& =xz(l —z)— a2y,

- ( ﬁy) ay (3)
y=yl|ld—-— |- 3
x) v+y
where § = 2.0 = g a = “T}?—“, and v = ‘}:‘:3 are positive constants. Note that after the rescaling

transformation, the harvesting term in system (3) is the same as the harvesting term in [33]. From [33],
we know that « can be regarded as the maximum harvesting rate of the predator species. When ~ equals
the number of predator species, harvested biomass reaches one-half of the maximum harvesting rate in
system (3). This system characterizes the behavior of a commercial harvesting company when the company’s
harvesting strategy is determined by both the revenue and cost of harvesting.

In order to obtain the equilibria of system (3), we consider the prey nullcline and predator nulleline of
this system, which are given by:

z(l—z)—zy =0,

y(é—ﬁ—y)— Y )

xr Y+y
It is obvious that the equilibria are the intersections of these nullclines. We easily see that system (3)

possesses a unique boundary equilibrium given by Ey(1, 0). For the possible positive equilibria, we only need
consider the positive solutions of the following equations:

{("'?+5)1f2+(a—ﬁv—25‘—75—5)r+.3(7+1)=0= (5)

y=1—uz.

For positive equilibria, z must satisty 0 < z < 1. Let A denote the discriminant of the first equation of

(5) and express A in terms of o, i.e.,
Ala) =a? —2(By+ 28+ + ) a + (6 ++8 + 37)?, (6)
and let a1, as be the roots of A(a). An easy calculation shows that
=By +20+95+6-2/B(B+0)(v+1), ax=08y+204+v0+0+2/3(B+08)(y+1).

Since 3,4 and 4§ are positive parameters, it is easy to check that as > a3 > 0. About the number of equilibria

of system (3), we obtain the following theorem.

(¢) If v0 < a < ay and v < _%, then system (3) has two distinct positive equilibria Es(xa,y2), Es(xs,ys),

Br+28+~v6+d—aFVA
where x23 = 1= 'E{”.;ig] GBS s =1—a23.




Next we consider the nature of the stability of Ey and E3 when 7§ < a < a7 and v < % The Jacobian
matrix of system (3) evaluated at the equilibria F5 and E3 are given by

1-2z—-y -z
Jiys = ’L/Z B 21_33/ . ay
a? ’ (v + y)2 (z2.3.¥2.3)
1—-2w53 — Y23 —ZT23
= BY3 5 5— 20y23 ay ; (23)
33 Z23 (7 + y23)°

and the determinant and the trace of the Jacobian matrix are given by

2831s - vy By3 .
Det [.752‘3] =1Ia23 ‘ 5 5 @ 3 : ‘é’“ =0f,
T23 (v + y2,3) %2,3 (24)
208Yys.3 ay
Ty [JB; o] = <ga+d———"—~ :
[ 2] =8 T23 (v + y2.3)?

4.3. Hopf bifurcation

In the previous section we have shown that FEj is always a saddle whenever it exists and presented
the conditions required for local asymptotic stability of F». Furthermore, it can be easily concluded that
the equilibriumm E5 may lose its stability through Hopf bifurcation under certain parametric restrictions.
Considering a as the bifurcation parameter, the Hopf bifurcation threshold is a positive root of Tt [Jg,] = 0,
say « = ey which satisfy Det [Jg,] IQ=GH > 0. The stability property of E; changes when « passes through
the critical magnitude o = ay. Thus we summarize our findings in the following theorem.

Theorem 9. Assume that system parameters satisfy the conditions for existence of interior equilibrium given

in Theorem 1(c), then the interior equilibrium Es changes its stability through Hopf bifurcation threshold
a=ag.

Proof. In order to ensure the changes of stability through non-degenerate Hopf bifurcation, we need to verify
the transversality condition for Hopf bifurcation. Obviously,

_alBromegt| o

ozs
a=oag a=ay

d
ET&'IJEQ]

The interior equilibrium Es5 loses its stability through non-degenerate Hopf bifurcation when the parametric
restriction Tr [Jg,] = 0 and the transversality condition mentioned above are satisfied simultaneously.



