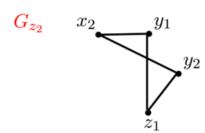

 $K_{2,2,2}$ by C_4 .



The Graph G is $K_{2,2,2}$ and Graph T say is C_4

Now from all possible $T = C_4$ in $G = K_{2,2,2}$ I need to pick NumberOfVertices(G) copies of $T = C_4$ such that

Where each copy is corresponding to a given vertex that is the order is important.

We can observe in the example that

 G_{x_1} and G_{x_2} don't have an edge in common as there is no edge between x_1 and x_2 in graph G.

 G_{x_1} and G_{y_1} has an edge in common as there is an edge between x_1 and y_1 in graph G. That common edge is (x_2, z_1) and that edge (x_2, z_1) will not repeat anywhere else once used in one intersection. That is will occur exactly twice and in an intersection.

 G_{y_1} and G_{y_2} don't have an edge in common as there is no edge between y_1 and y_2 in graph G.

Similarly for all other copies it can be observed.

The union of all the copies of the C_4 above will be original graph G.