13.2.2

Variational Approach

To derive the equation of motion of a membrane using the extended Hamilton’s prin-
ciple, the expressions for the strain and kinetic energies as well as the work done
by external forces are needed. The strain and kinetic energies of a membrane can be

expressed as
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The work done by the distributed pressure loading f(x, y, ) is given by
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The application of Hamilton’s principle gives
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The variations in Eq. (13.12) can be evaluated using integration by parts as follows:
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By using integration by parts with respect to time, the integral /3 can be written as
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Since dw vanishes at 1, and t», Eq. (13.16) reduces to
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Using Egs. (13.13), (13.14), (13.17), and (13.18), Eq. (13.12) can be expressed as
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By setting each of the expressions under the brackets in Eq. (13.19) equal to zero,
we obtain the differential equation of motion for the transverse vibration of the mem-

brane as
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and the boundary condition as
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Note that Eq. (13.21) will be satisfied for any combination of boundary conditions for
a rectangular membrane. For a fixed edge:
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For a free edge with x =0 or x =a,l, =0and [, = 1:
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For arbitrary geometries of the membrane, Eq. (13.21) can be expressed as
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which will be satisfied when either the edge is fixed with
w=0 and hence sw =0

or the edge is free with
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