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Slip flow over a lubricated rotating disk
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Abstract

A set of slip-flow boundary conditions for the flow due to a lubricated disk rotating in a Newtonian fluid is derived. Similarity solu-
tions are generally prohibited by the replacement of the conventional no-slip conditions by the new slip-flow conditions, except in the
particular case when the power-law index of the non-Newtonian lubricant equals 1/3. The amount of velocity slip is controlled by a single
dimensionless slip coefficient. Numerical solutions are presented for this case, showing that the three-dimensional flow field is dramat-
ically affected by accentuated velocity slip. In particular, the axial flow towards the disk, i.e. the pumping efficiency, and the torque
required to maintain steady rotation of the disk, decrease monotonically with increasing slip.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The flow of a viscous fluid which arises due to the rota-
tion of a disk in an otherwise stagnant fluid constitutes a
prototype of three-dimensional boundary layer problems.
Von Kármán (1921) considered the steady laminar motion
of an incompressible Newtonian fluid caused by a con-
stantly rotating disk in a quiescent ambient. He devised
an elegant similarity transformation which transforms the
axi-symmetric Navier–Stokes equations into a set of ordin-
ary differential equations (ODEs). Whereas von Kármán
solved the resulting coupled set of non-linear ODEs by
means of the momentum integral method approach, more
accurate solutions have been provided by many others
(e.g. Rogers and Lance, 1960). Moreover, due to its funda-
mental nature in combination with its practical impor-
tance, a vast number of modifications and extensions of
the von Kármán�s swirling flow problem exist. The review
by Zandbergen and Dijkstra (1987) gives an excellent over-
view of the field.
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Technical applications of rotating disk problems can be
found for instance in viscometry, spin-coating, manufac-
turing and use of computer disks, and in various rotating
machinery components. The flow arising due to the rota-
tion of a single disk closely resembles the flow near the
rotor in rotor–stator systems, which is of concern in air-
cooled gas turbines. A comprehensive review and detailed
discussions of flow phenomena occurring in such two-disk
systems were provided by Owen and Rogers (1989).

Even the one-disk problem has received considerable
attention over the years and different extensions of the
now classic von Kármán problem have been made to
address various applications. One such example is the
extension of von Kármán�s problem to a case in which
the spinning disk is rotating in a non-Newtonian rather
than in a Newtonian fluid. The flow is then no longer gov-
erned by the Navier–Stokes equations but by the Cauchy
equations. Mitschka (1964) extended the von Kármán
problem to disk flow in an inelastic power-law fluid.
Andersson et al. (2001) and Denier and Hewitt (2004) have
more recently reconsidered this particular problem and
explored the difficulties that arise due to the severe non-lin-
earity associated with the non-Newtonian rheological
equation of state. In all these analyses, the simplified
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Cauchy equations were subjected to conventional no-slip
boundary conditions at the disk surface.

A completely different extension of von Kármán�s one-
disk problem is the analysis of Sparrow et al. (1971). They
considered the flow of a Newtonian fluid due to the rota-
tion of a porous-surfaced disk and for that purpose
replaced the conventional no-slip boundary conditions at
the disk surface with a set of linear slip-flow conditions.
A substantial reduction in torque then occurred as a result
of surface slip. This problem was recently reconsidered by
Miklavcic and Wang (2004) who pointed out that the same
slip-flow boundary conditions as those used by Sparrow
et al. (1971) also could be used for slightly rarefied gases
or for flow over grooved surfaces.

The objective of the present study is to examine the lam-
inar flow of a Newtonian bulk fluid arising from a solid
rotating disk lubricated by a non-Newtonian liquid film.
It is hypothesized that the apparent slip caused by the pres-
ence of a thin lubrication layer will have similar effects on
the swirling bulk flow as the velocity slip caused by poros-
ity of the disk material, e.g. to reduce the torque required
to rotate the disk. First, however, we aim to deduce a
new set of slip-flow boundary conditions for the lubricated
disk problem. Thereafter, the influence of slip on the three-
componential velocity field and, in particular, on the shaft
torque, will be explored.

2. Slip-flow boundary conditions

2.1. Fluid motion inside the non-Newtonian lubrication
layer

Let us assume that the steadily rotating disk is covered
by a thin layer of an inelastic non-Newtonian liquid which
obeys the power-law model due to Ostwald and deWaele.
The stress tensor s is related to the deformation rate tensor
D by

s ¼ 2lLD ¼ 2Kð2DijDijÞ
ðn�1Þ

2 D ð1Þ
where lL denotes the viscosity function. Here, K

(kg m�1 sn�2) is the consistency coefficient and n is the
power-law index. This two-parameter rheological equation
of state represents shear-thinning (pseudoplastic) fluids for
n < 1 and shear-thickening (dilatant) fluids for n > 1. The
special case n = 1 corresponds to Newtonian (i.e. linear)
rheology with dynamic coefficient of viscosity K. Thus,
the deviation of n from unity is equivalent with the degree
of departure from Newtonian behaviour.

The solid disk rotates with a constant angular velocity X
about the vertical z-axis and the center of the disk is at the
origin of a cylindrical coordinate system (r,h,z). The lubri-
cant is introduced at a constant flow rate Q (m3/s) through
a point opening at the center of the infinitely large disk.
The centrally introduced lubricant gradually spreads radi-
ally outwards and forms a thin lubrication layer of variable
thickness h(r). Due to the principle of mass conservation
we readily obtain
Q ¼
Z hðrÞ

0

Uðr; zÞ � 2prdz ð2Þ

where h(r) is the local thickness of the lubrication layer and
U(r,z) denotes the radial (i.e. outward) component of the
velocity vector V = [U,V,W] inside the lubricant. The cir-
cumferential velocity V(r,z) does not contribute to the radi-
ally directed flow rate and the velocity component W

perpendicular to the disk is negligible provided that the
film is sufficiently thin.

Let us now follow Joseph (1980) who derived a slip-flow
boundary condition for plane boundary layer flow over a
lubricated surface. More recently, Joseph�s slip flow condi-
tion was generalized by Andersson and Valnes (1999) to
accommodate for the effect of a non-Newtonian lubricant.
A basic assumption in these analyses is that lubrication the-
ory applies, i.e. that the non-linear convective terms in the
momentum equations are negligible. Moreover, the thick-
ness h(r) of the lubricating film was assumed sufficiently
small so that also the streamwise pressure gradient could
be neglected. The outcome of these assumptions is that a
drag flow approximation applies. Now, by carrying
Joseph�s analysis over to the present axi-symmetric case,
both the radial and the circumferential velocity compo-
nents vary linearly from the surface of the disk z = 0 to
the interface between the non-Newtonian lubricant and
the Newtonian bulk fluid at z = h(r), i.e.

Uðr; zÞ ¼
eU ðrÞ � z
hðrÞ ð3Þ

V ðr; zÞ ¼ Xr � ðXr � ~V Þ � z
hðrÞ ð4Þ

Here, eU ðrÞ and ~V ðrÞ denote the interfacial velocity compo-
nents, both in the lubricating liquid and in the Newtonian
bulk fluid.

In order to eliminate the unknown thickness h(r) of the
lubrication layer, mass conservation (2) in combination
with the linear velocity profile (3) gives

hðrÞ ¼ Q

pr eU ðrÞ
ð5Þ

Now, the viscosity function lL in Eq. (1) simplifies consid-
erably by assuming all velocity gradients but oU/oz and
oV/oz to be negligible. This gives

lL ¼ K
oU
oz

� �2

þ oV
oz

� �2
" #ðn�1Þ

2

¼ K
p
Q

� �n�1

� ðr eU Þn�1 � eU 2 þ Xr � ~V
� �2h iðn�1Þ

2 ð6Þ

where the last equality is obtained by means of the linear
velocity distributions (3) and (4).

The simplified expressions for the fluid motion (3) and
(4) and the viscosity function (6) are applicable only within
thin lubrication layers. The general equations of motions
for an inelastic power-law fluid in thin shear layers can
be found elsewhere (e.g. Mitschka, 1964; Andersson
et al., 2001; Denier and Hewitt, 2004).
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2.2. Interfacial matching

Both the velocity components and the shear stress com-
ponents in the radial and circumferential directions should
be continuous across the interface between the non-Newto-
nian lubricant and the Newtonian bulk fluid. Thus, U = u
and V = v at z = h(r), where u and v denote the bulk fluid
velocity in the r and h directions, respectively. Similarly, by
requiring continuity of the shear stress components at
z = h(r), we obtain that

l
ou
oz

¼ lL

oU
oz

� lL

eU
h

ð7Þ

l
ov
oz

¼ lL

oV
oz

� �lL

ðXr � ~V Þ
h

ð8Þ

where the left-hand sides represent the shear stresses in the
bulk fluid and the right sides express the stress components
in the lubricating fluid. With the simplified expression (6)
for the viscosity function lL, the interfacial conditions (7)
and (8) become

ou
oz

¼ K
l

p
Q

� �n

uðruÞn u2 þ ðXr � vÞ2
h iðn�1Þ

2 ð9Þ

ov
oz

¼ �K
l

p
Q

� �n

ðXr � vÞðruÞn u2 þ ðXr � vÞ2
h iðn�1Þ

2 ð10Þ

These expressions, together with w = 0, can be considered
as boundary conditions for the bulk flow v = [u,v,w] at
z = h(r). Following Joseph (1980), however, the boundary
conditions (9) and (10) for the bulk flow can be imposed
at the disk z = 0 rather than at z = h(r) since the thickness
h(r) is assumed to be very small.

The above Eq. (9) is the axi-symmetric equivalent of
the slip-flow condition for planar bulk flow deduced by
Andersson and Valnes (1999). In that case of a two-
dimensional boundary layer flow past a lubricated
surface, the amount of slip u is directly related to the
associated shear rate ou/oz. In the present case of a
three-dimensional boundary layer flow, the boundary con-
ditions (9) and (10) couple the motion u in the radial
direction to the velocity v in the circumferential direction
and vice versa.

For the particular case of a Newtonian lubricant, i.e.
n = 1, the above expressions simplify to

ou
oz

¼ K
l

p
Q
ru2 ð11Þ

ov
oz

¼ �K
l

p
Q
ruðXr � vÞ ð12Þ

Here, K is now the dynamic coefficient of viscosity which is
measured in (kg m�1 s�1). Analogous slip-flow boundary
conditions were recently used by Solbakken and Andersson
(2004) to mimic the effect of a lubricating film on the tur-
bulent bulk flow in a plane channel.
3. Bulk flow driven by a lubricated disk

3.1. Similarity considerations

The steady motion of the Newtonian bulk fluid is gov-
erned by the incompressible axi-symmetric Navier–Stokes
equations. By means of the now classic similarity
transformation

z� ¼ z

ffiffiffiffi
X
m

r
ð13Þ

u¼ Xrf ðz�Þ; v¼ Xrgðz�Þ; w¼
ffiffiffiffiffiffi
Xm

p
hðz�Þ; p ¼ Xl � p�ðz�Þ

ð14Þ

it is assumed that u/r, v/r, w and p are functions of z* only
(see e.g. Von Kármán, 1921; Rogers and Lance, 1960). If
so, mass continuity and the governing equations of motion
transform into the following set of non-linear ordinary dif-
ferential equations (ODEs):

h0 ¼ �2f ð15Þ
f 00 ¼ f 2 � g2 þ hf 0 ð16Þ
g00 ¼ 2fg þ hg0 ð17Þ
p�0 ¼ 2fh� 2f 0 ð18Þ

where the prime denotes differentiation with respect to the
non-dimensional axial coordinate z*.

In the usual case of a dry disk, for which the conven-
tional no-slip conditions f(0) = 0 and g(0) = 1 apply for
the radial and circumferential velocity components, respec-
tively, similarity is achieved. In the case of a lubricated
disk, on the other hand, similarity is generally prohibited
since the transformations (13) and (14) do not remove
the explicit appearance of r from the slip-flow boundary
conditions (9) and (10). Therefore, h, f, g and p* must be
treated as functions of both z* and r and the ODEs (15)–
(18) are no longer valid.

For the particular parameter value n = 1/3, however, the
slip-flow conditions (9) and (10) transform exactly into

f 0ð0Þ ¼ k f ð0Þ½ �4=3 ðf ð0ÞÞ2 þ ð1� gð0ÞÞ2
h i�1=3

ð19aÞ

g0ð0Þ ¼ �k½f ð0Þ�1=3 1� gð0Þ½ � ðf ð0ÞÞ2 þ ð1� gð0ÞÞ2
h i�1=3

ð19bÞ

and true similarity is achieved. These conditions, together
with the impermeability and pressure condition

hð0Þ ¼ 0 ð19cÞ
p�ð0Þ ¼ 0 ð19dÞ

at the disk and the outer conditions

f ¼ g ¼ 0 as z� ! 1 ð20Þ
make the two-point boundary-value problem completely
defined. Here, the boundary conditions (20) imply that
both the radial (f) and the azimuthal (g) motion vanish suf-
ficiently far away from the rotating disk, whereas the axial
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velocity component (h) is anticipated to approach a yet un-
known asymptotic limit for sufficiently large z*-values.

The only parameter present in the transformed slip-flow
problem is the dimensionless slip coefficient

k � Lvisc

Llub

¼
ffiffiffiffiffiffiffiffi
m=X

p
l
K

� � QX
p

� �1=3 ð21Þ

which can be interpreted as the ratio between a viscous
length scale Lvisc and a lubrication length Llub. It should
be emphasized that the latter length scale is representative
only for power-law fluids with n = 1/3. By using a small
amount Q of a highly viscous (i.e. large K) lubricant, the
lubrication length Llub is small and the slip coefficient k
correspondingly large. In the limit as k tends to infinity,
the conventional no-slip conditions f(0) = 0 and g(0) = 1
are recovered from (19a,b). On the contrary, if the lubrica-
tion length Llub becomes infinitely large the slip coefficient
k vanishes and full slip f 0(0) = g 0(0) = 0 is achieved.
3.2. Similarity solutions for n = 1/3

Although the new set of slip-flow boundary conditions
(9) and (10) are applicable for bulk flow over a lubricated
disk, irrespective of the value of the power-law index n of
the lubricant, a similarity problem can only be achieved
for a shear-thinning lubricant with n = 1/3. We purposely
considered this particular parameter value to illustrate
the slip effect of a lubrication layer. This choice was moti-
vated by the fact that a set of ODEs can easily be solved to
practically any desired degree of accuracy. For any other
parameter value than n = 1/3, true similarity solutions
are prohibited by the appearance of an explicit r-depen-
dence in the transformed slip-flow boundary conditions.
In such cases, we are left with a set of PDEs rather than
ODEs. In spite of the formal motivation for the choice
n = 1/3, it is worth to remember that many non-Newtonian
liquids have power-law indices n close to 0.3 (see e.g.
Andersson and Irgens, 1990).

The governing ODEs (15)–(18) were written as a system
of first-order equations and integrated numerically by a
standard Runge–Kutta technique for a variety of values
of the slip coefficient k in the range from 0.01 to 10.0. First,
however, the present integration technique was used to
solve the slip-flow problem considered by Miklavcic and
Wang (2004) and the results obtained reproduced the
results provided in their Table 1 to within 0.01%.

Similarity solutions for the three velocity components
and the pressure are presented in Fig. 1 for some different
values of k. The solution for the no-slip case k ! 1, which
was obtained with the conventional no-slip boundary condi-
tions f(0) = 0 and g(0) = 1, serves as a reference. Although
the results are shown only from the disk z* = 0 to z* = 8.0,
the numerical integrations were performed over a substan-
tially larger domain in order to assure that the outer bound-
ary conditions (20) were satisfied. The shear-driven motion
(g) in the circumferential direction in Fig. 1(b) is gradually
reduced with decreasing values of k, i.e. with an increasing
amount of slip. The centrifugal force associated with this cir-
cular motion causes the outward radial flow (f), which is cor-
respondingly reduced with decreasing slip coefficient. The
radial outflow f is compensated by an axial inflow �h

towards the rotating disk, in accordance with the mass con-
servation equation (15). The accompanying pressure in the
vicinity of the rotating disk is higher than the ambient pres-
sure and the axial flow is therefore decelerated by an adverse
pressure gradient p�0 < 0 as the disk is approached (see
Fig. 1d). The magnitude of the axial pressure gradient
reduces with increasing slip (i.e. decreasing k-values). These
overall tendencies are fully consistent with results presented
by Sparrow et al. (1971) andMiklavcic andWang (2004) for
flow due to either porous or rough-surfaced rotating disks.
In their contexts, however, the slip velocities f(0) and
1 � g(0) were linearly related to the corresponding shear
rates f 0(0) and g 0(0), whereas highly non-linear and strongly
coupled slip-flow conditions have been used in the present
study. Quantitative comparisons between the present results
and those of Sparrow et al. (1971) and Miklavcic and Wang
(2004) do therefore not make sense.

It is nevertheless interesting to notice that both Sparrow
et al. (1971) and Miklavcic and Wang (2004) observed that
the radial velocity reached a maximum near z* = 0.92
in the no-slip case and that the effect of slip was to reduce
the peak level of f and shift its location closer to the disk.
In the present study, however, the highest peak level
fmax = 0.1817 is observed for k = 10 and the location of
the peak is close to z* = 0.90, i.e. slightly closer to the disk
than in the no-slip case although the peak level slightly
exceeds the velocity peak 0.1806 found in the no-slip case.
The variation of the peak level fmax of f is shown in
Fig. 2(a) over the k-range from 0.01 to 10.0, together with
the variation of the radial slip velocity f(0). Maximum slip
f(0) = 0.1283 is achieved for k close to 1. For slip coeffi-
cients k < 1, both the slip velocity and the peak level of
the radial velocity profile decrease as k is further reduced.
This behaviour is completely different from that of the cir-
cumferential velocity component. Here, the slip velocity
1 � g(0) shown in Fig. 2(b) increases monotonically from
close to zero (i.e. practically no-slip) to close to unity (i.e.
practically full slip) as the slip coefficient k decreases from
10 to 0.01. Results for the limiting cases k = 0 and k ! 1
are not included in Fig. 2. For the lowest parameter value
k = 0.01, the disk values f(0) = 0.0060 and g(0) = 0.0146
are obtained.

The gradual reduction of the peak in the f-profiles in
Fig. 1(a) with decreasing values of k is reflected in the dis-
tributions of the axial velocity component in Fig. 1(c). The
distinct inflection point in the h-profiles for the highest val-
ues of k seems to gradually disappear with increasing slip.
This is a consequence of the direct coupling between the
radial and axial velocity components through the continu-
ity constraint (15). The reduction of the radial velocity f(z*)
with decreasing k automatically gives rise to a reduced axial
inflow since
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�hð1Þ ¼ 2

Z 1

0

f � dz� ð22Þ

The results in Fig. 2(b) show that �h(1) is surprisingly
close to its no-slip limit 0.883 over a fairly large range of
k-values.

A closer look at the pressure distributions in Fig. 1(e)
reveals a change of sign of pressure for the lowest values
of the slip coefficient. This anomalous behaviour is clearly
reflected in Fig. 2(c), which shows that the ambient pres-
sure �p*(1) gradually approaches the pressure p*(0) = 0
at the disk itself. For the lowest k-values, however, the
ambient pressure exceeds the disk pressure, which means
that the axial pressure gradient drives the flow towards
the disk in this particular parameter range, whereas the
axial motion is normally retarded by the high pressure zone
adjacent to the disk. The explanation of this unexpected
phenomenon can be sought in the axial momentum equa-
tion (18). Here, f and f 0 can be replaced by h 0 and h00 and
the resulting equation for p�0 integrated once to give

�p�ðz�Þ ¼ 2 f ðz�Þ � f ð0Þ½ � þ 1

2
h2ðz�Þ ð23Þ

where f(0) = 0 in the no-slip case. Then, since f always van-
ishes at infinitely large distances from the disk, cf Eq. (20),
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the ambient pressure �p*(1) is determined solely by the
axial inflow velocity h(1). In the present case with partial
slip, however, the positive contribution by axial convection
to the right hand side of (23) is partly outweighed by vis-
cous normal stresses, i.e. �2f 0 or h00 in Eq. (18). The rapid
decrease of the magnitude of the axial inflow �h(1) with
decreasing slip coefficient for k below 2 (Fig. 2(b)), in com-
bination with a substantial slip velocity f(0), explains the
observed sign reversal of �p*(1) in Fig. 2(c). Neither Spar-
row et al. (1971) nor Miklavcic and Wang (2004) reported a
similar phenomenon.

The torque required to maintain steady rotation of the
disk is determined by the circumferential shear stress com-
ponent at the disk surface. Implicit in the drag flow
approximations (3) and (4) is the constancy of the shear
stress components across the thin lubrication layer. The
circumferential shear stress exerted by the lubricant on
the solid disk is therefore equal to the circumferential shear
stress exerted by the bulk fluid on the lubrication layer, i.e.
to the left-hand side of Eq. (8). Thus, the variation of the
wall shear rate �g 0(0) with k in Fig. 2(c) implies that the
imposed torque decreases monotonically with increasing
slip.
4. Concluding remarks

Newtonian slip flow due to a lubricated rotating disk
has been examined for the first time. The new set of slip-
flow boundary conditions aimed to accommodate for the
partial slip effect caused by a thin lubricating layer is appli-
cable for any value of the power-law index n, including the
case of a Newtonian lubricant with n = 1. Results are
obtained only for the particular parameter value n = 1/3,
which is the only value for which similarity is achieved.
For other values of the power-law index, the governing
set of equations of motion do not transform to ODEs.

The computed similarity solutions for n = 1/3 show that
the spin-up by viscous action of the bulk fluid next to the
rotating disk is reduced with increasing slip. The radially
directed centrifugal force is correspondingly reduced. The
radial slip turned out to be insufficient to outweigh the
reduced centrifugal force. The radial slip velocity f(0) there-
fore reaches a maximum value slightly above 0.12 when the
slip coefficient k is close to unity, i.e. when the lubrication
length Llub and the viscous length scale Lvisc nearly equals.
An unexpected reversal of the axial pressure gradient is
detected for the lower values of the slip coefficient.
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The analysis presented herein, and thus the computed
solutions, are based on the following assumptions. First of
all, the lubricant is assumed to obey the non-linear Ost-
wald–deWaele power-law model as many non-Newtonian
substances do, in particular under simple shear flow condi-
tions. Next, it is essential for the new slip-flow conditions
(9) and (10) to apply that the lubricating film is sufficiently
thin so that lubrication theory applies, i.e. that the convec-
tion terms in the equations of motion are negligible. The
bulk flow, on the other hand, is governed by the incompress-
ible Navier–Stokes equations which are valid for low-speed
motion of Newtonian (i.e. linear) fluids and these equations
transform exactly into the ODEs (15)–(18) only for a
lubricant with n = 1/3. Throughout the analysis, we have
moreover assumed that the flow is steady, laminar and axi-
symmetric. It is well known that a non-axisymmetric insta-
bility arises at moderate rotation rates (see e.g. Gregory
et al. (1955) for a pioneering study). The present results are
therefore valid only for a lower range of the angular velocity
X. Moreover, at high rotation rates a transition to turbu-
lence will occur at a certain radial distance from the axis of
rotation and the present analysis is no longer valid.
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