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AN ASYMPTOTIC SOLUTION FOR LARGE PRANDTL NUMBER
FREE CONVECTION

H. K.Kuiken*

Technological University of Delft, Department of Mathematics

SUMMARY

The set of ordinary differential equations governing free convection boundary layer flow past an isothermal
semi-infinite vertical flat plate is solved for large Prandil numbers by means of the method of matched
asymptotic expansions. The analysis leads to an expression for heat transfer which contains the Prandil number
explicitly and which is very accurate for sufficiently large values of the Prandtl number. On the other hand
the analysis also has qualitative assets, Before choosing the mathematical method of solution, the physical
aspects of the large Prandtl number free convection boundary layer are investigated, The mathematical
solution serves to enlarge our understanding of the physical implications of a free convection boundary layer
in a large Prandtl number fluid,

NOMENCLATURE
ajj coefficient defined by 11m f; = an +ayn + aZjnz +
bj; coefficient defined by F (§ + by§ + by, %+

c coefficient defined by equatlon (3)
cp specific heat
f non-dimensional stream function of inner expansion (7)
fn, n-th perturbation of f
non-dimensional stream function of outer expansion (15)
non-dimensional stream function (1)
acceleration due to gravity
Gry local Grashof number: gB(T, -T%)X3/v2
h non-dimensional temperature (2)
k  coefficient of heat conduction
Nu, local Nusselt number: - T—w_f(’I: %
temperature y=0

wall-temperature

T

T

Tw ambient temperature

u longitudinal velocity

x  co-ordinate measuring distance from the leading edge
y

co-ordinate measuring distance normal to the plate

Greek symbols
B  coefficient of thermal expansion
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expansion parameter (21

O on
o

Sy

)
expansion parameter (22)
expansion parameter (33)
)

3
expansion parameter (34

Db

. i
expansion parameter: o2

inner similarity co-ordinate (9)

D3

non-dimensional temperature of inner expansion (8)

bl
=}

n-th perturbation of 8
non-dimensional temperature of outer expansion (16)

n-th perturbation of

=

similarity co-ordinate (3)
kinematic viscosity

outer similarity co-ordinate (17)
density

Prandtl number: V—q{—c-ﬂ

S g o M v B D

stream function

1. Intrvoduction

It is well-known that in heat transfer through viscous fluid flows the Prandtl
number o plays a very important role. Mathematically this role is generally
expressed through the occurrence of this number in the governing
non-dimensional partial differential equations. While for moderate values
of o the integration of these equations can be performed easily - that is
to say for relatively simple problems - the extreme values {0 ~ 0, o —»o00)
have proved to be sources of trouble. For these extreme values of the
Prandtl number the boundary layer of free convection approaches a sin-
gular character so that a direct regular perturbation technique cannot be
applied for obtaining insight in free convection under such conditions.

The first paper inveiling some of the intricacies of this matter is the
work of Le Fevre 1]. In earlier papers of Schuh [2] and Ostrach [3] the
equations were integrated for particular small or larfge Prandtl numbers by
means of a computer. Although these integrations give valuable qualitative
information, e.g. about the ratio of the thicknesses of the velocity- and
the temperature boundary layer in the limiting cases, a more satisfactory
analysis will involve a singular perturbation technique having =0 or o=co
as zeroth perturbation. In his analysis LLe Fevre has tried to furnish these
limiting cases but he only achieved a partial success. As the limiting case
of small 0 he saw the inviscid free convection boundary layer. It is impos-
sible, however, todescribe small Prandtl number free convection by perturb-
ing inviscid free convection directly. Recently Kuiken [4] has solved this
problem by stating that o can also approach zero if k- «. In this case
the limiting character of the free convection boundary layer is a viscous
boundary layer of forced flow type. Lykoudis |—5—| was the first to recog-
nize this behavior of the inner part of the free convection boundary layer. Using
this boundary layer as the main term of an inner expansion and Le Fevre's
inviscid layer as the zeroth perturbation of an outer expansion it was
shown that this problem could be solved by the method of matched asymp-
totic expansions.

It has also been shown by the present author [4, 15] that the same dual
character of free convection boundary layer flow exists for ¢ —- . This
problem, however, was not solved explicitly. It is the purpose of this paper
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to fill this gap. It has to be mentioned that the method of matched asymp-
totic expansions has been applied already to forced convection at large
o [6] Forced convection, however, is relatively simple since the momen-
tum- and energy equation are uncoupled. In free convection the temperature-~
and velocity effects are completely interwoven so that the understanding
and description of the physical implications is a more complicated task
thanitis for forced flow especially under extreme Prandtl number conditions.
Consequently it is necessary to carefully present an analysis of the physical
picture of free convection at large ¢. When once the physical background is
totally understood the way to the mathematical solution is easy to find.
Finally we may remark that approximate solutions for large Prandtl number
free convection have been found by several authors. We may mention the
work of Morgan and Warner [7:] whose analysis is virtually the same as Le
Fevre's. They tried to extend their results to some larger Prandtl number
range. The method of steepest descent as introduced in the theory of boundary
layers by Meksyn [8] and Merk [9] has_been applied to free convection by
Brindley [10 . Braun and Heighway [11] developed an integral method for
both very small and very large Prandtl numbers.

2. Physical analysis of the boundary layev.

Although it is possible to derive the physical picture of large Prandtl num-
ber free convection by pure physical contemplation, it seems to be expedient
and might enhance our chances of a successful investigation to use the
mathematical achievements given in the literature. l.et us consider therefore
the Figs. 1 and 2 where the temperature and velocity profiles, as cal-
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Fig.1 Temperature profiles for ¢ = 100 and o = 1000 (Ostrach [3])
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Fig.2 Velocity profiles for o = 100 and o = 1000 (Ostrach [3])
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culated by Ostrach [3 for o=100 and 0=1000, have been given. These
graphs clearly show features about which the following remarks may be
made:

1° the temperature boundary layer is very thin,

2° although the velocity is small the velocity boundary layer is much thicker
than the temperature boundary layer,

3° in the temperature boundary layer the velocity grows rapidly and reaches
its maximum value near the outer edge of the temperature boundary
layer,

4° outside the temperature boundary layer the velocity desreases slowly
to zero,

5° the effects 1° through 4° are more pronounced for large o.

These remarks undoubtedly demonstrate that for large Prandtl numbers the
free convection boundary layer consists of two regions where different phe-
nomena are predominant, First, there is an inner region where tangible
temperature differences with the ambient fluid exist. Only in this region
there are buoyancy effects. Consequently in this region the transport terms
and the conduction terms of the energy equation have to be of the same
order of magnitude. Moreover, as a large Prandtl number fluid can be
considered to be very viscous the buoyancy term has to be of the same
order of magnitude as the viscous term. This decision is quite realistic
since, as we have remarkedin 3°, the velocity gradients and thus the viscous
stresses are large in the temperature boundary layer. Second, we have an outer
region where no buoyancy exists. The fluid in this region is flowing due
to viscous contact with the inner region. In the extreme case (o > o) this
layer might be described as a viscous boundary layer of forced flow type
the force being exerted at the flat plate due to buoyancy. It is clear that
the equations for this layer may be derived by imposing two conditions.
First, fhe longitudinal velocity has to be of the same order of magnitude
as the corresponding velocity in the inner layer. Second, the inertia terms
and the viscous terms have to be of the same order of magnitude (condition
of Prandtl for forced boundary layer 12:| ).

3. Mathematical analysis of the boundary layer.

Guided by the physical conclusions just presented we will endeavor to de-
velop exact numerical results for large Prandtl number free convection. If
we restrict ourselves to the vertical flat plate having a uniform tempe-
rature Ty it is a known fact 3] that through substitution of

3

= 4ve x* glu), (1)

T = Ty +(Ty - T) h(wm), (2)
A EB(TW -Tw) %

m=ecyxtie =T 7 (3)

in the momentum- and energy equation the following set of ordinary
differential equations is obtained

. 2
&g dg dg \?
__é.+3g__.a-2___.. + h = 0, (4)
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d*n dh
—+ 30g — = 0. (5)
du? du

For later use it is also necessary to present the expression for the lon-
gitudinal velocity

u=%=41/czxé%%. (6)

the innmer problem

First we will try to describe the layer nearest to the wall, which is the
temperature boundary layer. For obvious reasons this layer will be called
the inner region. Let us consider a transformation of variables

g = o*f(n), (7)

h = 6(n), (8)

u=not, (9)
The resulting momentum- and energy equation are

d’t &t af\

-——+9+€23f—2--2— = 0, (10)

dn® dn dn.

&0 do

— + 3f — =0, (11)

dn? dn

with € = o-t, These equations clearly satisfy the conditions imposed upon
the inner region, i.e. the conduction- and convection terms are of equal
order of magnitude in the energy equation and in the momentum equation
this is true for the viscous- and the bouyancy terms. Furthermore we have

Vimer = 4 Ve x% e%f(n), (12)
Tinner = Too * (Ty - Toa) 0(n), (13)
Uinner = 4V°2X%E§ﬁf- (14)
the outev problem
By substitution of
g = o *F(E), (15)
h = J§(38), (16)
u = got, (17)

in the equations (4) and (5) we obtain

2 2
&F a’r dF
— +3F — - 2<-—> + e28=0, (18)
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2
a9 de? (19)
3F — — = 0. 19
& + € d§2

Since the longitudinal velocity appears to be

e avatd o OF
U = 4vec'x’ € T (20)

outer

it becomes clear upon comparing (14) and (20) that u is of the same order
of magnitude in both layers. Moreover, the viscous- and inertia terms in
the momentum equation (18) are, asrequired, of the same order of magnitude.
At first sight it seems, however, somewhat contradictory in equation (18)
that the buoyancy term is multiplied by the large parameter e€-2. Buoyancy
was thought to play a minor role in the outer layer. This problem can be
solved very soon by considering equation (19). If we insert in this equation
expansions of the following type

F\§)= Fo(g) + 8q(€) Fl(E) + 869(¢€) F2(§) + ... , (21)
HE) = 'So(g) + 51(6) ’191(§) + 5_2(6) '192('5) + . (22)
with
6i+1 gi+1 -
lim = 0; lim — = 0; 6, = 6,5=1, (23)
€50 6, €0 01

1

then the zeroth perturbation yields
dd,
Fo —= 0. (24)
d§

We have to rule out F;=0 as a solution since F is connected with the
stream function which is always positive, save at the wall. Hence d¥,/d5=0
yielding 9y =constant. This constant has to be zero since d(e0)=0. Hence J=0.
For the first perturbation we now have the equation

dd,

F, — =
df

0. (25)

For similar reasons as were advanced for ¥, we infer 9;=0. It immediately
follows now that all perturbations of the temperature are zero in the outer
region. As a consequence we are left with one equation for the description
of the outer layer. '

d’r d%F dF \?
( ) = 0. (26)

at

This result is in complete agreement with what we already remarked about
thecharacterof the outer layer. It is a layer of forced flow type the force
being a exerted at the wall through buoyancy. The mathematical transla-
tion of these physical remarks is that according to the well-known
matching principle [13] the outer layer has to be brought into contact with
the inner layer which is the layer of the buoyancy forces. With respect to
this it is interesting to remark that the analysis of forced flow along a mov-
ing flat plate with a spatially varying velocity distribution proportional to
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x% will lead to equation (26) if an appropriate similarity transformation is
applied. The occurrence of the coefficient x% in (6), (14) and (20) is in
logical agreement with this.
For matching purposes the expression
3 3
Vouter = 4Vex4 ei F(§) = 4vext 6% F(ne) (27)

will prove to be most useful.
matching

The boundary conditions which the various functions have to satisfy can
partly be derived from the original boundary conditions imposed upon the
original functions g(u) and h(u). That is to say the inner boundary conditions
have to be allotted to the inner problem while the outer functions have to
satisfy the ambient conditions. We consequently have

= (i_:tl - = =
f=0, an 0, 6=1 at n =0, (28)
% — 0 as § — co. (29)

It is quite clear that additional boundary conditions have to be found for
1 o and for £l0. Here the matching principle enters the problem. It is
most easily applied to the temperature. On account of the fact that for the
outer problem the temperature is exactly equal to zero we may immediately
infer

0 >0 as 71— . (30)

For the matching of the inner- and outer stream function ¥y, and ¢oyer
a full-fledged matching formula has to be presented

m Yy, = lim ¢

outer ? (31)
N - ;LO

which on using (12) and (27) leads to

lim e€f(n) = lim F(ne). (32)
N oo glo

With lim we denote the behavior of a function in the direction given in the
formula. Formula (32) provides both the outer boundary conditions for f(n)
and the inner boundary conditions of the outer problem.

4, Solution

zevoth pervtuvbations

In (21) we already have given a series as a possible representation of the

solution of the outer problem. For the inner problem we accordingly in-
troduce

f(n) = fy(n) + Aq(e) (M) + Agle) fo(n) + ... ... .. (33)

8o(n) + Ay(€) 61(M) + Ag(€) Bg(n) + ... ... (34)

D
3
[

with
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Ay Y
lim ——=0; lim —
P Ai €0 Ai

i+l

= 0’ A() = Aoz 1. (35)

The differential equations for the zeroth perturbations become upon sub-
stitution of (33), (34) and (21) in (10), (11) and (26)

d3f0

—5 7t 6 =0, (36)

dn

a%, 6,

—+ 3f, — =0, (37)
9 0

dn dn

a°F, &, ar,\ 2 ,

— t 3F) —— - —] = 0. (38)
3 0 2 ,

dg dg dg

At this point it is necessary to recall that the asymptotic (7 —s o) behavior
of boundary layer solutions generally gives for the stream function a poly-
nomial in 7 plus terms of exponentially small order(exp-). For example
Blasius's solution gives for n — w: f ~1n + constant + exp- 14:|. Without
further proof and guided by this usual behavior we directly derive from
equation (36) using the condition 6,(n)— 0 as n—

. 2 .
lim  fo(n) ~ agen + ayn + agy + exp-. (39)
M=

On writing

2
]éiln;)l Fo(§) = byt byg 5+ bk + ..on... (40)

an evaluation of (32) up to terms of 0(e) gives
2
€lagyn” + ayn + a5) = byy + bygne. (41)

Three results can be drawn at once from equation (41). First by, =0 which
is equivalent with

F, (0) = 0. (42)

This condition is quite logical as it expresses that ¥ . is zero at the
wall for the extreme case 0 —w.

As a second result the comparison of left- and righthand side of (41)
gives ag=0 or

&,
— 50 as M- . (43)
dn?

This result we indeed may derive from (41) since a term with n2 can only
enter the righthand side of (41) through §2. Since ¥ = ne such a term can
only occur in terms of 0(€2) or higher orders. The third result to be
obtained from (41) naturally is b10=a10 or

df, dF,

S . (44)

¥=0

dn



An asymptotic solution for large Prandtl number free convection 363

This obviously is a matching of the longitudinal velocities which is the
cause of the existence of the outer layer.

The system of equations (36) and (37) with the boundary conditions (28),
(30) and (43) has already been found by Le Fevre [1] in his analysis of free
convection for o —e . This author, however, did not give a reason for
the introduction of condition (43). He did not include in his analysis, what
we have called here, the outer layer. It must have become clear that only
through using this layer one can deduce (43).

An integration of the equations of the zeroth inner perturbation with the
appropriate boundary conditions gives

lim f,(n) ~0.5106804n - 0.261009 + exp-. (45)

T} =00

Through (44) and (45) we may conclude

dF,
—_ = 0.5106804. (46)
dg %=0

Integration of (38) with (29), (42) and (46) renders
&F, |
— = - 0.5622789 = 2by, (47)
i

¥=0

With (42), (46) and (47) all subsequent coefficients of the series (40), re-
presenting a solution of Fy for small values of €, can be calculated. These
coefficients have to be available for matching of the higher perturbations.

first perturbations

We have now arrived at the question as to what should be the expansion
variables Aq(€), Ai(€) and di(e) in (33), (34) and (21). If we assume as a
representation of F (§) near E=0

F_ (%) = by + bigf + bonf  + vrennn.. , (48)

it is understood that the term ay;€ in the lefthand side of (41) can be
produced by the righthand side by taking & (e)=e. Indeed, application of
the matching rule (32) yields by;=ay which on using (45) leads to

F (0) = - 0.261009. (49)

As the righthand side of (32) produces terms_with €2 €3 etec. we also
decide that the expansion parameters Aj(€) and A.(€) are both equal to e
Substitution of the expansions for f, 6 and F in the corresponding equations
gives for the equations of the first perturbations

3

&,
_ + 91 = O_, (50)
an®
4% do, de

i 0
4 3fy— +3f, — =0, (51)
dn? dn dn

2

&°F, d*Fy dF, dF,  d'F,

— T 83Fy — -4 — — +3 —

- - F, = 0. (52)
d§ di dt¢ di dt
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Application of (30) and (50) yields

&t
—— —0 as n—w (53)
dn®
or
. 2
lim f,(n) = apyn” + a;n + ay + exp-. (54)
T

On writing down (32) for terms of 0(62) we obtain
Hayn®+am+ag) = SE(bgn®+byn +... ... ). (55)
Obviously ag;=bgy or using (47) and (54)

2
dt,
— - 5 -0.5622789 as 1N —» co. (56)

dn?

With (30), (56) and the inner conditions f1=0, dfi/dn=0, 61=0 at 1n=0 the
equations (50) and (51) can be integrated. For (54) we now find

lim £,(m) = -0, 281139402+ 0.3388361 - 0.27605 + exp - . (57)

N ~»co

On deriving a;; =by; from (55) we find using (48), (54) and (57) the remaining
boundary condition for the outer problem

dF,

dg

= 0, 338836, (58)
§=0

With (29), (49) and (58) we can integrate (52). For matching purposes we
give here

d2F1
— = - 0.351566 = 2b
ds

§=0

higher pervtuvbations

21 {59)

In order to obtain results which are of a high degree of accuracy for a
considerable FPrandtl number range it is justified to give the second per-
turbations. Without going into much detail now it suffices to remark that
it is easy to prove that the expansion variables Adfe), Ay(€) and 65(€) are
all equal to €. The resulting equations are

d’f, d%, df,\ 2

— + 0y + 3f) — - 2 [—] =0, (60)
dn® dn? dn

d*6, e, de, de,

— + 3fy—+ 3 — £, + 3f —= 0, (61)
dn dn dn dn

d’F, &°F dF, dF, d*F,

— — 4 —— — + 3 — F, +
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&°F, aF, | 2
+3F, — - 2[—] =o0. (62)
dag? ag

If we search first for the outer boundary conditions of the inner problem
we have to write down the coefficient of €2 of the righthand side of (32).
This given

. 2
lim f5,(n) = bgp n3 + bgy N + bign+ byg + exp-. (63)

TN—>e

In (63) both by, and b (see(59)) are known. That f; can indeed satisfy a
behavior as presented in(63) canimmediately be seen by considering equation
(60) for large values of n and neglecting exp-. From (45) and (60} follows

3
&’t, ,
—— — 2(0.510680)" = 0.521589 (64)
dn?
so that
f, —0.086931 TI3 + terms of order lower 173. (65)

By substitution of (40) in (38) one can immediately verify that the coefficients

ofn3 in (63) and (65) coincide. We accordingly have to integrate (60) and

(61) with the condition that the coefficient of n2 in 1%im fo(n) is indeed equal
—x

to the value given in (63). The other conditions are fg=dfz/dn=0,=0 at n=0,
6, (=})=0. Upon integration we find for (63)

3 2
lim fz(n) = 0.086931ln - 0.17579n + 0.47750n +

N
+ terms of order lower 7. (66)
Matching for Fo now gives
dFy
Fy(0) = - 0.27605, — = 0.47750. (67)
d§ §=0

With (29) and (87) equation (62) can be integrated.

numevical vesults

For subsequent use some important numerical data are collected in table 1.
These figures are related to the skin friction, heat transfer and the mass
flow through the boundary layer.

TABLE 1
2
af; de;
2 .
i dn |n=0 dn | n=0 Fl(w)
0 0.824516 -0, 710989 0.429209
1 -0.306698 0.186442 0.021623
2 0,224248 -0,067251 0.071661

It is furthermore necessary to give the graphs representing the various
perturbations of the inner- and outer expansions (Figs. 3,4,5). As will be
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shown later it is possible to construct over-all velocity- and temperature
profiles with these graphs.

1.0
0.8
8,
0.6}
0.4}
o.2}
6,
% 2 n 4
6,

Fig.3 Temperature perturbations of inner expansion

2.01

n

Fig,4 Velocity perturbations of inner expansion

5. Results

As considerable effort has been expended already in the past to investigate
large Prandtlnumber free convection it is imperative to compare our results
with those of the earlier studies. As being fit for comparison we see in
the first place the work of Ostrach [3] and Le Fevre [l . Ostrach presents
exact numerical results by direct integration of the équations (4) and (5)
for some special large Prandtl numbers. Le Fevre's analysis leads to an
interpolation formula which joins both ends of the Prandtl number scale for
which he had found exact data. This interpolation formula is satisfactorily
compatible with the results of Ostrach (three decimal places) Other less
accurate results will also be used for comparison.

The justification of the presentation of our method can be found by con-
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Fig.5 Velocity perturbations of outer expansion

sidering that the present results are drawn from equations which are of
a balanced nature. This is contrary to the results of Ostrach which have
been obtained by integration of equations containing the large parameter o.
This may be inconvenient from a numerical point of view. Our exact calcula-
tions, however, show that Ostrach's results are significant in all decimal
places presented by him.

heat transfer

Let us first consider heat transfer with the well-known Nusselt-Grashof
group (see [3])

Nu, . dh
= - 27 ___

(er)* du

(68)

pu=0

As p=0 refers to the inner region we have to use (8) and (9) for obtaining

Nu dé
x = . 2 '% 0'% ____(3
(Grg) ¢ dn

de,
+ —_—

dn

L, dfy
o¢t —
dn

3
o1+ 0(0'5):, (69)

n=0
which upon insertion of the figures of table 1 becomes

Nux _%

_3
= 0.50275 - 0.13180 >+ 0.04750 1+ O(c 2). (70)
(0 Gry)

In table 2 the results of different analyses are given for Nux/(cer)i.
It follows quite clearly from table 2 that for ¢=100 and 0=1000 the present
analysis and that of Ostrach lead to figures differing but one unit of the
fourth decimal. Apparently the figures of Ostrach - including the other values
of o considered by him - are correct to four decimal places. From this
we may directly infer by making use of the figures for ¢=1,2 and 10 that
the truncation error in (70) is
3
~-0.02 02, (71)
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TABLE 2

Nux/(der)i for various Prandtl numbers

present Ostrach [3] Le Fevre [1] Brindiey [1(Z|
1000 0,49863 0.4987 0.499 0.4953
100 0.49004 0.4899 0.490 0.5244
10 0.4658 0.4650 0.465 0.5171
2 0.4333 0.4260 0.426
1 0.4185 0.4010 0.401

As a consequence formula (70) yields figures which for o > 100 can at
most differ in two units of the fifth decimal from the exact values. This
accuracy can be guaranteed since the figures of table 1 are sufficiently
accurate.

The solution of Le Fevre and ours have in common that they display
the Prandtl number explicitly. As the figures of Le Fevre are correct
in three decimal places the present gsolution must only be used for the cal-
culation of heat transfer if it leads to more accurate results. From the
truncation error (71) we may deduce that equation (70) produces figures
which are accurate in four decimal places if o > 35.

total mass flow

As the total mass flow is related to the complete boundary layer we have
to use the results of the outer problem for its description. From (27)
and table 1 we can derive for the total mass flow
3
lim ¢ ... = 4vcx? o llrn F(g) =

Yo = § e 3

3; L L - ——
4 Ve x4 O'E[O 42921+0.021620°+0.07166 o 1+O(cr 2)]. (72)

If ¢ tends to infinity due to variations of k,p or c¢p the total mass flow
evidently will go to zero. Since the viscosity occurs also outside o in (72)
we have to expect a different result for ¥ — «». Using (3) it can be proved
that the total mass flow is proportional to v* if ¢ is large enough.

By means of the inner expansmn it is easily shown that the skin friction
in large Prandtl number fluids is also proportional to vi

tempervature- and velocity profiles

Another question of interest concerns the temperature- and velocity pre-
files. In constructing these profiles with the results of our analysis we have
to make use of the so-called composite expansion technique which is one
of the topics of matched asymptotic expansions. If we direct our attention
first to the velocity distribution we find as the composite expansion using
three term inner and outer expansions [13].

df, df; dfg dF, dF; , dF,
————+—-—o‘z+—— o1 -——+-——0'2+—-—o"1~
4 ‘dn dn dn d¢  dt dg

- o _ . +0(0 9. (73)
byg + 2by€ + 3bg k" + (byy + 2by8) 07 + byyo

2ie

On account of the fact that the outer expansion for the temperature is
exactly equal to zero the composite expansion coincides with the inner
expansion
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3
h(u) = 8(n) + 63(n)o+ + Oy(n)o" + O(6™2) « (74)

If we want to compare (73) and (74) graphically with the profiles of Ostrach
we have to resort to Prandtl numbers which are not too large, since for
large othe differences are graphically indistinguishable. The figures 6 and 7

1.0k
h
0.8}
osl —— Ostrach
~—— Composite Expansion

0.4}
0.2}
o = e

0 1 2 3 4

O-ZOI'

dg

du

013 Ostrach

. -~

o0} Composite
Expansion

0.05

Fig.7 Comparison of velocity profiles (Ostrach and present) for 0 = 2

show graphs for the velocity and the temperature for o=2. It is seen that
in the inner region the accuracy is greater than in the outer region.
From the velocity this is directly evident. For the temperature profiles
this may be concluded from the fact that only in the matching area a
difference between Ostrach's result and ours can be seen. In order to
illustrate the improved accuracy for larger values of o velocity profiles are
presented for ¢=10 in Figure 8.

6. Concluding remarks

It may have become clear that the primary importance of the present study
is a qualitative one. It has been attempted starting with physical consi-
derations to expose the dual character of a large Prandtl number boundary
layer of free convection through using those mathematical tools which are
most suitable for the description of this problem. In particular, the role
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0.2
dg

o.Jol

0.08}

0.06r

0.04}

0.02

H.K.Kuiken

—— Ostrach

Composite Expansion

!
!

Fig.8 Comparison of veloeity profiles (Ostrach and present) for ¢ = 10

of the outer region became obvious in this way.
A question still to be discussed concerns the expansion parameter in the

expressions (70) and (72). One

might wonder whether a physical explanation

exists for this parameter being ot . As an explanation we may give that
these expansions are generated through matching of two regions. The ratio
of the thicknesses of these regions is proportional to ot as may be shown
through comparison of the inner variable n and the outer variable §. The
rate of interaction of inner and outer region, as expressed by the matching
technique, 1is proportional to the ratio of the thicknesses of the layers.
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