpendicular
from the center C onto the x axis is marked Q. The goal of this section is to prove:

Proposition 1. The distance σ(α) of the ellipse’s center above the x axis is given
by

(1) σ(α) =
√
a2 sin2 α+ b2 cos2 a.

Proof. For the purpose of this proof it suffices to restrict the range of the angle α
to the interval 0 to π since, as is evident in Figure 1, within that range the ellipse
achieves all of its possible orientations. Calculating in terms of the rotated ellipse of
Figure 1, however, is rather inconvenient. To simplify, we rotate the entire diagram
so that the ellipse’s major axis becomes horizontal, and introduce a new Cartesian
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Figure 1. The ellipse rolls without slipping on the x axis with
the vertical xy plane.

coordinate system ξη with the origin at the ellipse’s center as shown in Figure 2.
Then the equation of the ellipse takes the standard form

ξ2

a2
+
η2

b2
= 1,

and what used to be the x axis now appears as the tangent line with the equation1

(2) ξ sinα+ η cosα = −σ(α),

where σ(α) > 0 is to be determined.
Let (ξ̄, η̄) be the coordinates of the point of tangency P . The vector 〈ξ̄/a2, η̄/b2〉

is normal to the ellipse at P , and therefore it is parallel to the vector 〈sinα, cosα〉
which is normal to the tangent line. It follows that

(3a)
ξ̄

a2
cosα =

η̄

b2
sinα.

At the same time, (ξ̄, η̄) satisfies the equation of the ellipse

(3b)
ξ̄2

a2
+
η̄2

b2
= 1.

From (3a) we have

η̄ =
b2

a2
cosα

sinα
ξ̄.

Substituting this in (3b) we obtain

ξ̄

a2
+
b2

a4
cos2 α

sin2 α
ξ̄2 = 1,

whence

ξ̄2 =
a4 sin2 α

a2 sin2 α+ b2 cos2 α
,

1 In general, the distance of either of the lines ax + by = ±c from the origin in the Cartesian
xy plane is d = |c|/

√
a2 + b2. If a2 + b2 = 1, as it is in our case, then |c| is the distance.
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Figure 2. We rotate and translate the diagram in Figure 1 so
that the ellipse takes on the standard configuration with whose
equation is ξ2/a2 + η2/b2 = 1.

and since within the range 0 ≤ α ≤ π we have ξ̄ ≤ 0 (see Figure 2) we conclude
that

ξ̄ = − a2 sinα√
a2 sin2 α+ b2 cos2 α

.

and then from (3a)

η̄ = − b2 cosα√
a2 sin2 α+ b2 cos2 α

.

Substituting these in the equation of tangent line (2) yields (1). �

3. The analysis of the geometry – Part II

In the previous section we calculated the height σ(α) of the ellipse’s center above
the x axis. Refer to Figure 1. In this section we calculate the distance between the
point of tangency, P , and the foot of the perpendicular, Q. We show that

Proposition 2. The (signed) length of the line segment PQ in Figure 1 is σ′(α),
where σ(α) is given in (1), and the prime indicates the derivative.

Proof. As in the previous section, we prefer to work with the rotated and translated
diagram of Figure 2. Whereas previously we wrote (ξ̄, η̄) for the coordinates of the
contact point P , in this section we use the notation

(
ξ(α), η(α)

)
since we will be

investigating the dependence of the point of tangency on the angle α.
The point

(
ξ(α), η(α)

)
lies both on the ellipse and the tangent line. Therefore

ξ(α)2

a2
+
η(α)2

b2
= 1,(4)

ξ(α) sinα+ η(α) cosα = −σ(α),(5)

for all α.
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Upon differentiating these two equations with respect to α we arrive at a linear
system of two equations in the two unknowns ξ′(α) and η′(α):[

2ξ(α)
a2

2η(α)
b2

sinα cosα

] [
ξ′(α)
η′(α)

]
=

[
0

−ξ(α) cosα+ η(α) sinα− σ′(α)

]
.

The rows of the coefficient matrix are the normal vectors to the ellipse and
the tangent line. But at the point of tangency those normal vectors are parallel,
therefore the coefficient matrix is singular. The only way that the system can be
consistent is to have the right-hand side of the equation be zero, that is

(6) ξ(α) cosα− η(α) sinα = −σ′(α).

Solving this together with (5) we obtain the coordinates
(
ξ(α), η(α)

)
of the point

of tangency in terms of σ(α) and σ′(α):

ξ(α) = −σ(α) sinα− σ′(α) cosα,

η(α) = −σ(α) cosα+ σ′(α) sinα.

The geometrical interpretation of this calculation is that
(
ξ(α), η(α)

)
is the in-

tersection point of the lines (5) and (6). In Figure 2 the latter is shown as a dashed
line. We note, however, that the distance of that line from the origin is σ′(α) (see
footnote 1) but that distance is the length of PQ, and that concludes the proof. �

4. The rolling dynamics of the ellipse

Referring to Figure 1, let (xc, yc) be the coordinates of the ellipse’s center, C.
Since yc = σ(α), for the coordinates of the points C, P and Q we get:

C :
(
xc, σ(α)

)
P :

(
xc − σ′(α), 0

)
, Q :

(
xc, 0

)
.

In particular, the vector CP is
〈
−σ′(α),−σ(α)

〉
.

In order to apply the no-slip constraint, it is helpful to temporarily embed the
two-dimensional xy plane into the three-dimensional space by adding a third co-
ordinate z which is perpendicular to the xy plane and is so that xyz makes a
right-handed coordinate system. Within that extended coordinate system the vec-
tor CP is

〈
−σ′(α),−σ(α), 0

〉
while the ellipse’s angular velocity is ω = 〈0, 0, α̇〉.2

Then the velocity, relative to the ellipse’s center, of the material point on the el-
lipse which instantaneously coincides with the point of tangency, P , is given by
the cross product ω × CP =

〈
σ(α),−σ′(α), 0

〉
α̇, which as expected lies within the

xy plane. It follows that the absolute velocity (that is, the velocity relative to
the stationary frame) of that material point is 〈ẋc, ẏc〉 +

〈
σ(α),−σ′(α)

〉
α̇, that is,〈

ẋc+σ(α)α̇, ẏc−σ′(α)α̇
〉
. But since the ellipse rolls without slipping, that absolute

velocity must be zero. We conclude that

(7) ẋc + σ(α)α̇ = 0, ẏc − σ′(α)α̇ = 0,

The kinetic and potential energies of the ellipse are

T =
1

2
m(ẋ2c + ẏ2c ) +

1

2
Jα̇2, V = mgyc,

J = 1
4m(a2 + b2) is the moment of inertia about the axis perpendicular to the

ellipse’s surface and going through its center, m is the mass, and g is the acceleration
due to gravity.

2Here and elsewhere, a dot superimposed on a symbol indicates the time derivative.
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In view of equations (7), the Lagrangian L = T − V of the ellipse may be
expressed solely in terms of the generalized coordinate α. We obtain:
(8)

α̈ =
−2(a2 − b2) sin 2α

a2b2 + 5a4 sin2 α+ 5b4 cos2 α

[
a2b2α̇2

a2 sin2 α+ b2 cos2 α
+ g
√
a2 sin2 α+ b2 cos2 α

]
.

The three differential equations in (7) and (8) may be solved along with suitable
initial conditions to completely determine the ellipse’s motion.
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