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Free-Riding and Whitewashing in
Peer-to-Peer Systems

Michal Feldman, Christos Papadimitriou, John Chuang, and Ion Stoica

Abstract—We devise a model to study the phenomenon of free-
riding and free-identities in peer-to-peer systems. At the heart of
our model is a user of a certain fype, an intrinsic and private param-
eter that reflects the user’s willingness to contribute resources to
the system. A user decides whether to contribute or free-ride based
on how the current contribution cost in the system compares to her
type. We study the impact of mechanisms that exclude low type
users or, more realistically, penalize free-riders with degraded ser-
vice. We also consider dynamic scenarios with arrivals and depar-
tures of users, and with whitewashers—users who leave the system
and rejoin with new identities to avoid reputational penalties. We
find that imposing penalty on all users that join the system is ef-
fective under many scenarios. In particular, system performance
degrades significantly only when the turnover rate among users is
high. Finally, we show that the optimal exclusion or penalty level
differs significantly from the level that optimizes the performance
of contributors only for a limited range of societal generosity levels.

Index Terms—Free-riding, incentives, peer-to-peer (P2P), white-
washing.

1. INTRODUCTION

HY is free-riding widespread among users of peer-to-

peer (P2P) systems? How does free-riding affect system
performance? What mechanisms discourage free-riding? How
does whitewashing affect the performance of P2P systems?

These are the questions that motivate us.

P2P systems rely on voluntary contribution of resources from
the individual participants. However, individual rationality re-
sults in free-riding behavior among peers, at the expense of col-
lective welfare. Empirical studies have shown prevalent free-
riding in P2P file sharing systems [1], [2]. Various incentive
mechanisms have been proposed to encourage cooperation in
P2P systems [3]-[7]. At the same time, it has been suggested
that free-riding can be sustained in equilibrium and may even
occur as part of the socially optimum outcome [8].
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Empirical research in behavioral economics has demon-
strated that models of purely self-interested agents usually fail
to explain observed behavior of people [9]. The warm-glow
model [10], [11] attempts to account for observed user behavior
by incorporating into one’s utility function the utility he gains
from the mere act of giving. Consistent with this approach,
we develop a modeling framework that takes users’ generosity
into account. At the heart of our model is a user as a rational
agent with a private and intrinsic characteristic called her fype,
a single parameter reflecting the willingness of the user to
contribute resources. Type can be intuitively thought of as a
quantitative measure of decency or generosity.

Each user decides whether to contribute or free-ride based
on the relationship between the cost of contribution and her
type. We assume that the cost of contributing is the inverse of
the total percentage of contributors, because when many people
free-ride, the load on contributors increases. Thus, if at present a
fraction x of the users contribute, the decision of a rational user
with type 6; is:

Contribute, if% < 6;
Free-ride, otherwise’

Even within this minimalistic framework, we can already see
some interesting implications. In this “free market” (FM) en-
vironment, the percentage x of contributors in equilibrium is
determined as the intersection of the type distribution, x =
Pr(6; > t) with the curve z = 1/t.

Fig. 1 demonstrates the equilibria when the fype is uniformly
distributed between O and a maximal value, 6,,,. In this case,
there are three equilibria in the system. The first two are the two
intersection points of the curves and the third equilibrium, which
always exists, is z = 0. Obviously, when no user contributes, the
contribution cost becomes too high for someone to contribute.
Consider the natural fixpoint dynamics of such a system, i.e.,
starting at some initial x, users arrive at individual decisions,
their aggregate decisions define a new z, which leads to a new
aggregate decision, and so on. When the system is out of equi-
librium, the direction in which the system moves depends on the
relative heights of the type distribution curve and the cost curve.
If the cost curve lies above the distribution curve, contribution
cost is higher than the fraction of users who are willing to con-
tribute at this cost, so the fraction of contributors decreases. For
example, in Fig. 1, this happens for z < z2 or £ > z;. In con-
trast, if the cost lies below the distribution curve, contribution
cost is lower than the willingness to contribute, so contribution
level increases. This is the case for 1 < x < x2 in the figure.
Therefore, x = x; and x = 0 are the two attractors of the fix-
point dynamics, so as long as the initial = lies above the lower
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stable

1/ x,

Fig. 1. The intersection points of the two curves represent two equilibria of
the system. The curve 1/6 represents the contribution cost, and Pr(6; >= 6)
represents the generosity CDF, assuming 6; ~ U(0,6,,). The higher
equilibrium (contribution level 2 ) is stable. The point 2 = 0 is an additional
equilibrium of the system.

intersection point (x5 ), the process converges to the upper one
(z1). If the initial z is below the lower intersection point or if
there is no intersection, i.e., when there are too many selfish ras-
cals around, then = becomes 0 and the system collapses.

So far, we have been interested only in costs. To understand
system performance, we need to consider system benefits as
well. What is a user’s benefit when the level of contribution is
2?7 We assume that the benefit a user receives from participation
in the system (whether or not she contributes) is proportional to
the contribution level in the system, and thus a function of the
form az for some constant « > 0.

The performance of the system, denoted by W, is defined as
the difference between: 1) the total benefit received by all users
(including both contributors and free-riders) and 2) the total con-
tribution cost experienced by all users, which effectively include
only the contributors because free-riders incur no costs. Note
that the network size is normalized to 1. We get

1
Ws =ax — —x = azxz — 1.
T

With this, we are ready to tackle more questions.

1) Would excluding low-type users from the system improve
performance? The answer seems to be true only if the
societal generosity level is low (see Section III).

2) The exclusion scenario is unrealistic because users’ types
are private. What if free-riding behavior brings some
form of penalty, that is, deterioration of benefits by a
fraction of p? We find that the penalty mechanism is
effective in discouraging free-riding behavior when the
threat is sufficiently high relative to the contribution cost
(see Section IV). Moreover, for a sufficiently high threat,
no social cost is incurred because no user is effectively
penalized, so the optimal performance is achieved.

3) Imposing penalties on free-riders require a way to iden-
tify free-riders and distinguish them from contributors.
Reputation systems [12], [13] may help, but these sys-
tems are vulnerable to the whitewashing attack, where a
free-rider repeatedly rejoins the network under new iden-
tities to avoid the penalty imposed on free-riders [14]. The

1011

whitewashing attack is made feasible by the availability of
low cost identities or cheap pseudonyms. There are two
ways to counter whitewashing attacks. The first is to re-
quire the use of free but irreplaceable pseudonyms, e.g.,
through the assignment of strong identities by a central
trusted authority [15]. In the absence of such mechanisms,
it may be necessary to impose a penalty on all newcomers,
including both legitimate newcomers and whitewashers.
This results in a social cost due to cheap pseudonyms, as
suggested by Friedman and Resnick [14]. In Section V,
we quantify the social loss due to cheap pseudonyms and
find that performance is significantly affected only if the
turnover rate is high.

4) System performance measures the total performance re-
alized by all users in the population, including the free-
riders. One may wish to treat the performance realized by
contributors differently than that of free-riders on grounds
of fairness. How would the results change if we con-
sider only the performance of contributors? How is the
exclusion or penalty levels that optimize system perfor-
mance different than the ones optimizing contributor per-
formance? We address these questions in Section VI and
find that the values that optimize system performance and
contributor performance coincide when the societal gen-
erosity level is either high or low.

II. MODEL

At the heart of our model is a user as a rational agent with
a private and intrinsic characteristic, called her type—a single
parameter reflecting the willingness of the user to contribute re-
sources to the system. Each user contributes resources if her
type, 0;, is greater than the contribution cost in the system,
which is assumed to be inversely proportional to the contribu-
tion level. We get that the contribution level, x, is the fraction
of users whose generosity (type) exceeds 1/x. Thus, the frac-
tion of users who contribute is derived by solving the fixpoint
equation

x = Prob (97; > l) . (1)
T

A user’s type is a random variable with unknown distribution.
To solve this equation, we need to make assumptions about the
type distribution. We consider a distriubtion in which a fraction
of the users are uniformly distributed between 0 and 6,,,, and
the remaining users are equally split between having type 0 and
type 6,,. Formally:

 fraction ¢ of the users are uniformly distributed, with §; ~
U(0, m);

 fraction (1 — ¢)/2 of the users are of type 6; = 0;

 fraction (1 — ¢)/2 of the users are of type ¢; = 6,,.

The parameter ¢ € [0, 1] determines the degree of bimodality
of the distribution, with ¢ = 0 corresponding to an extreme bi-
modal distribution and ¢ = 1 corresponding to a uniform distri-
bution. #,,, is the maximum willingness to contribute resources,
and the expected type is always 6,,, /2, independent of the value
of ¢. 0, is thus an important parameter of the system, as it re-
flects the societal “generosity.”
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Fig. 2. Contribution level as a function of the societal generosity level for
different generosity distributions.

Based on (1), the contribution level, z, is the solution to the
fixpoint equation

which yields

Om + O £ /02,02 + 202, + 62, — 166,,¢
40,, )

2)

1,2 =

The larger root, x1, is the attractor of the system (see Fig. 1).
As demonstrated in Fig. 2, the contribution level varies de-
pending on the type distribution and range (reflected by ¢ and
Om).

Claim 1: The contribution level in equilibrium increases in
0, and converges to (1 + ¢)/2 as 6,, goes to co. In addition,
contribution level falls to zero when §,,, < max{1,(16¢/(1 +
).

Proof: Ttis easy to see that when 6,,, goes to oo, the only
users who do not contribute are the users whose type equals to
0. Therefore, the contribution level is 1 — (1 — ¢/2) = 1+ ¢ /2.
To derive the threshold value, note that the contribution level is
greater than O only when there is an intersection between the two
curves, which happens when the expression within the square
root in (2) is greater or equal to zero. We get

16¢
02 4% + 202 ¢+ 02 — 160, > 0 0,y > —————.

However, if 6,,, < 1, then forall 7, §; < 1, and since (1/z) > 1,
based on (1), we get that x = 0 is the only solution. Therefore,
the threshold is max{1, (16¢/(1 + ¢)*)}. ]

A uniform distribution and an extreme bimodal distribution
are two special cases of the above distribution with ¢ = 1 and
¢ = 0, respectively. Under a uniform distribution, the system
is sustained for ¢,, > 4, compared with ¢,, > 1 for a bimodal
distribution. Thus, a bimodal type distribution can better sustain
the system when the societal generosity level is low. Conversely,
when the societal generosity is high, a uniform type distribution
can realize a higher contribution level and system performance.
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Fig. 3. This figure demonstrates the effect of the exclusion mechanism.
Under the exclusion mechanism, the cost curve shifts from 1/# to (1 — z)/t,
consequently, the attractor (21) becomes higher. The shaded area represents
the excluded users.

In the remainder of this paper, we restrict attention to the uni-
form type distribution (i.e., ¢ = 1) and leave a more thorough
analysis of additional type distributions for future work.

III. EXCLUSION MECHANISM

The analysis presented above suggests that when the societal
generosity is low, the system cannot be sustained without inter-
vention. In this section, we analyze the effect of intervention in
the form of exclusion.

If we had perfect information about the type of each indi-
vidual user, we could exclude the users of the lowest type in
order to increase the contribution level. This shifts the cost curve
downward (see Fig. 3), resulting in a higher contribution level.
However, exclusion also decreases performance by limiting the
number of users who enjoy the system’s benefits. The trade-off
is optimized at a particular exclusion level.

If a fraction z of users are excluded, the cost of contribution
becomes (1 — z)/z, and the fixpoint equation describing con-
tribution level is

1—
z = Prob <ti > Z) 3)
T
which yields the attractor
O + /02, — 40, + 40,2
r1 = 20 .

Based on this expression, z is defined only for z > 1 — 6,,,/4.
Also, notice that x represents the contribution level in the entire
system rather than that in the post-exclusion system; therefore,
the effective contribution level cannot exceed 1 — z, and we get

x = min(z1,1 — 2). 4)
With the exclusion in effect, the system performance becomes
Ws(z) = (az — 1)(1 — 2).
The optimal exclusion level is
z; = argmax. Ws(z).

Claim 2: The optimal exclusion level (z¥) and the corre-

sponding contribution level (x) are the following.
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Fig. 4. (a) Optimal exclusion level (z%) and corresponding contribution level

(x(z = z7)) under the exclusion mechanism. (b) System performance (W)
under exclusion and FM (no exclusion). o« = 10.

 Forfb, €[0,2):zx=1-6,,/4,andz =1 — 2.
e Forb, €[2,0,,): 2z =1/0p,andz =1 — z.
» Forb,, €10,,,60)

m’’m

2= (9042 —Oma® — b, (24 Va2 —a+1)
4 W1+ Va2 —at 1)) /(9a2)

and

Om + /02, — 40, + 40,,2

An interesting property of this region is that z is indepen-
dent of 6,,, (by substituting z = z} in x).

e For 0, € [0,00): 2f = 0,and z =
V02, —40,,)/20,,.

The proof can be found in the appendix.

Fig. 4 presents the behavior of the system under the exclu-
sion mechanism as a function of 6,,. Fig. 4(a) presents the op-
timal exclusion level and its corresponding contribution level,
and Fig. 4(b) presents the optimal system performance with and
without exclusion.

Based on these results, if the societal generosity is sufficiently
large (0, >~ 4.6), z¥ = 0; thatis, intervention is not necessary
since any performance improvements realized by the high-type
users are offset by the loss in benefits for the excluded low-type
users. In contrast, for low 6,,, values (6,,, <~ 3.2), exclusion of
low-type users is effective in preventing a total collapse in coop-
eration. Indeed, the optimal exclusion level is such that all of the
users that remain in the system contribute. For intermediate 6,,,

(O +
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values, (~ 3.2 < 6, <~ 4.6), optimal system performance oc-
curs when a few low-type users are excluded, yet the remaining
population is a mixture of contributors and free-riders. In this
region, the optimal cooperation level is independent of 6,,, .

IV. PENALTY MECHANISM

The exclusion mechanism suffers from two problems. First,
user types may not be observable in practice. Second, even
if user types were observable, excluding users based on their
innate type rather than their actual behavior precludes the
possibility of rational decision-making by the users in face of
incentives.

In this section we introduce the penalty mechanism. The
penalty mechanism assumes that free-riding behavior is ob-
servable, even though innate user types may not be; that is,
users are labeled as either contributors or free-riders, and
being a free-rider entails a penalty—deterioration of a user’s
benefits by a fraction of p. While this assumption may still be
too strong, various mechanisms that have been proposed and
analyzed (see, e.g., [3], [12], and [16]) support this approach.
An example penalty would be exclusion with probability p.
Another example penalty, which is mathematically equivalent
to the first, is service differentiation, under which free-riders’
system benefits are reduced, while contributor benefits are not.

Downgrading the performance of the free-riders has two ef-
fects, both of which lead to a higher contribution level. First,
since free-riders get only a fraction 1 — p of the benefits, the load
placed on the system decreases to = + (1 — z)(1 — p); therefore,
contribution cost becomes (z + (1 — z)(1 — p))/x. Second, the
penalty introduces a threat, since users who free-ride know that
they will get reduced service.

Let Q denote the individual benefits, R denote the reduced
contribution cost and 7' denote the threat. Under the penalty
mechanism, the realized performance of contributors and free-
riders is

x4+ (1 —z)(1—p)

We=Q—-R=ax—

Wrr =Q — T = azx — pax

Consequently, the contribution level x is derived according to
the following expression:

x = Prob(t; > R—T).
That is

a::Prob<t,-> v+ (1 -a)(1-p)
- x

— paa:) . 5)

The attractor of this fixpoint equation is

P = b+ D+ 20,p + 02, — 40,,, + dpa — dp>ax
2<_9m —I—pOl) '

System performance now becomes
Ws(p) = (ax — 1) (z + (1 —z)(1 - p))
and the optimal penalty level is

Ws(p).

* __ -
Py = arg maxp
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Imposing a penalty on free-riders, while increasing the con-
tribution level, entails some social loss. This may lead one to
conclude that we should not exceed a particular penalty level.
However, if p is sufficiently high, the threat exceeds contribu-
tion cost, thus all users cooperate and no penalty is actually im-
posed. Based on (5), this is achieved when p > (1/a). In this
case, z = 1 and the maximal system benefit (which equals to «)
is attained. For example, if « = 10, we only need a mechanism
that can catch and exclude a free-rider with 10% probability, but
if @ = 1.1, we will need to increase the probability to over 90%.

These results suggest that if we impose a sufficiently high
penalty, or are able to identify and exclude free-riders with high
probability, we can achieve optimal system performance. How-
ever, in many cases it may be difficult or costly to identify free-
riders with certainty, and p will be restricted by a maximal fea-
sible value, denoted by p,,, by a maximal feasible value. As long
as p > 1/a, optimal system performance can be achieved, re-
gardless of the value of §,,,. On the other hand, if the penalty is
set too low, the resulting performance is not significantly better
than the FM outcome.

V. SocIiAL COST OF FREE IDENTITIES

In Section IV, we show that a penalty mechanism can dis-
courage free-riding behavior. However, the effectiveness of
penalties can be undermined by the availability of cheap pseud-
onyms. In particular, a free-rider might choose to whitewash,
i.e., leave and rejoin the network with a new identity on a
repeated basis, to avoid the penalty imposed on a free-rider.
The lower the cost of acquiring new identities, the more likely a
free-rider will engage in whitewashing. Since whitewashers are
indistinguishable from legitimate newcomers, it is not possible
to single them out for the imposition of a penalty. Of course, it
is possible to counter the whitewashing strategy by imposing
the penalty on all newcomers. However, this results in a social
cost, as shown by Friedman and Resnick [14].

In this section, we are interested in quantifying the social cost
of cheap pseudonyms in terms of reduced system performance.
We do so by extending our model from Section IV into a dy-
namic model in which users join and leave the system. To quan-
tify the performance reduction due to cheap pseudonyms, we
consider two dynamic scenarios: permanent identities (PI) and
free identities (FI).

Under PI, identity costs are taken to be infinity (i.e., they are
irreplaceable), while under FI, they are free.! As we will see
below, these extreme cases provide important insights while pre-
serving simplicity.

We model a system where some users leave and newcomers
join, with a turnover rate of d (Fig. 5). We assume that arrivals
and departures are type-neutral and therefore do not alter the
type distribution. In addition, we assume that the time scale of
the service policies is relatively large with respect to user be-
havior. The model can be extended in future work by consid-
ering more sophisticated dynamics, as discussed in Section VII.

In this model, users can be distinguished along two dimen-
sions: existing members versus newcomers, and contributors

IThe initial identity cost is considered to be a sunk cost. Identity cost refers
to the cost of acquiring any additional identity after the first.
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whitewashers
(1-x,)(1-d)
newcomers departures
d d
— X, X >

177

Fig. 5. Dynamic system with arrivals, departures, and whitewashers.
A fraction d of users depart and are replaced by the same number of
newcomers. At the same time, a fraction (1 — d)(1 — ) of users choose to
whitewash when new identities are costless.

versus free-riders. This means that the population is comprised
of four groups of users: existing contributors (EC), existing free-
riders (EF), new contributors (NC), and new free-riders (NF). In
a system with FI, the EF may choose to adopt the whitewashing
strategy (WW) if the penalty imposed on newcomers is smaller
than that imposed on EF.

An important property of the dynamic scenarios is that not all
users care about the threat. The users who leave the system at
the end of each period are not affected by the penalty they would
have paid had they stayed in the system. Consequently, we get
two separate contribution levels: z;: the contribution level of
users who leave, and x,: the contribution level of users who
stay. The values of zs and x; in equilibrium are determined by
the following equations:

1 = Prob(t; > R) 6)
xs =Prob(t; > R-T) @)

(recall that R and T" denote the contribution cost and the threat,
respectively). Consequently, the average contribution level in
the system, denoted by z,, is: v, = dz; + (1 — d)xs.

The contribution level of users who stay is always greater than
or equal to that of users who leave. Unlike the static system,
where z = 1 can be achieved for a sufficiently high p, full
cooperation cannot be achieved in dynamic scenarios because
the threat does not affect users who intend to leave the system
at the end of the current period.

The user’s contribution cost in each period is determined by
the ratio between the fraction of users who get the full benefit
of the system and those who get the reduced benefit. In what
follows, we compare the system performance in two cases.

Case 1) Uunder PI, it is feasible to penalize only the free-
riders. Therefore, EF receive reduced service, but
all other users receive full service.

Case 2) Under free-identities, in order to penalize the free-
riders, it is necessary to penalize all the newcomers.

The table shown at the bottom of the next page presents the
fraction of users who get the full and reduced benefit under the
two scenarios.

Based on this table, the contribution cost under PI, when new-

comers are not penalized is

(1—d)z+d+ (1 —d)(1—2)(1—p)

Rpr =



FELDMAN et al.: FREE-RIDING AND WHITEWASHING IN PEER-TO-PEER SYSTEMS

TABLE 1
SIZE AND REALIZED PERFORMANCE LEVEL OF THE DIFFERENT GROUPS
UNDER THE PI AND THE FI SCENARIOS

[ Group (j) | Group Size (f;) |

Realized Performance (W) |

Permanent identities Free identities
EC (1-dz Q— Rpr Q— Rrr
EF/WW | (1-d)(1 —2) Q1 —p) Q( —p)
NC dx Q — Rpy Q1 —p)— Rpy
NF d(l — ) Q Q1 —p)

(0]
[$)
C
[]
£
(o]
5
o (d=0.01)
£ (d=0.01)
£ ; FI (d=0.1)
D A X Pl (d=0.1) —-=-— ]
F . Fl (d=0.5) --e--
! ' : Pl (d=0.5) -- = -
O —#-—-m---x--% Free-market --*--
L L 1
0 2 4 6 8 10

theta_m

Fig. 6. System performance ¥ when the system is subject to penalty p*,
as a function of #,,, for different turnover rates d, when identities are either
permanent (PI) or free (FI). The FM baseline has a penalty p = 0. The value of
o is 3.

and the contribution cost under FI, when newcomers are penal-
ized is
(I-dz+dl-p)+(1-d)(1—z)(1-p)

T

Rpr =

under FI, imposing a penalty always results in reduced perfor-
mance, because all newcomers are penalized independent of
their behavior. In contrast, setting p sufficiently high under PI
can lead to a situation in which no user is penalized in effect
(similar to the static system scenario, see Section V).

Table I presents the fraction in the population and the real-
ized performance level of each group under the two scenarios.
System performance is given by:

Wa(p) = > (fi* W;(p)).

J

Fig. 6 presents the system performance subject to a penalty
p = argmax, W;(p) (which was obtained numerically) under
PI (with no penalty to newcomers) and FI (with penalty to new-
comers) as a function of 6,,, for different turnover rates (d). We
make the following observations.
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* If the turnover rate is low (d = 0.01), both the fraction of
newcomers and the fraction of users who leave the system
are small. This means that only a few newcomers exist,
thus penalizing newcomers does not significantly affect
system performance. In addition, because the population
is fairly permanent, a low p imposes a sufficient threat to
obtain many contributions. In this case, the system per-
forms close to its optimal level and no notable perfor-
mance gap exists between the PI and FI scenarios.

 If the turnover rate is high (d = 0.5) and the societal
generosity is low (6, <~ 2), system collapse can only
be avoided by reducing the demand placed on the system.
Assessing a penalty on all newcomers is one method to
limit the demand. In these situations, penalizing new-
comers actually helps to sustain the system by reducing
system overload. Therefore, no social loss is incurred due
to penalty to newcomers.

o If the turnover rate is high (d = 0.5) and the societal gen-
erosity is intermediate (~ 2 < 6,,, <~ 10), the imposi-
tion of penalty on all newcomers in order to discourage
whitewashing incurs a social loss. If penalty can be im-
posed only on free-riders, as in the PI scenario, a higher
system performance can be obtained.

» If the societal generosity is high, a high contribution level
is obtained even in the absence of intervention. Therefore,
the best policy under both scenarios is to impose a small
penalty or no penalty at all. Hence, no notable social loss
is incurred due to FI.

o If the benefits of the system («) are high, even a small
p results in a high threat to free-riders. Once again, the
optimal p is small, and so no notable gap occurs.

In summary, a notable social loss due to FI is incurred only
when a penalty on all newcomers is unnecessarily imposed.
That is, in scenarios where the system can otherwise (under PI)
tolerate the newcomers. In particular, the cost is incurred only
under high turnover rates (d) and only in conjunction with inter-
mediate contribution levels (6,,) and low system benefits («).

While we considered only the two extreme cases in which
the identity cost is either zero or infinity, identity cost can take
any positive finite value, and users decide whether to whitewash
depending on how the identity cost compares to the penalty im-
posed on free-riders and newcomers. In these cases, it is possible
to set the penalty of newcomers lower than that of free-riders,
while still preventing whitewashing behavior. In particular, set-
ting pnc and prr (the penalty levels of newcomers and free-
riders, respectively) such that Wxc = Wgr — ¢, where c is the
identity cost, is sufficient to prevent whitewashing. This implies
that the social loss due to positive-cost identities can actually be
lower than that with zero-cost identities.

PI : NC not penalized

FI: NC penalized

penalized

(1-d)(1—x)

d+(1—d)(1—-x)

not penalized

(1-d)xz+d

(1-d)x
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VI. FAIRNESS
A. Motivation

Throughout this paper, we have used the system performance
(Ws) metric to quantify the effect of free-riding and evaluate the
performance of the incentive mechanisms. This metric measures
the total performance in the population, assigning equal weight
to the realized performance of each individual in the population,
regardless of his behavior.

However, one may have reservations about this metric on
grounds of fairness, claiming that we should not care about the
performance realized by free-riders as much as we care about
the performance realized by contributors. For example, under
the exclusion mechanism (see Section III), we might leave some
free-riders in the system for the sake of maximizing system per-
formance, while such a decision improves the benefits of the
free-riders at the expense of contributors. We might wish to
maximize the total (or average) performance realized by con-
tributors rather than that realized by the society as a whole.

While W denotes the total system performance, W denotes
the total performance of contributors in the system. In the FM

1
Wc:$<a$——>:ax2—1.
T

B. Contributor Performance in the Exclusion Mechanism

Under the exclusion mechanism, the overall system perfor-
mance is Wg = (az — 1)(1 — z), and the contributor perfor-
mance is given by We = z(ax — (1 — z/z)).

Claim 3: The exclusion levels that optimize the total system
performance and the contributor performance for different
values of 6,,, is given in the following table (expressions of 2/,
¢’ and 0! as in Section III).

Ws We

O < 2 z*:l_% Z*:l—%
2<h<h, | meg | oF
0, < Om <0 2* =2 z*zelm
b > O, Z=0 2=

The proof can be found in the appendix.
Looking at the table and Fig. 7, we can divide the results into
three regions (expressions of #/,, and !/, as in Section III).

o Iffh,, <0,z = zF Inthis case, z = 1 — z, meaning
that all of the remaining users contribute. When the so-
cietal generosity is low, an exclusion level that results in
a system with no free-riders is optimal from the perspec-
tives of both system and contributor performance.

o If0, < b, < 0,2 < z% System performance is
maximized for an exclusion level that results in a mixture
of contributors and free-riders. If we impose z = =z},
contributor performance decreases in 6,,,, and may incur
a significant loss [compared with W (22)].

o If 6, < 0m, 0 = 2y, < 2jy,. From the perspective
of system performance, it is optimal to exclude no users,
which entails some loss to contributors. However, as 6,,,
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Fig. 7. (a) Optimal exclusion level z* and corresponding contribution level
2 when maximizing system performance Ws or contributor performance W
(b) Contributor performance W realized for different exclusion level (FM)
baseline where z = 0. The value of « is 10.

gets higher, zj;, . approaches 0 as well, and the gap be-
tween We (23, ) and We (23, ) shrinks.

C. Contributor Performance in the Penalty Mechanism

We found that under the exclusion mechanism, 2. > zI.
That is, if we care more about the performance realized by con-
tributors, we may wish to exclude a higher fraction of users.
What about the penalty mechanism? Recall from Section IV
that p = 1 maximizes system performance. When p = 1, all
users contribute, and therefore it also maximizes W¢. We get:
pr = pi = 1 (where p} denote the penalty level that max-
imizes contributor performance). This statement is true in the
static model (see Section IV), in which a high enough penalty
leads to 100% cooperation. Conversely, in the dynamic model,
where users join and leave and newcomers are penalized to deter
whitewashing (see Section V), there is a tradeoff. While penalty
increases contribution level, it also decreases the benefit of new
contributors. Therefore, especially in cases of high turnover, a
high p may result in lower contributor performance. Yet, similar
to our findings under the exclusion mechanism, our numerical
results confirm that p> > p?.

Fig. 8 presents the results of a dynamic system with turnover
rate of 0.5. It shows We(p¥) and We(p?) under FI and PL
Under PI, the penalty is not imposed on newcomers nor de-
parting users. It is only imposed on free-riders who stay in the
system. A sufficiently high penalty level achieves 100% coop-
eration in that group, and therefore, there is no gap between
We(p%) and We(pk). However, with FI, we observe a similar
pattern to the results obtained under the exclusion mechanism.
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Fig.8. Contributor performance W subject to p = p* and p = p?* under FI,
PI, and FM, where p = 0. Turnover rate d = 0.5, a = 3.

More specifically, the gap between W (p%) and W (pf) is sig-
nificant for a limited range of ¢,,, values. When considering the
performance of the system as a whole, we may impose a lower
penalty level at the expense of contributors.

VII. CONCLUSION

By constructing a simple economic model of user behavior,
we gain some insight into free-riding and whitewashing in P2P
systems. First, we find that when societal generosity level is low,
a mechanism that penalizes free-riders can improve system per-
formance by simultaneously imposing a threat to potential free-
riders and reducing the cost of contribution. Second, if identi-
ties are freely available, penalizing all newcomers can be highly
effective in discouraging whitewashing behavior, and incurs a
social loss only for a limited range of societal generosity levels,
and only in conjunction with a high turnover rate.

The focus of this work is not to propose a new incentive
scheme, but rather to understand the effect of incentives on user
behavior and system performance. Therefore, we have strived
to keep the model as simple as possible. However, the model
retains a flexibility that allows us to account for a diverse set
of system characteristics, and can be easily extended in several
directions.

First, the model can be extended to analyze scenarios of re-
source heterogeneity. A preliminary analysis shows that the ef-
fect of heterogeneity depends to a large extent on the correla-
tion between a user’s resource capacity and her generosity level.
To model resource heterogeneity, each user can be split into a
number of virtual users, proportional to the amount of resources
she has. In this context, one can experiment with different con-
tribution cost functions that may be more reflective of the op-
portunity cost of contribution. For example, resource-rich users
may experience a lower opportunity cost per unit of contribu-
tion, even when they contribute more resources [17]. Users can
also choose different levels of contribution, rather than the bi-
nary choice of being a contributor or a free-rider.

Second, in modeling dynamic behavior, the model can be ex-
tended to allow: 1) departure rates that depend on system perfor-
mance; 2) arrival rates that are affected by the imposed penalty
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level; and 3) dynamics affecting societal generosity by postu-
lating type-dependent arrivals and departures. In particular, one
could imagine that the choice of imposed penalty p would affect
arrival rate in different directions. On the one hand, imposing
penalties on newcomers may discourage them from joining the
system, thereby reducing the arrival rate. On the other hand, con-
tributors may find such a system attractive to join because white-
washers are discouraged, and therefore the system performance
level may actually be higher. Depending on how the penalty
level p affects the arrival rate, the performance impact of FI may
increase or decrease relative to our results. The challenge here
is to model these effects, while preserving the simplicity of the
model.

We believe our abstract modeling of exclusion and penalty
mechanisms captures the essence of many real-world P2P in-
centive mechanisms such as reputation-based service differen-
tiation and entrance fees, and therefore our findings may find
some applicability in the understanding of these systems, partic-
ularly when they are threatened by whitewashers. At the same
time, our model also suggests other possible forms of incentive
engineering in P2P systems that are yet to be explored, e.g., ex-
plicit system partitioning, that may also turn out to be effective
against free-riders and whitewashers.

APPENDIX 1
PROOFS OF CLAIMS 2 and 3

Proof of Claim 2: If0,, < 2,1 —z < zy forall z € [1 —
0, /4, 1], which means that z = 1 — 2, which decreases with
z. In this case, it is optimal to impose the minimum possible z,
which is z¥ = 1 — 6,,/4. £ = 1 — z indicates that all of the
users that are not excluded contribute.

if 6,, > 2:

* Forz>1/6,,, v =1— z, which yields

Ws = (a(l—2)—1)(1-=2).
It is straightforward to verify that this function has no
maximum in [1/6,,,1]. Therefore, the optimal z in this
region is

* Forz < 1/6,,, x = x1, which yields

O + /02, — 46y, + 40,
Wsz(a VO, i Z—l)(l—z).

20,

By equating the first derivative to 0, we get the optimal 2
in this region shown in the first equation at the top of the
next page.

However, there are two exceptions to the above result.

If it is greater than 1/6,,, then z* = 1/6,,. This hap-
pens for 6, < 6/, shown in the second equation at the
top of the next page.

For example, if a = 10, 8/, ~= 3.2. In addition, if it
is smaller than or equal to 0, then 2z} = 0. This happens
for 6,, > 6!/, where

2
"o 9o

0" = )
™24+ 2a+avei—a+1-2-2V/a?—a+1

For example, if « = 10, 6!/, ~= 4.6.




1018

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 5, MAY 2006

. 902 — 0,02 — ol (2+ Va2 —a+1)+20,(1+ Va2 —a+1)

T 9a?
o 3a(3a+ V502 —8a—4dave? —a+ 1+8+8/a —a+1)

" 2@ +2a+aval—a+1-2-2Va?2—a+1)

Proof of Claim 3: Let 2} denote the exclusion level that max-
imizes total contributor performance

*

z; = argmax, (W,).

If 0,, < 2,25 =2z =1-0,/4, as explained above. The
following analysis holds for 6,,, > 2.

« For =z € [0,(1/0)): = =

/62, — 40,, + 40,,2/20,,,,  which

z. Since W increases in both z and =

0., +
increases in

1
* = —. 8
e =g (®)
e Forz € [(1/0,),1]: x = 1 — z, and by simple calculus,
we get
1
* - 9
e =g ©))

That is, to maximize W, it is always optimal to reach
an exclusion level that results in a system with no free-
riders. Decreasing z below this point may improve system
performance, but necessarily degrades W
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