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Abstract

An existing infectious model describing the interaction of HIV virus and the immune system of the human body is uti-
lized to determine the optimal methodology for administering anti-viral medication therapies to fight HIV infection. This
work investigates the fundamental role of chemotherapy treatment in controlling the virus reproduction. We work in the
nonlinear optimal control framework. The existence and the uniqueness results of the solution are discussed. A character-
ization of the optimal control via adjoint variables is established. We obtain an optimality system that we seek to solve
numerically by a competitive Gauss—Seidel like implicit difference method.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, several studies have been devoted to understand the spread of infectious diseases [2,3,5,12].
The acquired immunodeficiency syndrome (AIDS) emerged in 1981 and has become an important sexuality
transmitted disease throughout the world. Consequently, many mathematical models have been developed
to describe the relationships between the Human Immunodeficiency Virus (HIV), etiological agent for AIDS,
and CD4" T cells which are the target for the virus [1,4,6,13]. These models are utilized to explore optimal che-
motherapy treatment to avoid an excessive use of drugs [14-17,19]. Indeed, when these drugs are administered
in high dose they are toxic to the human body and cause damages. For the purposes of this investigation, we
will expound on the model of Gumel et al. [11] given, for all ¢ > #,, by

dzst(t) = 0s +rT4()V (1) = 11 T4(t) = kTa(1)V (1), W
dﬁt( ) KTV (0 + KTV (0) = 1 Ti(0) — K TuOV (1) — ko Ta(OV (1), @
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PO _ N7 270~ KTV 0), 3
T.(t) = aT4(t); 0<a<l. (4)
To(t) = (1 — o) T4 (1) (5)

and satisfying T4(t)) = T9, Ti(ty) = T° and V(ty) = V° where T, indicates the abundance of healthy CD4"
cells, T; represents the abundance of infected CD4 ™" cells and V' designates the abundance of free viruses. Acti-
vated and resting CD4 " cells are respectively denoted T, and 7.

The first term in Eq. (1) describes the efficiency of thymic output (where s is the rate of supply of CD4" T
cells from precursors and g is the value of functioning thymus). The second term in this equation represents
the maximum proliferation of CD4" T cells due to primary HIV infection at a rate r, so that the T cells never
grow larger than a value 7**. The third term translates the death of uninfected 7 cells at a constant rate y;.
The fourth term models the infection of the activated cells T, leading to HIV integration at a rate k.

The first term in Eq. (2) encompasses the production of pre-existing activated CD4" T cells. The second
term indicates the infection of newly-activated CD4" T cells. The third term models the natural death of
infected CD4" T cells. The fourth and the last terms explain the anti-HIV CTL action and the viral lysis at
a constant rate k.

In Eq. (3) the first term quantifies the production of HIV from infected CD4" T cells at a rate N, except for
those infected latently (L). The second term transmits the death of free virus particles at a rate y;. The third
term models the viral entry into quiescent resting CD4" T cells 7, and their thymic precursors at a constant
rate k,.

In this paper, we are concerned with the problem of adopting the best strategy of treatment; more exactly
we seek to search a maximum count of healthy cells with a minimum dose of the administered drugs. To intro-
duce a control to the above mentioned model, we analyse the interactions of healthy CD4™ T cells, infected
CDA4" T cells and free virus: two major categories of anti-retroviral drugs to combat HIV are reverse transcrip-
tase inhibitors (RTIs) and protease inhibitors (PIs). RTIs prevent new HIV infection by discrupting the con-
version of viral RNA into DNA inside of T cells. PIs reduce the number of viruses particles produced by an
actively-infected 7 cells [17,7].

Hence, if we denote u;(¢) the RTI control variable and u,(¢) the PI control variable equations (1)—(3) can be
re-written, to accommodate control actions or chemotherapy treatment, as follows:

dT,(r) =05 +rT4(O)V () — ) T4(t) — ky(1 — uy (8)) T () V (1), )
d%ft) =k(1 —w () Ta(O)V (2) + ke (1 — 1 ())rTa()V (¢) — 7, T4(2)

— kek T ()V (£) — kekyrT4()V (2), )
dz_ﬁr) =N =L)(1 —uy())T:(t) — 73V (t) = kT ()V (1), ®)

with given initial values for T}, T; and V at ¢, respectively by 79, T° and 1.
Using T, = aTy and T, = (1 — a)Ty, the system (6)—(8) may be written as

dT4(f)

= o5+ UV (0) ~ 1 Talt) — k(1 ~ )TV (0), Q
D (1w )TV (@) + (1~ DTSV (1)~ 1T 00

— kb Ta(OV (1) ~ rhek o0V (), (10)
P N 1)1~ )T 27 ()~ (1= Ok TV 1), (1)

de
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Define the objective functional

J () = [ tf{T4(t) — [A1 (1 (2))” + Az (ux(2))*] }de.

In words, we are maximizing the benefit based on the healthy T cells count and minimizing the cost based on
the percentage effect chemotherapy given (i.e. u; and u,). The parameters 4; > 0, 4, > 0 represent the
weights on the benefit and cost.

The goal is to seek an optimal control pair (u},u¥) such that

J(ul,uy) = max{J(u;,up) : (1, u2) € U},
where U is the control set defined by
U = {u = (u1,up) : u; measurable, 0 < u;(¢) < 1,¢ € [ty, ] for i = 1,2}.

The basic framework of this problem is to prove the existence and the uniqueness of the optimal control and to
characterize it.

To illustrate this study, numerical simulations are given using a Gauss—Seidel like first order implicit finite-
difference method developed by [11].

Notation: (., .)p. indicates the usual product scalar in R" for all n € N.

2. Existence of an optimal control pair

We show the existence of the solution through a classical result well known: according to [10], the solution
exists if the following hypotheses are met:

(H;) The set of controls and corresponding state variables is non-empty.

(H>) The admissible control set U is closed and convex.

(H5) Each right hand side of Egs. (9)—(11) is continuous, is bounded above by a sum of the bounded control
and state, and can be written as a linear function of u with coefficients depending on time and state.

(H4) There exist constants ¢, ¢; > 0 and > 1 such that the integrand L(y, u, t) of the objective functional J is
concave and satisfies

L(y,u,t) < e — e (juy (1) + |u2(f)|2)ﬂ/2~

Theorem 2.1. Given the objective functional J(uj,uy) = tf)f{T4(t) — [ (w1 (1))* + A2 (un(1))*]} dr where
U= {u= (u1,ux): u; measurable, 0 <uft) <1, t € [to,t/] for i=1,2} subject to Egs. (9)—(11) with T4(0) =
7%, T;(0) = T and V(ty) = V°, then there exists an optimal control u* = (u}¥,u¥) such that max,cyJ (u1,uz) =
J(uf uy).

Proof

(H,) Since the system Egs. (9)—(11) has bounded coefficients and any solutions are bounded on the finite time
interval, we can use a result from [18] to obtain the existence of the solution of the system Eqgs. (9)—(11).
(H>) Tt suffices to remark that U= U, x U,, where U; and U, are closed and convex sets defined by

U, = U, = {u measurable; u(t) € [0, 1]Vz € [to, ] }.

(H5) By definition, each right hand side of system (9)—(11) is continuous and can be written as a linear func-
tion of u with coefficients depending on time and state. Furthermore, The fact that all variables Ty, T;, V,
and u are bounded on [#, ;] implies the rest of the hypothesis.

(H,4) Tt is easy to see that (—L(y,u,?)) is convex in U and so the integrand L(y,u,?) is concave in U. Also, it
suffices to choose ¢; = inf(A4}, A45), c; = T;** and f = 2 since we have
L(y,u,1) = Ta(t) = [A1 (w1 (1)) + 4a(us(1))7]

< TP —inf (41, 42) (lm () + (1)) O
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3. Characterization of the optimal control pair

Here, we discuss the theorem that relates to the characterization of the optimal control. This results
depends on Pontryagin’s Maximum Principle which gives necessary conditions for the optimal control [8]:
at first, we rewrite the system (9)—(11) as follows:

dr

d() _ .
{ =A(y,u,t); Vt>ty, VueU, (12)
¥(to) = yo,

where y(¢) and A(y,u,?) are vectors in R*® determined by

T4(2)
y() = | Ti0)
40
and
81 (ya u, t)
A(y7u7t) = gz(y,u,t) ’
g}(ya u, t)

with g(y,u,t), g2(y,u,t) and gs(y,u, ) are respectively the right hand side of Egs. (9)—(11).
The Hamiltonian associated with our problem is

H(ya u,p, t) = L(y7 u, t) + (p(t)aA(ya u, t))R3'
The adjoint vector p(¢) is defined by the adjoint equation

WO aroto) - 1, (13)

and the final condition
p(lt‘) = 0, (14>

where A4, (resp. L)) designates the derivative of the vector A(y,u,?) (resp. of the integrand L(y,u,t)) with re-
spect to y and A_lvr is the transposed vector of 4,.
More exactly, the vectors 4, and L, are defined by
Og1
o7

— | %
4, o,

9g3
v

and
oL
ol

L=|2

oL
o

We obtain the optimality condition with the help of the Lagrangian, which is formed by adding a penalized

term to the criterion. So, the Lagrangian % (y,u,p,t) is given by
g(yv u,p, t) = H(y7 u,p, t) + (W(t)ﬂBu(I))R“'
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B is the operator defined from R? to R* by
1 —u(2)
uy ()
1 —u(t)
us (1)

Bu(t) =

w(t) is the vector of R* given by

wi (¢
t
t

Wiz

(t)
(t)
w(r) = ;
(t)
sz(t)
where wy (1), wia(2), wai(f), waa(?) = 0 are penalty multipliers satisfying

win(1)(1 = () = wia (O (1) = war (1)(1 = 43 (1)) = wa()u3 (1) = 0. (15)

According to Pontryagin’s Maximum Principle, if the control #*(7) and the corresponding state y*(¢) are an
optimal couple necessarily there exists an adjoint vector p(¢) defined by (13) and (14) such that the function
Z(y,.,p, 1) reaches its maximum on the set U at the point *. It ensues the following result.

Theorem 3.1. Given an optimal control pair u*(-) = (u(-),u¥X(-)) and a solution y*(-) = (T¥(:), TX(-), V*(*))
of the corresponding state system (9)—(11), there exist adjoint variables A,(*), ("), 23(*) satisfying

%,@ = —1+ 2 (0)]y, + (oky (1 = uF (2)) = PYV*(0)] + 2o (0) [hey (2 + 1) (ke — 1 + X (£)) V*(2)]
+ 3 () [k (1 — o) V*(1)],

Y2 ey, + OV~ 1)1~ @)

dz‘gt(t) = () (ohy (1 — u(£)) — 1) TE(O)] + A (O)[(2 + 7) (keky — ky (1 — u(2))) TX ()]

+ 23Oy + k(1 — o) T (2)],
with final conditions
/11(1{) = )Lz(t() = /13(11') =0.

Moreover
ul () = min(max(0, R (7)), 1), (16)
u) () = min(max(0, Ry(¢)), 1), (17)
where
R\(t) = 2%11 ok i () TF(O)V* (1) — (o0 + 1k ()T (1) V* (1)),
Re(t) = 5 - V(L ~ Dis()T* ().

Proof. In the precedent section, we proved the existence of an optimal couple (y*(+),u*(+)) for maximizing the
functional J subject to Egs. (9)—(11). So by direct application of Pontryagin’s Maximum Principle, it must exist
21(t)
a vector p(t) = ()vz(t) checking (13) and (14).
(1)
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That yields

A (¢
d/ll(t) _ (agl(y*vu*at) agZ(y*au*at) ag}(y*au*vt)> ;LIEZ; aL()/*vu*at)
- oT T T ? T :
dr 4 4 4 Jn(t) 4
* * o * * K Xl(t) * ok
diZ(t) agl( t) agZ(y U 7t) ag3(y ) U 7t) aL(y U 7t)
= : ; ) | ———,
dt aT oT; oT; oT;
)L3(t)
At
Cu@(t) agl(y*7u*7t) agZ(y*au*at) ag3(y*7u*vt) 1<) aL(y*vu*vt)
= - 3 ) ;“Z(I) - .
dt oV or orv oV
23(t)

A simple calculation leads to the three first equalities of the theorem.
Also, Pontryagin’s Maximum Principle necessitates the following optimality conditions to have the couple
(v*,u™) optimal:
0L (™, u*,p.1) 0L (y*,u*,p,t)
=0, =0.
6u1 6u2

It ensues from these equations

uy (1) = 2% s (VT ()Y * (1) = Aok (a4 N TFE(OV* (1) — on (1) + 01 (1)),

1

*

uy (1) = l [Z3(ON(L = )TF (1) — m (1) + o).

24,
According to (15), we distinguish three cases

(i) On the set {#0 < u¥ () < 1}, w11(7) = w12(7) = 0. Then
uy (1) = 2%1 (s (VT () * (1) = DOk (a+ 1) TF()V* (1))
(ii) On the set {#;ul(r) = 0}, w1 () = 0. In this case
0= ut(r) = i s (R TV (1) = dn(0)ky (o4 ITFOV* (1) + 01(0).

Or

_ 0)12([)
24, 2A1

Since w5(f) = 0, then — ‘”" ) < 0. Thus

0=ur(t) > i [oc),l(t)kVTZ‘(t) VX() — da(Oky (o + P TE(O)V* (1)),

[y (), T () V*(£) — Aa()ky (o0 + 1) TX () V*(2)].

(iii) On the set {t;u}(t) = 1}, wi2(¢) =0. So

ut (1) = ﬁ [ (kT OV * (1) = Zat), (o + AITEOV* (1) = 011 (0))-

Since wy1(1) > 0, then 1 = u¥ (1) < 3k [k (DK TF(O)V* (1) — A0k (e + P TE (1) V* (1),

Combining all three cases in a compact form gives
ul (¢) = min(max(0, R, (¢)),1).
Similarly, we conclude

u) (1) = min(max(0, R»(7)),1). O
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Remark 3.1. The optimality system is given by incorporating the optimal control pair in the state system cou-
pled with the adjoint system. Thus, we have

OO — A% u*,b); V> 1y,

L = —AVp(1) = Lys,

y*(t()) :y(‘)k?
p(tf) = 0.

We replace u* = (uff,u¥) by its expression obtained in (16) and (17). The uniqueness of the solution of the
optimality system is obtained by standard results. The reader can refer to [9,14] for more details on the proof.

(18)

4. Numerical illustration
4.1. The improved GSS1 method

The resolution of the optimality system is created improving the Gauss—Seidel-like implicit finite-difference
method developed by [11]and denoted GSS1 method. It consists on discretizing the interval [y, 7] at the points
tr =kl + to(k =0,1,...,n), where / is the time step. Next, we define the state and adjoint variables T4(7), T(1),
(1), J1(1), Jo(1), Z5(t) and the controls u;(), ux(¢) in terms of nodal points 7%, 7%, V¥, 2% J5. 2% k. uf, with
79, 7% 10, 29, 75, 23, ul, ul as the state and adjoint variables and the controls at initial time #,. 7%, 7", V",
A, 2y, A5, ui, uf as the state and adjoint variables and the controls at final time 7. As it is well known, the
approximation of the time derivative by its first-order forward-difference is given, for the first state variable T,
by

740 _ iy

Ta(t+1) — Ty(2)
dr 1—0 )

We use the scheme developed by Gumel et al. [11] to adapt it to our case as following:

k+1 k
T4 _T4

; = o5+ rTEVE — 9 T8 — ok (1 — ) TEH VR (19)
Similarly, we have
T
= ok (L =) Ty vk (1= ) Ty V8 = T — ok TV — ek T3V, (20)
Vk+1 _ Vk
— = N = L)(1 =) T —y VT — (1 — o)k, T VA (21)

By using a similar technique, we approximate the time derivative of the adjoint variables by their first-order
backward-difference and we use the appropriated scheme as follows:

an—k _ an—k—1
41 IAI =1+ i’fﬁk*l["/l + (oky (1 — uf) — 1)V + igfk[kv(og + ) (ke — 14+ uf)V*H]

+ 25 k(1 = ) P41, (22)
an—k _ an—k—1
BBy N - 1)1 - ), (23)
an—k _ an—k—1
BB k(1 - ) T ok ) (ke — k(1= )T

+ 23y k(1= o) T, (24)

Hence, we can establish an algorithm to solve the optimality system and then to compute the optimal control
pair utilizing the improved GSS1 method (19)—(24) that we denote by IGSS1 method.
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Algorithm
step 11 T4(0) « T9, T,(0) « T ¥ (0) « V°, 2y (t,) « 0, Ja(t,) < 0, Z3(t,) < 0,u;(0) « 0,

step2: fork=1,...,ndo
- k—1
k Ty +lps
-
T T4y +(adky (1 =k =) —r) AT
Th TE 1ty () (1 -k =1 — e ) T /!
i 1+1y,
k—1 k—1\7k
yh VL IN(1-L) (1=~ )T
1+1(p3+(1—0)k, T%)
ek PR (=207 (e (ke — 1) = 2K ey (1)
1 11y +aky (1—d =1 —r) V)
kL AN (1=L) (1= !
2 1+17,
ok MR g ey (1 =k~ =)= ke (o) (ke — 1+ =1)) T
3

1+1(y3+(1—2)k, T%)

ke (22 * —(atr) 25 ) TV
24 ’

ko
N(L—1)i8 kT
24,

le<— R§<—

| 4« min(max(0,RY), 1), 44 — min(max(0, R),1)

end for
step3: fork=1,...,n write

Tr () = T}, uf () = uf, ud () = b

end for

4.2. Numerical results

Utilizing the same data than Gumel et al. [11] for numerical experiments, we approach this part to compare
the disease progression before and after the treatment chemotherapy is introduced. So, for the following
parameters and initial values: s =10, /=1, r=0.00003, k, =1, N =1000, k. =0, y; =y, =0.01, y3=0.2,
L=0.1,k =08, 9g=1,a=0.02, 79 = 1000, 7° = 0 and ¥’ =0.001 we obtain the table below. Let’s note
that the fact to have k. = 0 supposes that the CTL action, which plays an important role in suppressing vire-
mia, is absent. This permits a best illustration of the chemotherapy role in the reduction viral population and
the improvement of the immune response.

For more clearness, it is better to present these comparative results through graphs.

Time T, population in T4 population during Viral load V Viral load V

(days) absence of treatment treatment in absence during treatment
of treatment

0 1000 1000 0.001 0.001

2 1000 1000 0.5 0.0227

4 789 999.5 307 0.5299

6 1 999.5 526,953 0.5196

10 0 999.6 2,589,467 0.4993

50 0 999.7 4,511,557 0.3353
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When the virus attacks the human body, it kills the healthy CD4" cells and consequently the number of
uninfected T cells reduces (Fig. 1). The virus V does not cease to proliferate and so its abundance increases
(Fig. 3). But if we introduce the treatment, the situation changes. After few days, the effect of chemotherapy

1 000 T T T T T T T T T

900 E

800 E

700 | B

600 - E

< 500 i

400 | -

300 - E

200 b

100 |- E

0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

t

Fig. 1. Uninfected T cells in absence of treatment.

1000 T T T T T T T T T

999.95 - 1

999.9

999.85 E

999.8

5
5 99975
999.7 | 1

999.65

999.6 1

999.55

999 5 5 1 1 1 1 1 1 1 1 1
0 5 10 15 20 2t5 30 35 40 45 50

Fig. 2. Uninfected T cells in presence of treatment.
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5x 10°

4.5

4 L

3.5

0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 2t5 30 35 40 45 50

Fig. 3. Virus population in absence of treatment.

05 i

04 b

031 b

01 1

0 0 5 10 15 20 25 30 35 40 45 50

t

Fig. 4. Virus population in presence of treatment.

begins to appear; which explains the growth of uninfected 7 cells and the diminishing of virus ¥ (Figs. 2 and
4). The optimal controls for drug administration are represented through Figs. 5 and 6 respectively by Ul and
02.
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5 10 15 20 25 30 35 40 45 50

18} .

16 1

14} -

u2 (t)

Fig. 6. Second optimal control.
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