The engineering design process involves numerous steps that allow the engineer to reach his/her final design objectives to the best of his/her ability. This process is akin to creating a fine sculpture or a great painting where different approaches are explored and tested, then either adopted or abandoned in favor of better or more developed and fine-tuned ones. Consider the x-ray of an oil painting. X-rays of the works of master artists reveal the thought and creative processes of their minds as they complete the work. I am sure that some colleagues may disagree with the comparison of our modern engineering designs to art masterpieces, but let me ask you to explore the innovations and their brilliant forms, and maybe you will agree with me even a little bit.

Design Process

Successful design engineers must have the very best craft, knowledge and experience to generate work that is truly worthy of being incorporated in products that sell in the tens, or even hundreds, of millions. This is presently achieved by having cross-functional teams of engineers work on a design, allowing cross checking and several rounds of reviews, followed by multiple prototypes and exhaustive preproduction testing until the team reaches a collective conclusion that “we have a design.” This is then followed by the final design review and release of the product. This necessary and vital approach is clearly a time consuming and costly process. Over the years I have asked myself several times, “Did I explore every single detail of the design fully”? “Am I sure that this is the very best I can do?” And more importantly, “Does every component have the most fine-tuned value to render the best performance possible?” And invariably I am left with a bit of doubt. That brings me to a tool that has helped me in this regard.

A Great New Tool

I have used Maple for over 25 years to dig deeply into my designs and understand the interplay between a given set of parameters and the performance of the particular circuit I am working on. This has always given me a complete view of the problem at hand and solidly pointed me in the direction of the best possible solutions.

In recent years, a new feature called “Explore” has been added to Maple. This amazing feature allows the engineer/researcher to peer very deeply into any formula and explore the interaction of EVERY variable in the formula. 

Take for example the losses in the control MOSFET in a synchronous buck converter. In order to minimize these losses and maximize the power conversion efficiency, the most suitable MOSFET must be selected. With thousands of these devices being available in the market, a dozen of them are considered very close to the best at any given time. The real question then is, which one is really the very best amongst all of them? 

There are two possible approaches - one, build an application prototype, test a random sample of each and choose the one that gives you the best efficiency.  Or, use an accurate mathematical model to calculate the losses of each and chose the best. The first approach lacks the variability of each parameter due to the six sigma statistical distribution where it is next to impossible to get a device laying on the outer limits of the distribution. That leaves the mathematical model approach. If you take this route, you can have built-in tolerances in the equations to accommodate all the variabilities and use a simplified equation for the control MOSFET losses (clearly you can use a very detailed model should you chose to) to explore these losses. Luckily you can explore the losses using the Explore function in Maple.

The figure below shows a three dimensional plot, plus five other variables in the formula that the user can change using sliders that cover the range of values of interest including Minima and Maxima, while observing in real time the effects of the change on the power loss.

This means that by changing the values of any set of variables, you can observe their effect on the function. To put it simply, this single feature helps you replace dozens of plots with just one, saving you precious time and cost in fine-tuning your design. In my opinion, this is equivalent to an eight-dimensional/axes plot.

I used this amazing feature in the last few weeks and I was delighted at how simple it is to use and how much it simplifies the study of my approach and my components selection, in record times!

Please Wait...