```
B := Vector[row](10);
                             (1)
for a from 1 to 10 do
B[a] := \frac{rand()}{10^{12}} - 0.5;
#rand() returns a random 12 digit non-negative integer (from Maple help file)
end do:
В
[0.1272851981, 0.1100418700, -0.4638847747, -0.4507883113, -0.0498550819,
                                                                                         (2)
    -0.1147166333, 0.2301565454, 0.2847364978, -0.3297304842, 0.3480672034
# This B vector is our stochastic term.
#B is bounded by -0.5 and 0.5
f := Vector[row](10);
                             (3)
for c from 2 to 9 do
f[c] := (c-5)^2 + 9;
end do:
f
                         0 18 13 10 9 10 13 18 25 0
                                                                                         (4)
g := f + B;
[0.127285198099999997, 18.1100418699999999, 12.5361152252999997,
                                                                                         (5)
   9.54921168869999981, 8.95014491809999946, 9.88528336669999952,
   13.2301565453999999, 18.2847364978000009, 24.6702695158000012,
   0.3480672034000000251
# use Trapizoidal rule instead of quadrature method
answersum := 0:
for d from 1 to 9 do
answersum := answersum + \frac{(g[d] + g[d+1])}{2};
end do:
answersum
                                     115.4536359
                                                                                         (6)
```

so our function f, from equation 4 has had some noise added to it, and then we added the areas of the trapezoids for our numeric aproximation.