Product Tips & Techniques

Tips and Tricks on how to get the most about Maple and MapleSim

As a university-level math student, I am constantly working through practice problems. An issue I constantly face is that when I get a problem wrong, it can be challenging to find out which line I did wrong. Even if I use Maple Calculator or Maple Learn to get the full steps for a solution, it can be tedious to compare my answer to the steps to see where I went wrong.

 

This is why Check My Work is one of the most popular features in Maple Learn. Check My Work will check all the lines in your solution and give you feedback showing you exactly where you went wrong. I honestly didn’t know that something like this existed until I started here at Maplesoft, and it is now easy to see why this has been one of our most successful features in Maple Learn.

 

Students have been loving it, but the only real complaint is that it’s only available in Maple Learn. So, if you were working on paper, you'd either have to retype your work into Maple Learn or take a picture of your steps using Maple Calculator and then access it in Maple Learn. Something I immediately thought was, if I’m already on my phone to take a picture, I’d much rather be able to stay on my phone.

 

And now you can! Check My Work is now fully available within Maple Calculator!

 

To use Check My Work, all you need to do is take a picture of your solution to a math problem.

 

 

Check My Work will recognize poor handwriting, so there is no need to worry about getting it perfect. After taking the picture, select the Check My Work dropdown in the results screen to see if your solution is correct or where you made a mistake.

 

 

Check My Work will go through your solution line-by-line giving you valuable feedback along the way! Additionally, if you make a mistake, Maple Calculator will point out the line with the error and then proceed with checking the remainder of the solution given this context.  

 

For students, Check My Work is the perfect tool to help you understand and master concepts from class. As a student myself, I’ll for sure be using this feature in my future courses to double-check my work.

 

What makes Check My Work great for learning a technique is that it doesn’t tell you what mistake you made, but rather where the mistake has been made. This is helpful since as a student you don’t have to worry about the time-consuming task of finding the step with an error, but rather you can focus on the learning aspect of actually figuring out what you did wrong.

 

Once you have made corrections to your work on paper, take a new picture and repeat the process. You can also make changes to your solution in-app by clicking the “Check my work in editor” button in the bottom right, which runs Check My Work in the editor where you can modify your solution.

 

No other math tool has a Check My Work feature, and we are very proud to bring this very useful tool to students. By bringing it fully into Maple Calculator, we continue working towards our goal of helping students learn and understand math.

 

View the GIF below for a brief demonstration of how to use Check My Work!

 

 

We hope you enjoy Check My Work in Maple Calculator and let us know what you think!

Maplesoft now has a new approach to providing customer support for Maple users! The Maple Customer Support Updates allows Maplesoft to provide important updates to our customers as fast as possible. These updates contain a series of improvements and fixes to any area of the Maple library, enabling a rapid response for customer reports and requests. When a Maple user reports a bug or weakness, or requests some missing functionality that can be addressed with an update to the Maple library, such an update can now be provided immediately after the fix or improvement is developed. Furthermore, the update will not just be available to that customer who reported it, but also to any other Maple users who wishes to use them. Of course, not all reports will be able to be addressed quickly, and for those that are, it will be up to the developer's discretion whether to make the fix or improvement available via these new Maple Customer Support Updates. Please note that these Updates may contain experimental elements that could change in subsequent official releases.

The updates are available as a workbook containing a Maple library file that can be downloaded and installed from the Maple Cloud. To install the Maple Customer Support Updates from the Maple Cloud,

  • Click the MapleCloud icon in the upper-right corner of the Maple GUI window and select Packages.
  • Find the Maple Customer Support Updates package and click the Install button, the last one under Actions.
  • To check for new versions of Maple Customer Support Updates, click the MapleCloud icon and select Updates. If the cloud icon in the Actions column of Maple Customer Support Updates has the word Update beside it, then you can click on it to download a new update.

To make the process of installing and maintaining the Maple Customer Support Updates as smooth as possible, we've also introduced a new Maple library package, SupportTools, with 3 commands, Update, Version, and RemoveUpdates.

Load the SupportTools package:
with(SupportTools)

[RemoveUpdates, Update, Version]

(1)

Check which version is currently installed:
Version()

`The Customer Support Updates version in the MapleCloud is 10. The version installed in this computer is 9 created April 22, 2025, 15:14 hours Eastern Time, found in the directory C:\Users\Austin\Maple\toolbox\2025\Maple Customer Support Updates\lib\Maple`

(2)


Update to the latest version (you could also call Update(latest)):

Update()

Warning, You have just upgraded from version 9 to version 10 of the Customer Support Updates. In order to have this version active, please close Maple entirely, then open Maple and enter SupportTools:-Version() to confirm the active version.

 


Check the version again:

Version()

`The Customer Support Updates version in the MapleCloud is 10 and is the same as the version installed in this computer, created April 22, 2025, 15:14 hours Eastern Time.`

(3)


Remove all updates for this release of Maple (except for those installing the SupportTools package itself):

RemoveUpdates()RemoveUpdates()

Warning, You have just reverted to version 4 of the Customer Support Updates. This version contains no actual updates other than the SupportTools package itself. In order to verify this, please close Maple entirely, then open Maple and enter SupportTools:-Version() to verify that the version number is 4.

 


Note: You can also specify which version to install by supplying the version number as the argument to the Update command:

Update(10)

Warning, You have just upgraded from version 4 to version 10 of the Customer Support Updates. In order to have this version active, please close Maple entirely, then open Maple and enter SupportTools:-Version() to confirm the active version.

 

Download SupportTools.mw

In Maple 2025.0, the SupportTools package is not installed by default. For the first installation, you can also run the command
PackageTools:-Install(4797495082876928); instead of installing it from the Maple Cloud.

The Maple Customer Support Updates were inspired by and modelled after the existing Physics Updates which many Maple users may be famiilar with already. Going forward, Physics Updates will only contain changes to the Physics package itself. All other library updates will be available via the Maple Customer Support Updates. For compatibility with the pre-existing Physics:-Version command, calling SupportTools:-Version(n) is equivalent to calling SupportTools:-Update(n), and similarly SupportTools:-Version(latest) and SupportTools:-Update(latest) are both equivalent to the single call SupportTools:-Update().

The Maplesoft Physics Updates, introduced over a decade ago, brought with them an innovative concept: to deliver fixes and new developments continuously, as soon as they enter the development version of the Maple library for the next release. A key aspect of this initiative was prioritizing the resolution of issues reported on MaplePrimes, ensuring that fixes became available to everyone within 24 to 48 hours. Initially focused solely on the Physics package, the scope of the updates quickly expanded to include other parts of the Maple library and the Typesetting system.

This initiative, which I developed outside regular work hours, aimed to enhance the Maple experience—where issues encountered in daily use could be resolved almost immediately, minimizing disruptions and benefiting the entire user community through shared updates.

As of January 1st, I have stepped away from my role at Maplesoft and have been increasingly involved in activities unrelated to Maple. This raises the question of what will happen with the Physics Updates for Maple 2025 and after.

The Physics project remains a unique and personally meaningful endeavor for me. So, for now, I will continue to dedicate some time to these Updates—but only for the Physics package, not for other parts of the library. As before, these fixes and developments will be included in the Physics Updates only after they have been integrated into the development version of Maple’s official library for the next release. In that sense, they will continue to be Maplesoft updates.

On that note, the first release of the Physics Updates for Maple 2025—focused solely on the Physics package—went out today as version 1854. To install it, the first time open Maple 2025 and use the Maplecloud toolbar -> Packages, or else input PackageTools:-Install(5137472255164416). Any next time, just enter Physics:-Version(latest)

As for fixes beyond the Physics package, I understand that Maplesoft is exploring the possibility of offering something similar to what was previously delivered through the Maplesoft Physics Updates.

All the best

PS: to install the last version of the Maplesoft Physics Updates for Maple 2024, open Maple and input Physics:-Version(1852), not 1853.
 
Edgardo S. Cheb-Terrab
Physics, Differential Equations, and Mathematical Functions
Maplesoft Emmeritus
Research and Education—passionate about all that.

What is new in Physics in Maple 2025

 

This post is, basically, the page of what is new in Physics distributed with Maple 2025. Why post it? Because this time we achieved a result that is a breakthrough/milestone in Computer Algebra: for the first time we can systematically compute Einstein's equations from first principles, using a computer, starting from a Lagrangian for gravity. This is something to celebrate.

 

Although being able to perform this computation on a computer algebra sheet is relevant mostly for physicists working in general relativity, the developments performed in the tensor manipulation and functional differentiation routines of the Maple system to cover this computation were tremendous, in number of lines of code, efforts and time, resulting in improvements not just fore general relativity but for physics all around, and in an area out of reach of neural network AIs . Other results, like the new routines for linearizing gravity, requested other times here in Mapleprimes, are also part of the relevant novelties.

 

 

Lagrange Equations and simplification of tensorial expressions in curved spacetimes

Linearized Gravity

Relative Tensors

New Physics:-Library commands

See Also

 

 

 

Lagrange Equations and simplification of tensorial expressions in curved spacetimes

 

 

LagrangeEquations  is a Physics command introduced in 2023 taking advantage of the functional differentiation  capabilities of the Physics  package . This command can handle tensors  and vectors  of the Physics  package as well as derivatives using vectorial differential operators (see d_  and Nabla ), works by performing functional differentiation (see Fundiff ), and handles 1st, and higher order derivatives of the coordinates in the Lagrangian automatically. LagrangeEquations  receives an expression representing a Lagrangian and returns a sequence of Lagrange equations with as many equations as coordinates are indicated. The number of parameters can also be many. For example, in electrodynamics, the "coordinate" is a tensor field A[mu](x, y, z, t), there are then four coordinates, one for each of the values of the index mu, and there are four parameters x, y, z, t.

 

New in Maple 2025, the "coordinates" can now also be the components of the metric tensor in a curved spacetime, in which case the equations returned are Einstein's equations. Also new, instead of a coordinate or set of them, you can pass the keyword EnergyMomentum, in which case the output is the conserved energy-momentum tensor of the physical model represented by the given Lagrangian L.

 

Examples

 

with(Physics)

Setup(mathematicalnotation = true, coordinates = cartesian)

[coordinatesystems = {X}, mathematicalnotation = true]

(1)

The lambda*Phi^4 model in classical field theory and corresponding field equations, as in previous releases

CompactDisplay(Phi(X))

Phi(x, y, z, t)*`will now be displayed as`*Phi

(2)

L := (1/2)*d_[mu](Phi(X))*d_[mu](Phi(X))-(1/2)*m^2*Phi(X)^2+(1/4)*lambda*Phi(X)^4

(1/2)*Physics:-d_[mu](Phi(X), [X])*Physics:-d_[`~mu`](Phi(X), [X])-(1/2)*m^2*Phi(X)^2+(1/4)*lambda*Phi(X)^4

(3)

Lagrange's equations

LagrangeEquations(L, Phi)

Phi(X)^3*lambda-Phi(X)*m^2-Physics:-dAlembertian(Phi(X), [X]) = 0

(4)

New: The energy-momentum tensor can be computed as the Lagrange equations taking the metric as the coordinate, not equating to 0 the result, but multiplying the variation of the action "(delta S)/(delta g[]^(mu,nu))" by 2/sqrt(-%g_[determinant]) (in flat spacetimes sqrt(-%g_[determinant]) = 1). For that purpose, you can use the EnergyMomentum keyword. You can optionally indicate the indices to be used in the output as well as their covariant or contravariant character

LagrangeEquations(L, EnergyMomentum[mu, nu])

Physics:-EnergyMomentum[mu, nu] = (-(1/4)*lambda*Phi(X)^4+(1/2)*m^2*Phi(X)^2-(1/2)*Physics:-d_[`~beta`](Phi(X), [X])*Physics:-d_[beta](Phi(X), [X]))*Physics:-g_[mu, nu]+Physics:-d_[mu](Phi(X), [X])*Physics:-d_[nu](Phi(X), [X])

(5)

To further compute using the above as the definition for T[mu, nu], you can use the Define  command

Define(Physics:-EnergyMomentum[mu, nu] = (-(1/4)*lambda*Phi(X)^4+(1/2)*m^2*Phi(X)^2-(1/2)*Physics[d_][`~beta`](Phi(X), [X])*Physics[d_][beta](Phi(X), [X]))*Physics[g_][mu, nu]+Physics[d_][mu](Phi(X), [X])*Physics[d_][nu](Phi(X), [X]))

`Defined objects with tensor properties`

 

{Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-EnergyMomentum[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(6)

After which the system knows about the symmetry properties and the components of T[mu, nu]

EnergyMomentum[definition]

Physics:-EnergyMomentum[mu, nu] = (-(1/4)*lambda*Phi(X)^4+(1/2)*m^2*Phi(X)^2-(1/2)*Physics:-d_[`~beta`](Phi(X), [X])*Physics:-d_[beta](Phi(X), [X]))*Physics:-g_[mu, nu]+Physics:-d_[mu](Phi(X), [X])*Physics:-d_[nu](Phi(X), [X])

(7)

Library:-IsTensorialSymmetric(EnergyMomentum[mu, nu])

true

(8)

EnergyMomentum[]

Physics:-EnergyMomentum[mu, nu] = Matrix(%id = 36893488151952536988)

(9)

New: LagrangeEquations takes advantage of the extension of Fundiff  to compute functional derivatives in curved spacetimes introduced for Maple 2025, and so it also handles the case of a scalar field in a curved spacetime. Set for instance an arbitrary metric

g_[arb]

_______________________________________________________

 

`Setting `*lowercaselatin_is*` letters to represent `*space*` indices`

 

`The arbitrary metric in coordinates `*[x, y, z, t]

 

`Signature: `(`- - - +`)

 

_______________________________________________________

 

Physics:-g_[mu, nu] = Matrix(%id = 36893488152257720060)

(10)

For the action to be a true scalar in spacetime, the Lagrangian density now needs to be multiplied by the square root of the determinant of the metric

L := sqrt(-%g_[determinant])*L

(-%g_[determinant])^(1/2)*((1/2)*Physics:-d_[mu](Phi(X), [X])*Physics:-d_[`~mu`](Phi(X), [X])-(1/2)*m^2*Phi(X)^2+(1/4)*lambda*Phi(X)^4)

(11)

New: With the extension of the tensorial simplification algorithms for curved spacetimes, the Lagrange equations can be computed arriving directly to the compact form

LagrangeEquations(L, Phi)

Phi(X)^3*lambda-Phi(X)*m^2-Physics:-D_[kappa](Physics:-d_[`~kappa`](Phi(X), [X]), [X]) = 0

(12)

Comparing with the result (4) for the same Lagrangian in a flat spacetime, we see the only difference is that the dAlembertian  is now expressed in terms of covariant derivatives D_ .

 

The EnergyMomentum  tensor is computed in the same way as when the spacetime is flat

LagrangeEquations(L, EnergyMomentum[mu, nu])

Physics:-EnergyMomentum[mu, nu] = (-(1/4)*lambda*Phi(X)^4+(1/2)*m^2*Phi(X)^2-(1/2)*Physics:-d_[`~beta`](Phi(X), [X])*Physics:-d_[beta](Phi(X), [X]))*Physics:-g_[mu, nu]+Physics:-d_[mu](Phi(X), [X])*Physics:-d_[nu](Phi(X), [X])

(13)

General Relativity

 

New: the most significant development in LagrangeEquations is regarding General Relativity. It can now compute Einstein's equations directly from the Lagrangian, not using tabulated cases, and properly handling several (traditional or not) alternative ways of presenting the Lagrangian.

 

Einstein's equations concern the case of a curved spacetime with metric g[mu, nu] as, for instance, the general case of an arbitrary metric set lines above. In the Lagrangian formulation, the coordinates of the problem are the components of the metric g[mu, nu], and as in the case of electrodynamics the parameters are the spacetime coordinates X^alpha. The simplest case is that of Einstein's equation in vacuum, for which the Lagrangian density is expressed in terms of the trace of the Ricci  tensor by

L := sqrt(-%g_[determinant])*Ricci[alpha, `~alpha`]

(-%g_[determinant])^(1/2)*Physics:-Ricci[alpha, `~alpha`]

(14)

Einstein's equations in vacuum:

LagrangeEquations(L, g_[mu, nu])

-(1/2)*Physics:-g_[mu, nu]*Physics:-Ricci[alpha, `~alpha`]+Physics:-Ricci[mu, nu] = 0

(15)

where in the above instead of passing g as second argument, we passed g[mu, nu] to get the equations using those free indices. The tensorial equation computed is also the definition of the Einstein  tensor

Einstein[definition]

Physics:-Einstein[mu, nu] = -(1/2)*Physics:-g_[mu, nu]*Physics:-Ricci[alpha, `~alpha`]+Physics:-Ricci[mu, nu]

(16)

The Lagrangian L used to compute Einstein's equations (15)  contains first and second derivatives of the metric. To see that, rewrite L in terms of Christoffel  symbols

L__C := convert(L, Christoffel)

(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*(Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda])

(17)

Recalling the definition

Christoffel[definition]

Physics:-Christoffel[alpha, mu, nu] = (1/2)*Physics:-d_[nu](Physics:-g_[alpha, mu], [X])+(1/2)*Physics:-d_[mu](Physics:-g_[alpha, nu], [X])-(1/2)*Physics:-d_[alpha](Physics:-g_[mu, nu], [X])

(18)

in L[C] the two terms containing derivatives of Christoffel symbols contain second order derivatives of g[mu, nu]. Now, it is always possible to add a total spacetime derivative to L[C] without changing Einstein's equations (assuming the variation of the metric in the corresponding boundary integrals vanishes), and in that way, in this particular case of L[C], obtain a Lagrangian involving only 1st order derivatives. The total derivative, expressed using the inert `∂` command to see it before the differentiation operation is performed, is

TD := %d_[alpha](g_[`~mu`, `~nu`]*sqrt(-%g_[determinant])*(g_[`~alpha`, mu]*Christoffel[`~beta`, nu, beta]-Christoffel[`~alpha`, mu, nu]))

%d_[alpha](Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu]))

(19)

Adding this term to L[C], performing the `∂` differentiation operation and simplifying we get

L__1 := L__C+TD

(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*(Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda])+%d_[alpha](Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu]))

(20)

L__1 := eval(L__1, %d_ = d_)

(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*(Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda])+Physics:-d_[alpha](Physics:-g_[`~mu`, `~nu`], [X])*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])-(1/2)*Physics:-g_[`~mu`, `~nu`]*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])*%g_[determinant]*Physics:-g_[`~kappa`, `~lambda`]*Physics:-d_[alpha](Physics:-g_[kappa, lambda], [X])/(-%g_[determinant])^(1/2)+Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-d_[alpha](Physics:-Christoffel[`~beta`, beta, nu], [X])-Physics:-d_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X]))

(21)

L__1 := Simplify(L__1)

(Physics:-Christoffel[alpha, beta, kappa]*Physics:-Christoffel[`~beta`, `~alpha`, `~kappa`]-Physics:-Christoffel[alpha, beta, `~alpha`]*Physics:-Christoffel[`~beta`, kappa, `~kappa`])*(-%g_[determinant])^(1/2)

(22)

which is a Lagrangian depending only on 1st order derivatives of the metric through Christoffel  symbols. As expected, the equations of motion resulting from this Lagrangian are the same Einstein equations computed in (15)

LagrangeEquations(L__1, g_[mu, nu])

-(1/2)*Physics:-Ricci[iota, `~iota`]*Physics:-g_[mu, nu]+Physics:-Ricci[mu, nu] = 0

(23)

To illustrate the new Maple 2025 tensorial simplification capabilities note that `≡`(L[1], (Physics[Christoffel][alpha, beta, kappa]*Physics[Christoffel][`~beta`, `~alpha`, `~kappa`]-Physics[Christoffel][alpha, beta, `~alpha`]*Physics[Christoffel][`~beta`, kappa, `~kappa`])*(-%g_[determinant])^(1/2)) is no just L[C] ≡ (17) after discarding its two terms involving derivatives of Christoffel symbols. To verify this, split L[C] into the terms containing or not derivatives of Christoffel

L__22, L__11 := selectremove(has, expand(L__C), d_)

(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X]), (-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda]

(24)

Comparing, the total derivative TD≡ (19) is not just -L[22], but

TD = -L__22-2*L__11

%d_[alpha](Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])) = -(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])+(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])-2*(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]+2*(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda]

(25)

Things like these, TD = -L__22-2*L__11, can now be verified directly with the new tensorial simplification capabilities: take the left-hand side minus the right-hand side, evaluate the inert derivative `∂` and simplify to see the equality is true

(lhs-rhs)(%d_[alpha](Physics[g_][`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics[g_][mu, `~alpha`]*Physics[Christoffel][`~beta`, beta, nu]-Physics[Christoffel][`~alpha`, mu, nu])) = -(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[d_][nu](Physics[Christoffel][`~nu`, alpha, lambda], [X])+(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[d_][lambda](Physics[Christoffel][`~nu`, alpha, nu], [X])-2*(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[Christoffel][`~beta`, alpha, lambda]*Physics[Christoffel][`~nu`, beta, nu]+2*(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[Christoffel][`~beta`, alpha, nu]*Physics[Christoffel][`~nu`, beta, lambda])

%d_[alpha](Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu]))+(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+2*(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-2*(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda]

(26)

eval(%d_[alpha](Physics[g_][`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics[g_][mu, `~alpha`]*Physics[Christoffel][`~beta`, beta, nu]-Physics[Christoffel][`~alpha`, mu, nu]))+(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[d_][nu](Physics[Christoffel][`~nu`, alpha, lambda], [X])-(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[d_][lambda](Physics[Christoffel][`~nu`, alpha, nu], [X])+2*(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[Christoffel][`~beta`, alpha, lambda]*Physics[Christoffel][`~nu`, beta, nu]-2*(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[Christoffel][`~beta`, alpha, nu]*Physics[Christoffel][`~nu`, beta, lambda], %d_ = d_)

(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])*Physics:-d_[alpha](Physics:-g_[`~mu`, `~nu`], [X])-(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])*Physics:-g_[`~mu`, `~nu`]*%g_[determinant]*Physics:-g_[`~kappa`, `~lambda`]*Physics:-d_[alpha](Physics:-g_[kappa, lambda], [X])/(-%g_[determinant])^(1/2)+(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-d_[alpha](Physics:-Christoffel[`~beta`, beta, nu], [X])-Physics:-d_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X]))*Physics:-g_[`~mu`, `~nu`]+(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+2*(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-2*(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda]

(27)

Simplify((-%g_[determinant])^(1/2)*(Physics[g_][mu, `~alpha`]*Physics[Christoffel][`~beta`, beta, nu]-Physics[Christoffel][`~alpha`, mu, nu])*Physics[d_][alpha](Physics[g_][`~mu`, `~nu`], [X])-(1/2)*(Physics[g_][mu, `~alpha`]*Physics[Christoffel][`~beta`, beta, nu]-Physics[Christoffel][`~alpha`, mu, nu])*Physics[g_][`~mu`, `~nu`]*%g_[determinant]*Physics[g_][`~kappa`, `~lambda`]*Physics[d_][alpha](Physics[g_][kappa, lambda], [X])/(-%g_[determinant])^(1/2)+(-%g_[determinant])^(1/2)*(Physics[g_][mu, `~alpha`]*Physics[d_][alpha](Physics[Christoffel][`~beta`, beta, nu], [X])-Physics[d_][alpha](Physics[Christoffel][`~alpha`, mu, nu], [X]))*Physics[g_][`~mu`, `~nu`]+(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[d_][nu](Physics[Christoffel][`~nu`, alpha, lambda], [X])-(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[d_][lambda](Physics[Christoffel][`~nu`, alpha, nu], [X])+2*(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[Christoffel][`~beta`, alpha, lambda]*Physics[Christoffel][`~nu`, beta, nu]-2*(-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*Physics[Christoffel][`~beta`, alpha, nu]*Physics[Christoffel][`~nu`, beta, lambda])

0

(28)

That said, it is also true that TD = -L[22]-2*L[11] results in the Lagrangian L[1] = -L[11], and since the equations of movement don't depend on the sign of the Lagrangian, for this Lagrangian `≡`(L[C], (-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*(Physics[d_][nu](Physics[Christoffel][`~nu`, alpha, lambda], [X])-Physics[d_][lambda](Physics[Christoffel][`~nu`, alpha, nu], [X])+Physics[Christoffel][`~beta`, alpha, lambda]*Physics[Christoffel][`~nu`, beta, nu]-Physics[Christoffel][`~beta`, alpha, nu]*Physics[Christoffel][`~nu`, beta, lambda])) adding the term TD happens to be equivalent to just discarding the terms of L__C involving derivatives of Christoffel symbols.

 

Also new in Maple 2025, due to the extension of Fundiff  to compute in curved spacetimes, it is now also possible to compute Einstein's equations from first principles by constructing the action,

S := Intc(L, X)

Int(Int(Int(Int((-%g_[determinant])^(1/2)*Physics:-Ricci[alpha, `~alpha`], x = -infinity .. infinity), y = -infinity .. infinity), z = -infinity .. infinity), t = -infinity .. infinity)

(29)

and equating to zero the functional derivative with respect to the metric. To avoid displaying the resulting large expression, end the input line with ":"

EE__unsimplified := Fundiff(S, g_[alpha, beta]) = 0

Simplifying this result, we get an expression in terms of Christoffel  symbols and its derivatives

EEC := Simplify(EE__unsimplified)

(1/4)*(2*Physics:-Christoffel[chi, iota, kappa]*Physics:-Christoffel[`~iota`, `~chi`, `~kappa`]-2*Physics:-Christoffel[chi, iota, `~chi`]*Physics:-Christoffel[`~iota`, kappa, `~kappa`]-2*Physics:-D_[iota](Physics:-Christoffel[chi, `~chi`, `~iota`], [X])+2*Physics:-D_[chi](Physics:-Christoffel[`~chi`, iota, `~iota`], [X]))*Physics:-g_[`~alpha`, `~beta`]+(1/4)*(Physics:-Christoffel[`~alpha`, chi, `~beta`]+Physics:-Christoffel[`~beta`, chi, `~alpha`])*Physics:-Christoffel[`~chi`, iota, `~iota`]-(1/4)*Physics:-Christoffel[`~beta`, chi, iota]*Physics:-Christoffel[`~chi`, `~alpha`, `~iota`]-(1/2)*Physics:-Christoffel[chi, iota, `~alpha`]*Physics:-Christoffel[`~iota`, `~beta`, `~chi`]+(1/2)*Physics:-Christoffel[chi, `~alpha`, `~beta`]*Physics:-Christoffel[iota, `~chi`, `~iota`]-(1/4)*Physics:-Christoffel[`~alpha`, chi, iota]*Physics:-Christoffel[`~chi`, `~beta`, `~iota`]+(1/4)*Physics:-D_[chi](Physics:-Christoffel[`~alpha`, `~beta`, `~chi`], [X])+(1/4)*Physics:-D_[chi](Physics:-Christoffel[`~beta`, `~alpha`, `~chi`], [X])-(1/2)*Physics:-D_[chi](Physics:-Christoffel[`~chi`, `~alpha`, `~beta`], [X])-(1/4)*Physics:-D_[`~alpha`](Physics:-Christoffel[`~beta`, chi, `~chi`], [X])+(1/2)*Physics:-D_[`~beta`](Physics:-Christoffel[chi, `~alpha`, `~chi`], [X])-(1/4)*Physics:-D_[`~beta`](Physics:-Christoffel[`~alpha`, chi, `~chi`], [X]) = 0

(30)

In this result, we see`▿` derivatives of Christoffel  symbols, expressed using the D_  command for covariant differentiation. Although, such objects have not the geometrical meaning of a covariant derivative, computationally, they here represent what would be a covariant derivative if the Christoffel symbols were a tensor. For example,

"`▿`[chi](GAMMA[]^(alpha,beta,chi)) :"

% = expand(%)

Physics:-D_[chi](Physics:-Christoffel[`~alpha`, `~beta`, `~chi`], [X]) = Physics:-d_[chi](Physics:-Christoffel[`~alpha`, `~beta`, `~chi`], [X])+Physics:-Christoffel[`~alpha`, chi, mu]*Physics:-Christoffel[`~mu`, `~beta`, `~chi`]+Physics:-Christoffel[`~beta`, chi, mu]*Physics:-Christoffel[`~alpha`, `~chi`, `~mu`]+Physics:-Christoffel[`~chi`, chi, mu]*Physics:-Christoffel[`~alpha`, `~beta`, `~mu`]

(31)

With this computational meaning for the`▿` derivatives of Christoffel symbols appearing in (30), rewrite EEC(30) in terms of the Ricci  and Riemann  tensors. For that, consider the definition

Ricci[definition]

Physics:-Ricci[mu, nu] = Physics:-d_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X])-Physics:-d_[nu](Physics:-Christoffel[`~alpha`, mu, alpha], [X])+Physics:-Christoffel[`~beta`, mu, nu]*Physics:-Christoffel[`~alpha`, beta, alpha]-Physics:-Christoffel[`~beta`, mu, alpha]*Physics:-Christoffel[`~alpha`, nu, beta]

(32)

Rewrite the noncovariant derivatives `∂` in terms of`▿` derivatives using the computational representation (31), simplify and isolate one of them

convert(Physics[Ricci][mu, nu] = Physics[d_][alpha](Physics[Christoffel][`~alpha`, mu, nu], [X])-Physics[d_][nu](Physics[Christoffel][`~alpha`, mu, alpha], [X])+Physics[Christoffel][`~beta`, mu, nu]*Physics[Christoffel][`~alpha`, beta, alpha]-Physics[Christoffel][`~beta`, mu, alpha]*Physics[Christoffel][`~alpha`, nu, beta], D_)

Physics:-Ricci[mu, nu] = Physics:-D_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X])-Physics:-Christoffel[`~alpha`, alpha, kappa]*Physics:-Christoffel[`~kappa`, mu, nu]+Physics:-Christoffel[`~kappa`, alpha, mu]*Physics:-Christoffel[`~alpha`, kappa, nu]+Physics:-Christoffel[`~kappa`, alpha, nu]*Physics:-Christoffel[`~alpha`, mu, kappa]-Physics:-D_[nu](Physics:-Christoffel[`~alpha`, alpha, mu], [X])-Physics:-Christoffel[`~lambda`, mu, nu]*Physics:-Christoffel[`~alpha`, alpha, lambda]+Physics:-Christoffel[`~beta`, mu, nu]*Physics:-Christoffel[`~alpha`, alpha, beta]-Physics:-Christoffel[`~beta`, alpha, mu]*Physics:-Christoffel[`~alpha`, beta, nu]

(33)

Simplify(Physics[Ricci][mu, nu] = D_[alpha](Physics[Christoffel][`~alpha`, mu, nu], [X])-Physics[Christoffel][`~alpha`, alpha, kappa]*Physics[Christoffel][`~kappa`, mu, nu]+Physics[Christoffel][`~kappa`, alpha, mu]*Physics[Christoffel][`~alpha`, kappa, nu]+Physics[Christoffel][`~kappa`, alpha, nu]*Physics[Christoffel][`~alpha`, mu, kappa]-D_[nu](Physics[Christoffel][`~alpha`, alpha, mu], [X])-Physics[Christoffel][`~lambda`, mu, nu]*Physics[Christoffel][`~alpha`, alpha, lambda]+Physics[Christoffel][`~beta`, mu, nu]*Physics[Christoffel][`~alpha`, alpha, beta]-Physics[Christoffel][`~beta`, alpha, mu]*Physics[Christoffel][`~alpha`, beta, nu])

Physics:-Ricci[mu, nu] = Physics:-Christoffel[alpha, beta, mu]*Physics:-Christoffel[`~beta`, nu, `~alpha`]-Physics:-Christoffel[beta, mu, nu]*Physics:-Christoffel[alpha, `~alpha`, `~beta`]+Physics:-D_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X])-Physics:-D_[nu](Physics:-Christoffel[alpha, mu, `~alpha`], [X])

(34)

C_to_Ricci := isolate(Physics[Ricci][mu, nu] = Physics[Christoffel][alpha, beta, mu]*Physics[Christoffel][`~beta`, nu, `~alpha`]-Physics[Christoffel][beta, mu, nu]*Physics[Christoffel][alpha, `~alpha`, `~beta`]+D_[alpha](Physics[Christoffel][`~alpha`, mu, nu], [X])-D_[nu](Physics[Christoffel][alpha, mu, `~alpha`], [X]), D_[alpha](Christoffel[`~alpha`, mu, nu]))

Physics:-D_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X]) = -Physics:-Christoffel[alpha, beta, mu]*Physics:-Christoffel[`~beta`, nu, `~alpha`]+Physics:-Christoffel[beta, mu, nu]*Physics:-Christoffel[alpha, `~alpha`, `~beta`]+Physics:-Ricci[mu, nu]+Physics:-D_[nu](Physics:-Christoffel[alpha, mu, `~alpha`], [X])

(35)

Analogously, derive an expression to rewrite`▿` derivatives of Christoffel symbols using the Riemann  tensor

Riemann[`~alpha`, beta, mu, nu, definition]

Physics:-Riemann[`~alpha`, beta, mu, nu] = Physics:-d_[mu](Physics:-Christoffel[`~alpha`, beta, nu], [X])-Physics:-d_[nu](Physics:-Christoffel[`~alpha`, beta, mu], [X])+Physics:-Christoffel[`~alpha`, upsilon, mu]*Physics:-Christoffel[`~upsilon`, beta, nu]-Physics:-Christoffel[`~alpha`, upsilon, nu]*Physics:-Christoffel[`~upsilon`, beta, mu]

(36)

convert(Physics[Riemann][`~alpha`, beta, mu, nu] = Physics[d_][mu](Physics[Christoffel][`~alpha`, beta, nu], [X])-Physics[d_][nu](Physics[Christoffel][`~alpha`, beta, mu], [X])+Physics[Christoffel][`~alpha`, upsilon, mu]*Physics[Christoffel][`~upsilon`, beta, nu]-Physics[Christoffel][`~alpha`, upsilon, nu]*Physics[Christoffel][`~upsilon`, beta, mu], D_)

Physics:-Riemann[`~alpha`, beta, mu, nu] = Physics:-D_[mu](Physics:-Christoffel[`~alpha`, beta, nu], [X])+Physics:-Christoffel[`~kappa`, mu, nu]*Physics:-Christoffel[`~alpha`, beta, kappa]-Physics:-Christoffel[`~alpha`, kappa, mu]*Physics:-Christoffel[`~kappa`, beta, nu]+Physics:-Christoffel[`~kappa`, beta, mu]*Physics:-Christoffel[`~alpha`, kappa, nu]-Physics:-D_[nu](Physics:-Christoffel[`~alpha`, beta, mu], [X])-Physics:-Christoffel[`~lambda`, mu, nu]*Physics:-Christoffel[`~alpha`, beta, lambda]-Physics:-Christoffel[`~lambda`, beta, nu]*Physics:-Christoffel[`~alpha`, lambda, mu]+Physics:-Christoffel[`~alpha`, lambda, nu]*Physics:-Christoffel[`~lambda`, beta, mu]+Physics:-Christoffel[`~alpha`, mu, upsilon]*Physics:-Christoffel[`~upsilon`, beta, nu]-Physics:-Christoffel[`~alpha`, nu, upsilon]*Physics:-Christoffel[`~upsilon`, beta, mu]

(37)

Simplify(Physics[Riemann][`~alpha`, beta, mu, nu] = D_[mu](Physics[Christoffel][`~alpha`, beta, nu], [X])+Physics[Christoffel][`~kappa`, mu, nu]*Physics[Christoffel][`~alpha`, beta, kappa]-Physics[Christoffel][`~alpha`, kappa, mu]*Physics[Christoffel][`~kappa`, beta, nu]+Physics[Christoffel][`~kappa`, beta, mu]*Physics[Christoffel][`~alpha`, kappa, nu]-D_[nu](Physics[Christoffel][`~alpha`, beta, mu], [X])-Physics[Christoffel][`~lambda`, mu, nu]*Physics[Christoffel][`~alpha`, beta, lambda]-Physics[Christoffel][`~lambda`, beta, nu]*Physics[Christoffel][`~alpha`, lambda, mu]+Physics[Christoffel][`~alpha`, lambda, nu]*Physics[Christoffel][`~lambda`, beta, mu]+Physics[Christoffel][`~alpha`, mu, upsilon]*Physics[Christoffel][`~upsilon`, beta, nu]-Physics[Christoffel][`~alpha`, nu, upsilon]*Physics[Christoffel][`~upsilon`, beta, mu])

Physics:-Riemann[`~alpha`, beta, mu, nu] = -Physics:-Christoffel[`~alpha`, kappa, mu]*Physics:-Christoffel[`~kappa`, beta, nu]+Physics:-Christoffel[`~kappa`, beta, mu]*Physics:-Christoffel[`~alpha`, kappa, nu]+Physics:-D_[mu](Physics:-Christoffel[`~alpha`, beta, nu], [X])-Physics:-D_[nu](Physics:-Christoffel[`~alpha`, beta, mu], [X])

(38)

C_to_Riemann := isolate(Physics[Riemann][`~alpha`, beta, mu, nu] = -Physics[Christoffel][`~alpha`, kappa, mu]*Physics[Christoffel][`~kappa`, beta, nu]+Physics[Christoffel][`~kappa`, beta, mu]*Physics[Christoffel][`~alpha`, kappa, nu]+D_[mu](Physics[Christoffel][`~alpha`, beta, nu], [X])-D_[nu](Physics[Christoffel][`~alpha`, beta, mu], [X]), D_[mu](Christoffel[`~alpha`, beta, nu]))

Physics:-D_[mu](Physics:-Christoffel[`~alpha`, beta, nu], [X]) = Physics:-Christoffel[`~alpha`, kappa, mu]*Physics:-Christoffel[`~kappa`, beta, nu]-Physics:-Christoffel[`~kappa`, beta, mu]*Physics:-Christoffel[`~alpha`, kappa, nu]+Physics:-Riemann[`~alpha`, beta, mu, nu]+Physics:-D_[nu](Physics:-Christoffel[`~alpha`, beta, mu], [X])

(39)

Substitute  these two equations, in sequence, into Einstein's equations EEC≡(30)

Substitute(C_to_Riemann, C_to_Ricci, EEC)

-(1/4)*Physics:-Christoffel[`~beta`, psi, `~alpha`]*Physics:-Christoffel[`~psi`, omega, `~omega`]+(1/4)*Physics:-Christoffel[`~beta`, psi, `~omega`]*Physics:-Christoffel[`~psi`, omega, `~alpha`]+(1/4)*Physics:-Christoffel[`~alpha`, lambda, mu]*Physics:-Christoffel[`~lambda`, `~beta`, `~mu`]-(1/4)*Physics:-Christoffel[`~alpha`, lambda, `~mu`]*Physics:-Christoffel[`~lambda`, mu, `~beta`]+(1/4)*Physics:-Christoffel[`~beta`, nu, sigma]*Physics:-Christoffel[`~sigma`, `~alpha`, `~nu`]-(1/4)*Physics:-Christoffel[`~beta`, sigma, `~nu`]*Physics:-Christoffel[`~sigma`, nu, `~alpha`]+(1/2)*Physics:-Christoffel[omicron, zeta, `~beta`]*Physics:-Christoffel[`~zeta`, `~alpha`, `~omicron`]-(1/2)*Physics:-Christoffel[omicron, zeta, `~omicron`]*Physics:-Christoffel[`~zeta`, `~alpha`, `~beta`]-Physics:-Ricci[`~alpha`, `~beta`]-(1/2)*Physics:-Christoffel[`~tau`, `~alpha`, `~beta`]*Physics:-Christoffel[`~upsilon`, tau, upsilon]-(1/2)*Physics:-Christoffel[chi, iota, `~alpha`]*Physics:-Christoffel[`~iota`, `~beta`, `~chi`]+(1/4)*(Physics:-Christoffel[`~alpha`, chi, `~beta`]+Physics:-Christoffel[`~beta`, chi, `~alpha`])*Physics:-Christoffel[`~chi`, iota, `~iota`]+(1/2)*Physics:-Christoffel[`~upsilon`, tau, `~beta`]*Physics:-Christoffel[`~tau`, upsilon, `~alpha`]-(1/4)*Physics:-Christoffel[`~beta`, chi, iota]*Physics:-Christoffel[`~chi`, `~alpha`, `~iota`]+(1/2)*Physics:-Christoffel[chi, `~alpha`, `~beta`]*Physics:-Christoffel[iota, `~chi`, `~iota`]-(1/4)*Physics:-Christoffel[`~alpha`, chi, iota]*Physics:-Christoffel[`~chi`, `~beta`, `~iota`]-(1/4)*Physics:-D_[`~rho1`](Physics:-Christoffel[`~alpha`, rho1, `~beta`], [X])+(1/4)*Physics:-D_[`~mu`](Physics:-Christoffel[`~alpha`, mu, `~beta`], [X])+(1/4)*Physics:-D_[`~nu`](Physics:-Christoffel[`~beta`, nu, `~alpha`], [X])-(1/2)*Physics:-D_[`~beta`](Physics:-Christoffel[`~upsilon`, upsilon, `~alpha`], [X])-(1/4)*Physics:-D_[`~omega`](Physics:-Christoffel[`~beta`, omega, `~alpha`], [X])+(1/2)*Physics:-D_[`~beta`](Physics:-Christoffel[alpha9, `~alpha`, `~alpha9`], [X])-(1/4)*Physics:-Christoffel[`~alpha`, rho, `~beta`]*Physics:-Christoffel[`~rho`, rho1, `~rho1`]+(1/4)*Physics:-Christoffel[`~alpha`, rho, `~rho1`]*Physics:-Christoffel[`~rho`, rho1, `~beta`]+(1/2)*Physics:-Christoffel[alpha10, `~alpha`, `~beta`]*Physics:-Christoffel[alpha9, `~alpha10`, `~alpha9`]-(1/2)*Physics:-Christoffel[alpha9, alpha10, `~alpha`]*Physics:-Christoffel[`~alpha10`, `~alpha9`, `~beta`]+(1/4)*(2*Physics:-Christoffel[chi, iota, kappa]*Physics:-Christoffel[`~iota`, `~chi`, `~kappa`]-2*Physics:-Christoffel[chi, iota, `~chi`]*Physics:-Christoffel[`~iota`, kappa, `~kappa`]-2*Physics:-Christoffel[alpha4, alpha5, alpha6]*Physics:-Christoffel[`~alpha6`, `~alpha4`, `~alpha5`]+2*Physics:-Christoffel[alpha4, alpha6, `~alpha5`]*Physics:-Christoffel[`~alpha6`, alpha5, `~alpha4`]-2*Physics:-D_[`~alpha5`](Physics:-Christoffel[alpha4, alpha5, `~alpha4`], [X])+2*Physics:-Christoffel[`~alpha1`, alpha1, alpha3]*Physics:-Christoffel[`~alpha3`, alpha2, `~alpha2`]-2*Physics:-Christoffel[`~alpha1`, alpha3, `~alpha2`]*Physics:-Christoffel[`~alpha3`, alpha1, alpha2]+2*Physics:-Ricci[alpha2, `~alpha2`]+2*Physics:-D_[`~alpha2`](Physics:-Christoffel[`~alpha1`, alpha1, alpha2], [X]))*Physics:-g_[`~alpha`, `~beta`] = 0

(40)

Simplify  to arrive at the traditional compact form of Einstein's equations

Simplify(-(1/4)*Physics[Christoffel][`~beta`, psi, `~alpha`]*Physics[Christoffel][`~psi`, omega, `~omega`]+(1/4)*Physics[Christoffel][`~beta`, psi, `~omega`]*Physics[Christoffel][`~psi`, omega, `~alpha`]+(1/4)*Physics[Christoffel][`~alpha`, lambda, mu]*Physics[Christoffel][`~lambda`, `~beta`, `~mu`]-(1/4)*Physics[Christoffel][`~alpha`, lambda, `~mu`]*Physics[Christoffel][`~lambda`, mu, `~beta`]+(1/4)*Physics[Christoffel][`~beta`, nu, sigma]*Physics[Christoffel][`~sigma`, `~alpha`, `~nu`]-(1/4)*Physics[Christoffel][`~beta`, sigma, `~nu`]*Physics[Christoffel][`~sigma`, nu, `~alpha`]+(1/2)*Physics[Christoffel][omicron, zeta, `~beta`]*Physics[Christoffel][`~zeta`, `~alpha`, `~omicron`]-(1/2)*Physics[Christoffel][omicron, zeta, `~omicron`]*Physics[Christoffel][`~zeta`, `~alpha`, `~beta`]-(1/2)*Physics[Christoffel][`~tau`, `~alpha`, `~beta`]*Physics[Christoffel][`~upsilon`, tau, upsilon]-(1/2)*Physics[Christoffel][chi, iota, `~alpha`]*Physics[Christoffel][`~iota`, `~beta`, `~chi`]+(1/4)*(Physics[Christoffel][`~alpha`, chi, `~beta`]+Physics[Christoffel][`~beta`, chi, `~alpha`])*Physics[Christoffel][`~chi`, iota, `~iota`]+(1/2)*Physics[Christoffel][`~upsilon`, tau, `~beta`]*Physics[Christoffel][`~tau`, upsilon, `~alpha`]-(1/4)*Physics[Christoffel][`~beta`, chi, iota]*Physics[Christoffel][`~chi`, `~alpha`, `~iota`]+(1/2)*Physics[Christoffel][chi, `~alpha`, `~beta`]*Physics[Christoffel][iota, `~chi`, `~iota`]-(1/4)*Physics[Christoffel][`~alpha`, chi, iota]*Physics[Christoffel][`~chi`, `~beta`, `~iota`]-(1/4)*Physics[Christoffel][`~alpha`, rho, `~beta`]*Physics[Christoffel][`~rho`, rho1, `~rho1`]+(1/4)*Physics[Christoffel][`~alpha`, rho, `~rho1`]*Physics[Christoffel][`~rho`, rho1, `~beta`]+(1/2)*Physics[Christoffel][alpha10, `~alpha`, `~beta`]*Physics[Christoffel][alpha9, `~alpha10`, `~alpha9`]-(1/2)*Physics[Christoffel][alpha9, alpha10, `~alpha`]*Physics[Christoffel][`~alpha10`, `~alpha9`, `~beta`]+(1/4)*(2*Physics[Christoffel][chi, iota, kappa]*Physics[Christoffel][`~iota`, `~chi`, `~kappa`]-2*Physics[Christoffel][chi, iota, `~chi`]*Physics[Christoffel][`~iota`, kappa, `~kappa`]-2*Physics[Christoffel][alpha4, alpha5, alpha6]*Physics[Christoffel][`~alpha6`, `~alpha4`, `~alpha5`]+2*Physics[Christoffel][alpha4, alpha6, `~alpha5`]*Physics[Christoffel][`~alpha6`, alpha5, `~alpha4`]-2*D_[`~alpha5`](Physics[Christoffel][alpha4, alpha5, `~alpha4`], [X])+2*Physics[Christoffel][`~alpha1`, alpha1, alpha3]*Physics[Christoffel][`~alpha3`, alpha2, `~alpha2`]-2*Physics[Christoffel][`~alpha1`, alpha3, `~alpha2`]*Physics[Christoffel][`~alpha3`, alpha1, alpha2]+2*Physics[Ricci][alpha2, `~alpha2`]+2*D_[`~alpha2`](Physics[Christoffel][`~alpha1`, alpha1, alpha2], [X]))*Physics[g_][`~alpha`, `~beta`]-(1/4)*D_[`~rho1`](Physics[Christoffel][`~alpha`, rho1, `~beta`], [X])+(1/4)*D_[`~mu`](Physics[Christoffel][`~alpha`, mu, `~beta`], [X])+(1/4)*D_[`~nu`](Physics[Christoffel][`~beta`, nu, `~alpha`], [X])-(1/2)*D_[`~beta`](Physics[Christoffel][`~upsilon`, upsilon, `~alpha`], [X])-(1/4)*D_[`~omega`](Physics[Christoffel][`~beta`, omega, `~alpha`], [X])+(1/2)*D_[`~beta`](Physics[Christoffel][alpha9, `~alpha`, `~alpha9`], [X])-Physics[Ricci][`~alpha`, `~beta`] = 0)

(1/2)*Physics:-Ricci[chi, `~chi`]*Physics:-g_[`~alpha`, `~beta`]-Physics:-Ricci[`~alpha`, `~beta`] = 0

(41)

 

Linearized Gravity

 

 

Generally speaking, linearizing gravity is about discarding in Einstein's field equations the terms that are quadratic in the metric and its derivatives, an approximation valid when the gravitational field is weak (the deviation from a flat Minkowski spacetime is small). Linearizing gravity is used, e.g. in the study of gravitational waves. In the context of Maple's Physics , the formulation of linearized gravity can be done using the general relativity tensors that come predefined in Physics plus a new in Maple 2025 Physics:-Library:-Linearize  command.

 

In what follows it is shown how to linearize the Ricci  tensor and through it Einstein 's equations. To compare results, see for instance the Wikipedia page for Linearized gravity. Start setting coordinates, you could use Cartesian, spherical, cylindrical, or define your own.

restart; with(Physics); Setup(coordinates = cartesian)

`Systems of spacetime coordinates are:`*{X = (x, y, z, t)}

 

_______________________________________________________

 

[coordinatesystems = {X}]

(42)

The default metric when Physics is loaded is the Minkowski metric, representing a flat (no curvature) spacetime

g_[]

Physics:-g_[mu, nu] = Matrix(%id = 36893488151987392132)

(43)

The weakly perturbed metric


Suppose you want to define a small perturbation around this metric. For that purpose, define a perturbation tensor h[mu, nu], that in the general case depends on the coordinates and is not diagonal, the only requirement is that it is symmetric (to have it diagonal, change symmetric by diagonal; to have it constant, change delta[i, j](X) by delta[i, j])

h[mu, nu] = Matrix(4, proc (i, j) options operator, arrow; delta[i, j](X) end proc, shape = symmetric)

h[mu, nu] = Matrix(%id = 36893488152568729716)

(44)

In the above it is understood that `≪`(`δ__i,j`, 1), so that quadratic or higher powers of it or its derivatives can be approximated to 0 (discarded). Define the components of `h__μ,ν` accordingly

"Define(?)"

`Defined objects with tensor properties`

 

{Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], h[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(45)

Define also a tensor `η__μ,ν` representing the unperturbed Minkowski metric

"eta[mu,nu] = rhs(?)"

eta[mu, nu] = Matrix(%id = 36893488151987392132)

(46)

"Define(?)"

`Defined objects with tensor properties`

 

{Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], eta[mu, nu], Physics:-g_[mu, nu], h[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(47)

The weakly perturbed metric is given by

g_[mu, nu] = eta[mu, nu]+h[mu, nu]

Physics:-g_[mu, nu] = eta[mu, nu]+h[mu, nu]

(48)

Make this be the definition of the metric

Define(Physics[g_][mu, nu] = eta[mu, nu]+h[mu, nu])

_______________________________________________________

 

`Coordinates: `[x, y, z, t]*`. Signature: `(`- - - +`)

 

_______________________________________________________

 

Physics:-g_[mu, nu] = Matrix(%id = 36893488152066920564)

 

_______________________________________________________

 

`Setting `*lowercaselatin_is*` letters to represent `*space*` indices`

 

`Defined objects with tensor properties`

 

{Physics:-D_[mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], Physics:-d_[mu], eta[mu, nu], Physics:-g_[mu, nu], Physics:-gamma_[i, j], h[mu, nu], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(49)

 

Linearizing the Ricci tensor


The linearized form of the Ricci  tensor is computed by introducing this weakly perturbed metric (48) in the expression of the Ricci tensor as a function of the metric. This can be accomplished in different ways, the simpler being to use the conversion network between tensors , but for illustration purposes, showing steps one at time, a substitution of definitions one into the other one is used

Ricci[definition]

Physics:-Ricci[mu, nu] = Physics:-d_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X])-Physics:-d_[nu](Physics:-Christoffel[`~alpha`, mu, alpha], [X])+Physics:-Christoffel[`~beta`, mu, nu]*Physics:-Christoffel[`~alpha`, beta, alpha]-Physics:-Christoffel[`~beta`, mu, alpha]*Physics:-Christoffel[`~alpha`, nu, beta]

(50)

Christoffel[`~alpha`, mu, nu, definition]

Physics:-Christoffel[`~alpha`, mu, nu] = (1/2)*Physics:-g_[`~alpha`, `~beta`]*(Physics:-d_[nu](Physics:-g_[beta, mu], [X])+Physics:-d_[mu](Physics:-g_[beta, nu], [X])-Physics:-d_[beta](Physics:-g_[mu, nu], [X]))

(51)

Substitute(Physics[Christoffel][`~alpha`, mu, nu] = (1/2)*Physics[g_][`~alpha`, `~beta`]*(Physics[d_][nu](Physics[g_][beta, mu], [X])+Physics[d_][mu](Physics[g_][beta, nu], [X])-Physics[d_][beta](Physics[g_][mu, nu], [X])), Physics[Ricci][mu, nu] = Physics[d_][alpha](Physics[Christoffel][`~alpha`, mu, nu], [X])-Physics[d_][nu](Physics[Christoffel][`~alpha`, mu, alpha], [X])+Physics[Christoffel][`~beta`, mu, nu]*Physics[Christoffel][`~alpha`, beta, alpha]-Physics[Christoffel][`~beta`, mu, alpha]*Physics[Christoffel][`~alpha`, nu, beta])

Physics:-Ricci[mu, nu] = Physics:-d_[alpha]((1/2)*Physics:-g_[`~alpha`, `~kappa`]*(Physics:-d_[nu](Physics:-g_[kappa, mu], [X])+Physics:-d_[mu](Physics:-g_[kappa, nu], [X])-Physics:-d_[kappa](Physics:-g_[mu, nu], [X])), [X])-Physics:-d_[nu]((1/2)*Physics:-g_[`~alpha`, `~tau`]*(Physics:-d_[mu](Physics:-g_[tau, alpha], [X])+Physics:-d_[alpha](Physics:-g_[tau, mu], [X])-Physics:-d_[tau](Physics:-g_[alpha, mu], [X])), [X])+(1/4)*Physics:-g_[`~beta`, `~iota`]*(Physics:-d_[nu](Physics:-g_[iota, mu], [X])+Physics:-d_[mu](Physics:-g_[iota, nu], [X])-Physics:-d_[iota](Physics:-g_[mu, nu], [X]))*Physics:-g_[`~alpha`, `~lambda`]*(Physics:-d_[beta](Physics:-g_[lambda, alpha], [X])+Physics:-d_[alpha](Physics:-g_[lambda, beta], [X])-Physics:-d_[lambda](Physics:-g_[alpha, beta], [X]))-(1/4)*Physics:-g_[`~beta`, `~omega`]*(Physics:-d_[mu](Physics:-g_[omega, alpha], [X])+Physics:-d_[alpha](Physics:-g_[omega, mu], [X])-Physics:-d_[omega](Physics:-g_[alpha, mu], [X]))*Physics:-g_[`~alpha`, `~chi`]*(Physics:-d_[nu](Physics:-g_[chi, beta], [X])+Physics:-d_[beta](Physics:-g_[chi, nu], [X])-Physics:-d_[chi](Physics:-g_[beta, nu], [X]))

(52)

Introducing (48)g[mu, nu] = eta[mu, nu]+h[mu, nu], and also the inert form of the Ricci tensor to facilitate simplification some steps below,

Substitute(Physics[g_][mu, nu] = eta[mu, nu]+h[mu, nu], Ricci = %Ricci, Physics[Ricci][mu, nu] = Physics[d_][alpha]((1/2)*Physics[g_][`~alpha`, `~kappa`]*(Physics[d_][nu](Physics[g_][kappa, mu], [X])+Physics[d_][mu](Physics[g_][kappa, nu], [X])-Physics[d_][kappa](Physics[g_][mu, nu], [X])), [X])-Physics[d_][nu]((1/2)*Physics[g_][`~alpha`, `~tau`]*(Physics[d_][mu](Physics[g_][tau, alpha], [X])+Physics[d_][alpha](Physics[g_][tau, mu], [X])-Physics[d_][tau](Physics[g_][alpha, mu], [X])), [X])+(1/4)*Physics[g_][`~beta`, `~iota`]*(Physics[d_][nu](Physics[g_][iota, mu], [X])+Physics[d_][mu](Physics[g_][iota, nu], [X])-Physics[d_][iota](Physics[g_][mu, nu], [X]))*Physics[g_][`~alpha`, `~lambda`]*(Physics[d_][beta](Physics[g_][lambda, alpha], [X])+Physics[d_][alpha](Physics[g_][lambda, beta], [X])-Physics[d_][lambda](Physics[g_][alpha, beta], [X]))-(1/4)*Physics[g_][`~beta`, `~omega`]*(Physics[d_][mu](Physics[g_][omega, alpha], [X])+Physics[d_][alpha](Physics[g_][omega, mu], [X])-Physics[d_][omega](Physics[g_][alpha, mu], [X]))*Physics[g_][`~alpha`, `~chi`]*(Physics[d_][nu](Physics[g_][chi, beta], [X])+Physics[d_][beta](Physics[g_][chi, nu], [X])-Physics[d_][chi](Physics[g_][beta, nu], [X])))

%Ricci[mu, nu] = (1/2)*Physics:-d_[alpha](eta[`~alpha`, `~kappa`]+h[`~alpha`, `~kappa`], [X])*(Physics:-d_[nu](eta[kappa, mu]+h[kappa, mu], [X])+Physics:-d_[mu](eta[kappa, nu]+h[kappa, nu], [X])-Physics:-d_[kappa](eta[mu, nu]+h[mu, nu], [X]))+(1/2)*(eta[`~alpha`, `~kappa`]+h[`~alpha`, `~kappa`])*(Physics:-d_[alpha](Physics:-d_[nu](eta[kappa, mu]+h[kappa, mu], [X]), [X])+Physics:-d_[alpha](Physics:-d_[mu](eta[kappa, nu]+h[kappa, nu], [X]), [X])-Physics:-d_[alpha](Physics:-d_[kappa](eta[mu, nu]+h[mu, nu], [X]), [X]))-(1/2)*Physics:-d_[nu](eta[`~alpha`, `~tau`]+h[`~alpha`, `~tau`], [X])*(Physics:-d_[mu](eta[alpha, tau]+h[alpha, tau], [X])+Physics:-d_[alpha](eta[mu, tau]+h[mu, tau], [X])-Physics:-d_[tau](eta[alpha, mu]+h[alpha, mu], [X]))-(1/2)*(eta[`~alpha`, `~tau`]+h[`~alpha`, `~tau`])*(Physics:-d_[mu](Physics:-d_[nu](eta[alpha, tau]+h[alpha, tau], [X]), [X])+Physics:-d_[alpha](Physics:-d_[nu](eta[mu, tau]+h[mu, tau], [X]), [X])-Physics:-d_[nu](Physics:-d_[tau](eta[alpha, mu]+h[alpha, mu], [X]), [X]))+(1/4)*(eta[`~beta`, `~iota`]+h[`~beta`, `~iota`])*(Physics:-d_[nu](eta[iota, mu]+h[iota, mu], [X])+Physics:-d_[mu](eta[iota, nu]+h[iota, nu], [X])-Physics:-d_[iota](eta[mu, nu]+h[mu, nu], [X]))*(eta[`~alpha`, `~lambda`]+h[`~alpha`, `~lambda`])*(Physics:-d_[beta](eta[alpha, lambda]+h[alpha, lambda], [X])+Physics:-d_[alpha](eta[beta, lambda]+h[beta, lambda], [X])-Physics:-d_[lambda](eta[alpha, beta]+h[alpha, beta], [X]))-(1/4)*(eta[`~beta`, `~omega`]+h[`~beta`, `~omega`])*(Physics:-d_[mu](eta[alpha, omega]+h[alpha, omega], [X])+Physics:-d_[alpha](eta[mu, omega]+h[mu, omega], [X])-Physics:-d_[omega](eta[alpha, mu]+h[alpha, mu], [X]))*(eta[`~alpha`, `~chi`]+h[`~alpha`, `~chi`])*(Physics:-d_[nu](eta[beta, chi]+h[beta, chi], [X])+Physics:-d_[beta](eta[chi, nu]+h[chi, nu], [X])-Physics:-d_[chi](eta[beta, nu]+h[beta, nu], [X]))

(53)

This expression contains several terms quadratic in the small perturbation `h__μ,ν` and its derivatives. The new in Maple 2025 routine to filter out those terms is Physics:-Library:-Linearize , which requires specifying the symbol representing the small quantities

Library:-Linearize(%Ricci[mu, nu] = (1/2)*Physics[d_][alpha](eta[`~alpha`, `~kappa`]+h[`~alpha`, `~kappa`], [X])*(Physics[d_][nu](eta[kappa, mu]+h[kappa, mu], [X])+Physics[d_][mu](eta[kappa, nu]+h[kappa, nu], [X])-Physics[d_][kappa](eta[mu, nu]+h[mu, nu], [X]))+(1/2)*(eta[`~alpha`, `~kappa`]+h[`~alpha`, `~kappa`])*(Physics[d_][alpha](Physics[d_][nu](eta[kappa, mu]+h[kappa, mu], [X]), [X])+Physics[d_][alpha](Physics[d_][mu](eta[kappa, nu]+h[kappa, nu], [X]), [X])-Physics[d_][alpha](Physics[d_][kappa](eta[mu, nu]+h[mu, nu], [X]), [X]))-(1/2)*Physics[d_][nu](eta[`~alpha`, `~tau`]+h[`~alpha`, `~tau`], [X])*(Physics[d_][mu](eta[alpha, tau]+h[alpha, tau], [X])+Physics[d_][alpha](eta[mu, tau]+h[mu, tau], [X])-Physics[d_][tau](eta[alpha, mu]+h[alpha, mu], [X]))-(1/2)*(eta[`~alpha`, `~tau`]+h[`~alpha`, `~tau`])*(Physics[d_][mu](Physics[d_][nu](eta[alpha, tau]+h[alpha, tau], [X]), [X])+Physics[d_][alpha](Physics[d_][nu](eta[mu, tau]+h[mu, tau], [X]), [X])-Physics[d_][nu](Physics[d_][tau](eta[alpha, mu]+h[alpha, mu], [X]), [X]))+(1/4)*(eta[`~beta`, `~iota`]+h[`~beta`, `~iota`])*(Physics[d_][nu](eta[iota, mu]+h[iota, mu], [X])+Physics[d_][mu](eta[iota, nu]+h[iota, nu], [X])-Physics[d_][iota](eta[mu, nu]+h[mu, nu], [X]))*(eta[`~alpha`, `~lambda`]+h[`~alpha`, `~lambda`])*(Physics[d_][beta](eta[alpha, lambda]+h[alpha, lambda], [X])+Physics[d_][alpha](eta[beta, lambda]+h[beta, lambda], [X])-Physics[d_][lambda](eta[alpha, beta]+h[alpha, beta], [X]))-(1/4)*(eta[`~beta`, `~omega`]+h[`~beta`, `~omega`])*(Physics[d_][mu](eta[alpha, omega]+h[alpha, omega], [X])+Physics[d_][alpha](eta[mu, omega]+h[mu, omega], [X])-Physics[d_][omega](eta[alpha, mu]+h[alpha, mu], [X]))*(eta[`~alpha`, `~chi`]+h[`~alpha`, `~chi`])*(Physics[d_][nu](eta[beta, chi]+h[beta, chi], [X])+Physics[d_][beta](eta[chi, nu]+h[chi, nu], [X])-Physics[d_][chi](eta[beta, nu]+h[beta, nu], [X])), h)

%Ricci[mu, nu] = (1/2)*eta[`~alpha`, `~tau`]*Physics:-d_[nu](Physics:-d_[tau](h[alpha, mu], [X]), [X])-(1/2)*eta[`~alpha`, `~tau`]*Physics:-d_[mu](Physics:-d_[nu](h[alpha, tau], [X]), [X])-(1/2)*eta[`~alpha`, `~kappa`]*Physics:-d_[alpha](Physics:-d_[kappa](h[mu, nu], [X]), [X])+(1/2)*eta[`~alpha`, `~kappa`]*Physics:-d_[alpha](Physics:-d_[nu](h[kappa, mu], [X]), [X])+(1/2)*eta[`~alpha`, `~kappa`]*Physics:-d_[alpha](Physics:-d_[mu](h[kappa, nu], [X]), [X])-(1/2)*eta[`~alpha`, `~tau`]*Physics:-d_[alpha](Physics:-d_[nu](h[mu, tau], [X]), [X])

(54)

Important: in this result, `η__μ,ν` is the flat Minkowski metric, not the perturbed metric g[mu, nu]. However, in the context of a linearized formulation, `η__μ,ν` raises and lowers tensor indices the same way as g[mu, nu]. Hence, to further simplify contracted products of eta[mu, nu] in (54) , it is practical to reintroduce `g__μ,ν`representing that Minkowski metric and simplify using the internal algorithms for a flat metric

g_[min]

_______________________________________________________

 

`The Minkowski metric in coordinates `*[x, y, z, t]

 

`Signature: `(`- - - +`)

 

_______________________________________________________

 

Physics:-g_[mu, nu] = Matrix(%id = 36893488152066895868)

(55)

To proceed simplifying, replace in the expression (54) for the Ricci tensor the intermediate Minkowski `η__μ,ν`by `#msub(mi("g"),mrow(mi("μ",fontstyle = "normal"),mo(","),mi("ν",fontstyle = "normal")))`

subs(eta = g_, %Ricci[mu, nu] = (1/2)*eta[`~alpha`, `~tau`]*Physics[d_][nu](Physics[d_][tau](h[alpha, mu], [X]), [X])-(1/2)*eta[`~alpha`, `~tau`]*Physics[d_][mu](Physics[d_][nu](h[alpha, tau], [X]), [X])-(1/2)*eta[`~alpha`, `~kappa`]*Physics[d_][alpha](Physics[d_][kappa](h[mu, nu], [X]), [X])+(1/2)*eta[`~alpha`, `~kappa`]*Physics[d_][alpha](Physics[d_][nu](h[kappa, mu], [X]), [X])+(1/2)*eta[`~alpha`, `~kappa`]*Physics[d_][alpha](Physics[d_][mu](h[kappa, nu], [X]), [X])-(1/2)*eta[`~alpha`, `~tau`]*Physics[d_][alpha](Physics[d_][nu](h[mu, tau], [X]), [X]))

%Ricci[mu, nu] = (1/2)*Physics:-g_[`~alpha`, `~tau`]*Physics:-d_[nu](Physics:-d_[tau](h[alpha, mu], [X]), [X])-(1/2)*Physics:-g_[`~alpha`, `~tau`]*Physics:-d_[mu](Physics:-d_[nu](h[alpha, tau], [X]), [X])-(1/2)*Physics:-g_[`~alpha`, `~kappa`]*Physics:-d_[alpha](Physics:-d_[kappa](h[mu, nu], [X]), [X])+(1/2)*Physics:-g_[`~alpha`, `~kappa`]*Physics:-d_[alpha](Physics:-d_[nu](h[kappa, mu], [X]), [X])+(1/2)*Physics:-g_[`~alpha`, `~kappa`]*Physics:-d_[alpha](Physics:-d_[mu](h[kappa, nu], [X]), [X])-(1/2)*Physics:-g_[`~alpha`, `~tau`]*Physics:-d_[alpha](Physics:-d_[nu](h[mu, tau], [X]), [X])

(56)

Simplifying, results in the linearized form of the Ricci tensor shown in the Wikipedia page for Linearized gravity.

Simplify(%Ricci[mu, nu] = (1/2)*Physics[g_][`~alpha`, `~tau`]*Physics[d_][nu](Physics[d_][tau](h[alpha, mu], [X]), [X])-(1/2)*Physics[g_][`~alpha`, `~tau`]*Physics[d_][mu](Physics[d_][nu](h[alpha, tau], [X]), [X])-(1/2)*Physics[g_][`~alpha`, `~kappa`]*Physics[d_][alpha](Physics[d_][kappa](h[mu, nu], [X]), [X])+(1/2)*Physics[g_][`~alpha`, `~kappa`]*Physics[d_][alpha](Physics[d_][nu](h[kappa, mu], [X]), [X])+(1/2)*Physics[g_][`~alpha`, `~kappa`]*Physics[d_][alpha](Physics[d_][mu](h[kappa, nu], [X]), [X])-(1/2)*Physics[g_][`~alpha`, `~tau`]*Physics[d_][alpha](Physics[d_][nu](h[mu, tau], [X]), [X]))

%Ricci[mu, nu] = -(1/2)*Physics:-d_[mu](Physics:-d_[nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics:-dAlembertian(h[mu, nu], [X])+(1/2)*Physics:-d_[nu](Physics:-d_[tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics:-d_[mu](Physics:-d_[tau](h[nu, `~tau`], [X]), [X])

(57)

Linearizing Einstein's equations

Einstein's equations are the components of Einstein's tensor , whose definition in terms of the Ricci tensor is

Einstein[definition]

Physics:-Einstein[mu, nu] = Physics:-Ricci[mu, nu]-(1/2)*Physics:-g_[mu, nu]*Physics:-Ricci[alpha, `~alpha`]

(58)

Compute the trace R[alpha, `~alpha`] directly from the linearized form (57) of the Ricci tensor,

g_[mu, nu]*(%Ricci[mu, nu] = -(1/2)*Physics[d_][mu](Physics[d_][nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics[dAlembertian](h[mu, nu], [X])+(1/2)*Physics[d_][nu](Physics[d_][tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics[d_][mu](Physics[d_][tau](h[nu, `~tau`], [X]), [X]))

%Ricci[mu, nu]*Physics:-g_[`~mu`, `~nu`] = (-(1/2)*Physics:-d_[mu](Physics:-d_[nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics:-dAlembertian(h[mu, nu], [X])+(1/2)*Physics:-d_[nu](Physics:-d_[tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics:-d_[mu](Physics:-d_[tau](h[nu, `~tau`], [X]), [X]))*Physics:-g_[`~mu`, `~nu`]

(59)

Simplify(%Ricci[mu, nu]*Physics[g_][`~mu`, `~nu`] = (-(1/2)*Physics[d_][mu](Physics[d_][nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics[dAlembertian](h[mu, nu], [X])+(1/2)*Physics[d_][nu](Physics[d_][tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics[d_][mu](Physics[d_][tau](h[nu, `~tau`], [X]), [X]))*Physics[g_][`~mu`, `~nu`])

%Ricci[nu, `~nu`] = -Physics:-dAlembertian(h[alpha, `~alpha`], [X])+Physics:-d_[alpha](Physics:-d_[tau](h[`~alpha`, `~tau`], [X]), [X])

(60)

The linearized Einstein equations are constructed reproducing the definition (58) using (57) and (60)

(%Ricci[mu, nu] = -(1/2)*Physics[d_][mu](Physics[d_][nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics[dAlembertian](h[mu, nu], [X])+(1/2)*Physics[d_][nu](Physics[d_][tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics[d_][mu](Physics[d_][tau](h[nu, `~tau`], [X]), [X]))-(1/2)*g_[mu, nu]*(%Ricci[nu, `~nu`] = -Physics[dAlembertian](h[alpha, `~alpha`], [X])+Physics[d_][alpha](Physics[d_][tau](h[`~alpha`, `~tau`], [X]), [X]))

%Ricci[mu, nu]-(1/2)*Physics:-g_[mu, nu]*%Ricci[alpha, `~alpha`] = -(1/2)*Physics:-d_[mu](Physics:-d_[nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics:-dAlembertian(h[mu, nu], [X])+(1/2)*Physics:-d_[nu](Physics:-d_[tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics:-d_[mu](Physics:-d_[tau](h[nu, `~tau`], [X]), [X])-(1/2)*Physics:-g_[mu, nu]*(-Physics:-dAlembertian(h[alpha, `~alpha`], [X])+Physics:-d_[alpha](Physics:-d_[tau](h[`~alpha`, `~tau`], [X]), [X]))

(61)

which is the same formula shown in the Wikipedia page for Linearized gravity.


You can now redefine the general h[mu, nu] introduced in (44) in different ways (see discussion in the Wikipedia page), or, depending on the case, just substitute your preferred gauge in this formula (61) for the general case. For example, the condition for the Harmonic gauge also known as Lorentz gauge reduces the linearized field equations to their simplest form

d_[mu](h[`~mu`, nu]) = (1/2)*d_[nu](h[alpha, alpha])

Physics:-d_[mu](h[`~mu`, nu], [X]) = (1/2)*Physics:-d_[nu](h[alpha, `~alpha`], [X])

(62)

Substitute(Physics[d_][mu](h[`~mu`, nu], [X]) = (1/2)*Physics[d_][nu](h[alpha, `~alpha`], [X]), %Ricci[mu, nu]-(1/2)*Physics[g_][mu, nu]*%Ricci[alpha, `~alpha`] = -(1/2)*Physics[d_][mu](Physics[d_][nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics[dAlembertian](h[mu, nu], [X])+(1/2)*Physics[d_][nu](Physics[d_][tau](h[mu, `~tau`], [X]), [X])+(1/2)*Physics[d_][mu](Physics[d_][tau](h[nu, `~tau`], [X]), [X])-(1/2)*Physics[g_][mu, nu]*(-Physics[dAlembertian](h[alpha, `~alpha`], [X])+Physics[d_][alpha](Physics[d_][tau](h[`~alpha`, `~tau`], [X]), [X])))

%Ricci[mu, nu]-(1/2)*Physics:-g_[mu, nu]*%Ricci[alpha, `~alpha`] = -(1/2)*Physics:-d_[mu](Physics:-d_[nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics:-dAlembertian(h[mu, nu], [X])+(1/2)*Physics:-d_[nu]((1/2)*Physics:-d_[mu](h[lambda, `~lambda`], [X]), [X])+(1/2)*Physics:-d_[mu]((1/2)*Physics:-d_[nu](h[kappa, `~kappa`], [X]), [X])-(1/2)*Physics:-g_[mu, nu]*(-Physics:-dAlembertian(h[alpha, `~alpha`], [X])+Physics:-d_[alpha]((1/2)*Physics:-d_[`~alpha`](h[beta, `~beta`], [X]), [X]))

(63)

Simplify(%Ricci[mu, nu]-(1/2)*Physics[g_][mu, nu]*%Ricci[alpha, `~alpha`] = -(1/2)*Physics[d_][mu](Physics[d_][nu](h[tau, `~tau`], [X]), [X])-(1/2)*Physics[dAlembertian](h[mu, nu], [X])+(1/2)*Physics[d_][nu]((1/2)*Physics[d_][mu](h[lambda, `~lambda`], [X]), [X])+(1/2)*Physics[d_][mu]((1/2)*Physics[d_][nu](h[kappa, `~kappa`], [X]), [X])-(1/2)*Physics[g_][mu, nu]*(-Physics[dAlembertian](h[alpha, `~alpha`], [X])+Physics[d_][alpha]((1/2)*Physics[d_][`~alpha`](h[beta, `~beta`], [X]), [X])))

%Ricci[mu, nu]-(1/2)*Physics:-g_[mu, nu]*%Ricci[alpha, `~alpha`] = -(1/2)*Physics:-dAlembertian(h[mu, nu], [X])+(1/4)*Physics:-dAlembertian(h[alpha, `~alpha`], [X])*Physics:-g_[mu, nu]

(64)

Relative Tensors

 

 

In General Relativity, the context of a curved spacetime, it is sometimes necessary to work with relative tensors, for which the transformation rule under a transformation of coordinates involves powers of the determinant of the transformation - see Chapter 4 of  "Lovelock, D., and Rund, H. Tensors, Differential Forms and Variational Principles, Dover, 1989." Physics  in Maple 2025 includes a complete, new implementation of relative tensors.

 

To indicate that a tensor being defined is relative pass its relative weight. For example, set a curved spacetime,

restart; with(Physics); g_[sc]

_______________________________________________________

 

`Systems of spacetime coordinates are:`*{X = (r, theta, phi, t)}

 

`Default differentiation variables for d_, D_ and dAlembertian are:`*{X = (r, theta, phi, t)}

 

`Setting `*lowercaselatin_is*` letters to represent `*space*` indices`

 

`The Schwarzschild metric in coordinates `*[r, theta, phi, t]

 

`Parameters: `[m]

 

`Signature: `(`- - - +`)

 

_______________________________________________________

 

Physics:-g_[mu, nu] = Matrix(%id = 36893488152573138332)

(65)

Define now two tensors of one index, one of them being relative

Define(T[mu])

`Defined objects with tensor properties`

 

{Physics:-D_[mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], T[mu], Physics:-Weyl[mu, nu, alpha, beta], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[i, j], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(66)

Define(R[mu], relativeweight = 1)

`Defined objects with tensor properties`

 

{Physics:-D_[mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], R[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], T[mu], Physics:-Weyl[mu, nu, alpha, beta], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[i, j], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(67)

Transformation of Coordinates

 

Consider a transformation of coordinates, from spherical r, theta, phi, t to  rho, theta, phi, t where

TR := r = (1+m/(2*rho))^2*rho

r = (1+(1/2)*m/rho)^2*rho

(68)

The transformed components of T[mu] and R[mu] are, respectively,

TransformCoordinates(TR, T[mu], [rho, theta, phi, t])

Vector[column](%id = 36893488151820263660)

(69)

TransformCoordinates(TR, R[mu], [rho, theta, phi, t])

Vector[column](%id = 36893488151823155676)

(70)

where, when comparing both results, we see that the transformed components for R[mu] are all multiplied by J^n with n = 1 and J is the determinant of the transformation:

J__matrix := simplify(VectorCalculus:-Jacobian([rhs(TR), theta, phi, t], [rho, theta, phi, t]))

Matrix(%id = 36893488151964220700)

(71)

J = LinearAlgebra:-Determinant(J__matrix)

J = (1/4)*(-m^2+4*rho^2)/rho^2

(72)

Relative weight

 

The relative weight of a scalar, tensor or tensorial expression can be computed using the Physics:-Library:-GetRelativeWeight  command. For the two tensors T[mu] and R[mu] used above,

Library:-GetRelativeWeight(T[mu])

0

(73)

Library:-GetRelativeWeight(R[mu])

1

(74)

The relative weight of a tensor does not depend on the covariant or contravariant character of its indices

Library:-GetRelativeWeight(R[`~mu`])

1

(75)

The LeviCivita  tensor is a special case, has its relative weight defined when Physics  is loaded, and because in a curved spacetime it is not a tensor its relative weight depends on the covariant or contravariant character of its indices

Library:-GetRelativeWeight(LeviCivita[alpha, beta, mu, nu])

-1

(76)

"Library:-GetRelativeWeight(LeviCivita[~alpha, ~beta, ~mu,~nu])   "

1

(77)

The relative weight w of a product is equal to the sum of relative weights of each factor

R[mu]^2

R[mu]*R[`~mu`]

(78)

Library:-GetRelativeWeight(R[mu]*R[`~mu`])

2

(79)

The relative weight w of a power is equal to the relative weight of the base multiplied by the power

1/R[mu]^2

1/(R[mu]*R[`~mu`])

(80)

Library:-GetRelativeWeight(1/(R[mu]*R[`~mu`]))

-2

(81)

The relative weight w of a sum is equal to the relative weight of one of its terms and exists if all the terms have the same w.

"R[~mu] + LeviCivita[~alpha, ~beta, ~mu,~nu]*T[alpha] T[beta] T[nu]"

T[alpha]*T[beta]*T[nu]*Physics:-LeviCivita[`~alpha`, `~beta`, `~mu`, `~nu`]+R[`~mu`]

(82)

Library:-GetRelativeWeight(T[alpha]*T[beta]*T[nu]*Physics[LeviCivita][`~alpha`, `~beta`, `~mu`, `~nu`]+R[`~mu`])

1

(83)

The relative weight of any determinant is always equal to 2

%g_[determinant]

%g_[determinant]

(84)

Library:-GetRelativeWeight(%g_[determinant])

2

(85)

Relative Term in covariant derivatives

 

When computing the covariant derivative of a relative scalar, tensor or tensorial expression that has non-zero relative weight w, a relative term is added, that can be computed using the Physics:-Library:-GetRelativeWeight  command.

g__det := %g_[:-determinant]

%g_[determinant]

(86)

Library:-GetRelativeTerm(g__det, mu)

-2*Physics:-Christoffel[`~nu`, mu, nu]*%g_[determinant]

(87)
  

Consequently,

(%D_[mu] = D_[mu])(g__det)

%D_[mu](%g_[determinant]) = 0

(88)
  

To understand this zero value on the right-hand side, express the left-hand side in terms of d_

convert(%D_[mu](%g_[determinant]) = 0, d_)

%d_[mu](%g_[determinant], [X])-2*Physics:-Christoffel[`~alpha`, alpha, mu]*%g_[determinant] = 0

(89)
  

evaluate the inert %d_

factor(eval(%d_[mu](%g_[determinant], [X])-2*Physics[Christoffel][`~alpha`, alpha, mu]*%g_[determinant] = 0, %d_ = d_))

%g_[determinant]*(Physics:-g_[`~alpha`, `~nu`]*Physics:-d_[mu](Physics:-g_[alpha, nu], [X])-2*Physics:-Christoffel[`~alpha`, alpha, mu]) = 0

(90)
  

The factor in parentheses is equal to `#mrow(msubsup(mi("g"),none(),mrow(mi("α",fontstyle = "normal"),mo(","),mi("ν",fontstyle = "normal"))),msub(mi("▿"),mi("μ",fontstyle = "normal")),mo("⁡"),mfenced(msub(mi("g"),mrow(mi("α",fontstyle = "normal"),mo(","),mi("ν",fontstyle = "normal")))))`, where the covariant derivative of the metric is equal to zero, so

Simplify(%g_[determinant]*(Physics[g_][`~alpha`, `~nu`]*Physics[d_][mu](Physics[g_][alpha, nu], [X])-2*Physics[Christoffel][`~alpha`, alpha, mu]) = 0)

0 = 0

(91)
  

Consider the covariant derivative of T[mu] and R[mu] defined in (66) and (67)

Library:-GetRelativeWeight(T[mu])

0

(92)

Library:-GetRelativeWeight(R[mu])

1

(93)

The corresponding covariant derivatives

(%D_[mu] = D_[mu])(T[mu](X))

%D_[mu](T[`~mu`](X)) = Physics:-D_[mu](T[`~mu`](X), [X])

(94)

expand(%D_[mu](T[`~mu`](X)) = D_[mu](T[`~mu`](X), [X]))

%D_[mu](T[`~mu`](X)) = 2*T[`~mu`](X)*Physics:-d_[mu](r, [X])/r+Physics:-d_[mu](theta, [X])*cos(theta)*T[`~mu`](X)/sin(theta)+Physics:-d_[mu](T[`~mu`](X), [X])

(95)

(%D_[mu] = D_[mu])(R[mu](X))

%D_[mu](R[`~mu`](X)) = Physics:-D_[mu](R[`~mu`](X), [X])

(96)

expand(%D_[mu](R[`~mu`](X)) = D_[mu](R[`~mu`](X), [X]))

%D_[mu](R[`~mu`](X)) = 2*R[`~mu`](X)*Physics:-d_[mu](r, [X])/r+Physics:-d_[mu](theta, [X])*cos(theta)*R[`~mu`](X)/sin(theta)+Physics:-d_[mu](R[`~mu`](X), [X])-Physics:-Christoffel[`~nu`, mu, nu]*R[`~mu`](X)

(97)

where in the above we see the additional (relative) term

Library:-GetRelativeTerm(R[`~mu`](X), mu)

-Physics:-Christoffel[`~nu`, mu, nu]*R[`~mu`](X)

(98)

 

New Physics:-Library commands

 

 

ConvertToF , Linearize , GetRelativeTerm , GetRelativeWeight.

 

Examples

 

• 

ConvertToF receives an algebraic expression involving tensors and/or tensor functions and rewrites them in terms of the tensor of name F when that is possible. This routine is similar, however more general than the standard convert  which only handles the existing conversion network for the tensors of General Relativity  in that ConvertToF also uses any tensor definition you introduce using Define , expressing a tensor in terms of others.

Load any curved spacetime metric automatically setting the coordinates

 

restart; with(Physics); g_[sc]

Physics:-g_[mu, nu] = Matrix(%id = 36893488152573203868)

(99)

 

For example, rewrite the Christoffel  symbols in terms of the metric g_ ; this works as in previous releases

Christoffel[mu, alpha, beta] = Library:-ConvertToF(Christoffel[mu, alpha, beta], g_)

Physics:-Christoffel[mu, alpha, beta] = (1/2)*Physics:-d_[beta](Physics:-g_[alpha, mu], [X])+(1/2)*Physics:-d_[alpha](Physics:-g_[beta, mu], [X])-(1/2)*Physics:-d_[mu](Physics:-g_[alpha, beta], [X])

(100)

Define a A[mu] representing the 4D electromagnetic potential as a function of the coordinates X and F[mu, nu] representing the electromagnetic field tensors

Define(A[mu] = A[mu](X), quiet)

{A[mu], Physics:-D_[mu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[i, j], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(101)

Define(F[mu, nu] = d_[mu](A[nu])-d_[nu](A[mu]))

`Defined objects with tensor properties`

 

{A[mu], Physics:-D_[mu], Physics:-Dgamma[mu], F[mu, nu], Physics:-Psigma[mu], Physics:-Ricci[mu, nu], Physics:-Riemann[mu, nu, alpha, beta], Physics:-Weyl[mu, nu, alpha, beta], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[i, j], Physics:-Christoffel[mu, nu, alpha], Physics:-Einstein[mu, nu], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(102)

Rewrite the following expression in terms of the electromagnetic potential A[mu]

F[mu, nu] = Library:-ConvertToF(F[mu, nu], A)

F[mu, nu] = Physics:-d_[mu](A[nu], [X])-Physics:-d_[nu](A[mu], [X])

(103)

In the example above, the output is similar to this other one

F[definition]

F[mu, nu] = Physics:-d_[mu](A[nu], [X])-Physics:-d_[nu](A[mu], [X])

(104)

The rewriting, however, works also with tensorial expressions

F[mu, nu]*A[mu]*A[nu]

F[mu, nu]*A[`~mu`]*A[`~nu`]

(105)

Library:-ConvertToF(F[mu, nu]*A[`~mu`]*A[`~nu`], A)

(Physics:-d_[mu](A[nu], [X])-Physics:-d_[nu](A[mu], [X]))*A[`~mu`]*A[`~nu`]

(106)
• 

Linearize receives a tensorial expression T and an indication of the small quantities h in T , and discards terms quadratic or of higher order in h. For an example of this new routine in action, see the section Linearized Gravity  above.

• 

GetRelativeTerm and GetRelativeWeight are illustrated in the section Relative Tensors  above.

 

See Also

 

Index of New Maple 2025 Features , Physics , Computer Algebra for Theoretical Physics, The Physics project, The Physics Updates

NULL


 

Download New_in_Physics_2025.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions

Computing Einstein's equations using variational principles

Edgardo S. Cheb-Terrab

Freddy Baudine

 

One of the biggest challenges for a computer algebra system is to compute Einstein's equations from first principles, by equating to zero the functional derivative of the Action for gravity, without using human-shortcuts or tricks. Developments during 2024, appearing as new in Maple 2025, broke through that barrier and now the LagrangeEquations  Physics command, introduced in 2023, can perform that elusive computation of Einstein's equations, not using tabulated cases, properly handling several (traditional or not) alternative ways of presenting the Lagrangian (the integrand in the Action), taking advantage of the functional differentiation  capabilities of the Physics  package .

 

The computation can be performed in one call to Physics:-LagrangeEquations, or in steps interactively using the Physics:-Fundiff  and Physics:-Simplify  commands that include newly implemented capabilities for simplifying tensorial expressions in curved spacetimes. This is an exciting breakthrough/milestone in Computer Algebra, also in an area out of reach of neural network AIs.

 

Einstein's equations are a system of second order nonlinear coupled partial differential equations for the 10 components of the spacetime metric g[mu, nu]

with(Physics); Setup(coordinates = cartesian, metric = arbitrary)

`Systems of spacetime coordinates are:`*{X = (x, y, z, t)}

 

_______________________________________________________

 

`Setting `*lowercaselatin_is*` letters to represent `*space*` indices`

 

`The arbitrary metric in coordinates `*[x, y, z, t]

 

`Signature: `(`- - - +`)

 

_______________________________________________________

 

Physics:-g_[mu, nu] = Matrix(%id = 36893488152225885228)

 

_______________________________________________________; "_noterminate"

(1)

In the Lagrangian formulation, the coordinates of the problem are the 10 components of the metric,

CompactDisplay(g_[])

f__1(x, y, z, t)*`will now be displayed as`*f__1

 

f__10(x, y, z, t)*`will now be displayed as`*f__10

 

f__2(x, y, z, t)*`will now be displayed as`*f__2

 

f__3(x, y, z, t)*`will now be displayed as`*f__3

 

f__4(x, y, z, t)*`will now be displayed as`*f__4

 

f__5(x, y, z, t)*`will now be displayed as`*f__5

 

f__6(x, y, z, t)*`will now be displayed as`*f__6

 

f__7(x, y, z, t)*`will now be displayed as`*f__7

 

f__8(x, y, z, t)*`will now be displayed as`*f__8

 

f__9(x, y, z, t)*`will now be displayed as`*f__9

(2)

and the parameters of the variational problem are the spacetime coordinates X^alpha.

 

The traditional Lagrangian

 

The simplest case is that of Einstein's equation in vacuum, for which the Lagrangian density is expressed in terms of the trace of the Ricci  tensor and the determinant of the metric by

L := sqrt(-%g_[determinant])*Ricci[alpha, `~alpha`]

(-%g_[determinant])^(1/2)*Physics:-Ricci[alpha, `~alpha`]

(3)

What was almost a dream in previous years, Einstein's equations can now be computed in one simple instruction as the Lagrange equations for this Lagrangian, in the traditional compact form, taking the components of the metric tensor as the coordinates (for an interactive, step by step computation, see further below)

LagrangeEquations(L, g_[mu, nu])

-(1/2)*Physics:-g_[mu, nu]*Physics:-Ricci[alpha, `~alpha`]+Physics:-Ricci[mu, nu] = 0

(4)

The tensorial equation computed is also the definition of the Einstein  tensor

Einstein[definition]

Physics:-Einstein[mu, nu] = -(1/2)*Physics:-g_[mu, nu]*Physics:-Ricci[alpha, `~alpha`]+Physics:-Ricci[mu, nu]

(5)

A Lagrangian depending only on first derivatives of the metric

 

The Lagrangian L used to compute Einstein's equations (4)  contains first and second derivatives of the metric; the latter make the computation significantly more complicated. The second order derivatives, however, can be removed from the formulation. To see that, rewrite L in terms of Christoffel  symbols

L__C := convert(L, Christoffel)

(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*(Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda])

(6)

Recalling the definition

Christoffel[definition]

Physics:-Christoffel[alpha, mu, nu] = (1/2)*Physics:-d_[nu](Physics:-g_[alpha, mu], [X])+(1/2)*Physics:-d_[mu](Physics:-g_[alpha, nu], [X])-(1/2)*Physics:-d_[alpha](Physics:-g_[mu, nu], [X])

(7)

in L[C] the two terms containing derivatives of Christoffel symbols contain second order derivatives of g[mu, nu].

 

Now, it is always possible to add a total spacetime derivative to L[C] without changing Einstein's equations (assuming the variation of the metric in the corresponding boundary integrals vanishes), and in that way, in this particular case of L[C], obtain a Lagrangian involving only 1st order derivatives. The total derivative, expressed using the inert `∂` command to see it before the differentiation operation is performed, is

TD := %d_[alpha](g_[`~mu`, `~nu`]*sqrt(-%g_[determinant])*(g_[`~alpha`, mu]*Christoffel[`~beta`, nu, beta]-Christoffel[`~alpha`, mu, nu]))

%d_[alpha](Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu]))

(8)

Adding this term to L[C], performing the `∂` differentiation operation and simplifying we get

L__1 := L__C+TD

(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*(Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda])+%d_[alpha](Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu]))

(9)

L__1 := eval(L__1, %d_ = d_)

(-%g_[determinant])^(1/2)*Physics:-g_[`~alpha`, `~lambda`]*(Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])-Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])+Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]-Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda])+Physics:-d_[alpha](Physics:-g_[`~mu`, `~nu`], [X])*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])-(1/2)*Physics:-g_[`~mu`, `~nu`]*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])*%g_[determinant]*Physics:-g_[`~kappa`, `~lambda`]*Physics:-d_[alpha](Physics:-g_[kappa, lambda], [X])/(-%g_[determinant])^(1/2)+Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-d_[alpha](Physics:-Christoffel[`~beta`, beta, nu], [X])-Physics:-d_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X]))

(10)

L__1 := Simplify(L__1)

(Physics:-Christoffel[alpha, beta, kappa]*Physics:-Christoffel[`~beta`, `~alpha`, `~kappa`]-Physics:-Christoffel[alpha, beta, `~alpha`]*Physics:-Christoffel[`~beta`, kappa, `~kappa`])*(-%g_[determinant])^(1/2)

(11)

which is a Lagrangian depending only on 1st order derivatives of the metric through Christoffel  symbols. As expected, the equations of motion resulting from this Lagrangian are the same Einstein equations computed in (4); this computation can also now be performed in a single call

LagrangeEquations(L__1, g_[mu, nu])

-(1/2)*Physics:-Ricci[iota, `~iota`]*Physics:-g_[mu, nu]+Physics:-Ricci[mu, nu] = 0

(12)

Simplification capabilities developed to cover these computations

 

To illustrate the new Maple 2025 tensorial simplification capabilities note that `≡`(L[1], (Physics[Christoffel][alpha, beta, kappa]*Physics[Christoffel][`~beta`, `~alpha`, `~kappa`]-Physics[Christoffel][alpha, beta, `~alpha`]*Physics[Christoffel][`~beta`, kappa, `~kappa`])*(-%g_[determinant])^(1/2)) is no just L[C] ≡ (6) after discarding its two terms involving derivatives of Christoffel symbols. To verify this, split L[C] into the terms containing or not derivatives of Christoffel

L__22, L__11 := selectremove(has, expand(L__C), d_)

(-%g_[determinant])^(1/2)*Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])*Physics:-g_[`~alpha`, `~lambda`]-(-%g_[determinant])^(1/2)*Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])*Physics:-g_[`~alpha`, `~lambda`], (-%g_[determinant])^(1/2)*Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]*Physics:-g_[`~alpha`, `~lambda`]-(-%g_[determinant])^(1/2)*Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda]*Physics:-g_[`~alpha`, `~lambda`]

(13)

Comparing, the total derivative TD≡ (8) is not just -L[22], but

TD = -L__22-2*L__11

%d_[alpha](Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])) = -(-%g_[determinant])^(1/2)*Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])*Physics:-g_[`~alpha`, `~lambda`]+(-%g_[determinant])^(1/2)*Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])*Physics:-g_[`~alpha`, `~lambda`]-2*(-%g_[determinant])^(1/2)*Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]*Physics:-g_[`~alpha`, `~lambda`]+2*(-%g_[determinant])^(1/2)*Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda]*Physics:-g_[`~alpha`, `~lambda`]

(14)

Things like these, TD = -L__22-2*L__11, can now be verified directly with the new tensorial simplification capabilities: take the left-hand side minus the right-hand side, evaluate the inert derivative `∂` and simplify to see the equality is true

(lhs-rhs)(%d_[alpha](Physics[g_][`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics[g_][mu, `~alpha`]*Physics[Christoffel][`~beta`, beta, nu]-Physics[Christoffel][`~alpha`, mu, nu])) = -(-%g_[determinant])^(1/2)*Physics[d_][nu](Physics[Christoffel][`~nu`, alpha, lambda], [X])*Physics[g_][`~alpha`, `~lambda`]+(-%g_[determinant])^(1/2)*Physics[d_][lambda](Physics[Christoffel][`~nu`, alpha, nu], [X])*Physics[g_][`~alpha`, `~lambda`]-2*(-%g_[determinant])^(1/2)*Physics[Christoffel][`~beta`, alpha, lambda]*Physics[Christoffel][`~nu`, beta, nu]*Physics[g_][`~alpha`, `~lambda`]+2*(-%g_[determinant])^(1/2)*Physics[Christoffel][`~beta`, alpha, nu]*Physics[Christoffel][`~nu`, beta, lambda]*Physics[g_][`~alpha`, `~lambda`])

%d_[alpha](Physics:-g_[`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu]))+(-%g_[determinant])^(1/2)*Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])*Physics:-g_[`~alpha`, `~lambda`]-(-%g_[determinant])^(1/2)*Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])*Physics:-g_[`~alpha`, `~lambda`]+2*(-%g_[determinant])^(1/2)*Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]*Physics:-g_[`~alpha`, `~lambda`]-2*(-%g_[determinant])^(1/2)*Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda]*Physics:-g_[`~alpha`, `~lambda`]

(15)

eval(%d_[alpha](Physics[g_][`~mu`, `~nu`]*(-%g_[determinant])^(1/2)*(Physics[g_][mu, `~alpha`]*Physics[Christoffel][`~beta`, beta, nu]-Physics[Christoffel][`~alpha`, mu, nu]))+(-%g_[determinant])^(1/2)*Physics[d_][nu](Physics[Christoffel][`~nu`, alpha, lambda], [X])*Physics[g_][`~alpha`, `~lambda`]-(-%g_[determinant])^(1/2)*Physics[d_][lambda](Physics[Christoffel][`~nu`, alpha, nu], [X])*Physics[g_][`~alpha`, `~lambda`]+2*(-%g_[determinant])^(1/2)*Physics[Christoffel][`~beta`, alpha, lambda]*Physics[Christoffel][`~nu`, beta, nu]*Physics[g_][`~alpha`, `~lambda`]-2*(-%g_[determinant])^(1/2)*Physics[Christoffel][`~beta`, alpha, nu]*Physics[Christoffel][`~nu`, beta, lambda]*Physics[g_][`~alpha`, `~lambda`], %d_ = d_)

(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])*Physics:-d_[alpha](Physics:-g_[`~mu`, `~nu`], [X])-(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-Christoffel[`~beta`, beta, nu]-Physics:-Christoffel[`~alpha`, mu, nu])*Physics:-g_[`~mu`, `~nu`]*%g_[determinant]*Physics:-g_[`~kappa`, `~lambda`]*Physics:-d_[alpha](Physics:-g_[kappa, lambda], [X])/(-%g_[determinant])^(1/2)+(-%g_[determinant])^(1/2)*(Physics:-g_[mu, `~alpha`]*Physics:-d_[alpha](Physics:-Christoffel[`~beta`, beta, nu], [X])-Physics:-d_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X]))*Physics:-g_[`~mu`, `~nu`]+(-%g_[determinant])^(1/2)*Physics:-d_[nu](Physics:-Christoffel[`~nu`, alpha, lambda], [X])*Physics:-g_[`~alpha`, `~lambda`]-(-%g_[determinant])^(1/2)*Physics:-d_[lambda](Physics:-Christoffel[`~nu`, alpha, nu], [X])*Physics:-g_[`~alpha`, `~lambda`]+2*(-%g_[determinant])^(1/2)*Physics:-Christoffel[`~beta`, alpha, lambda]*Physics:-Christoffel[`~nu`, beta, nu]*Physics:-g_[`~alpha`, `~lambda`]-2*(-%g_[determinant])^(1/2)*Physics:-Christoffel[`~beta`, alpha, nu]*Physics:-Christoffel[`~nu`, beta, lambda]*Physics:-g_[`~alpha`, `~lambda`]

(16)

Simplify((-%g_[determinant])^(1/2)*(Physics[g_][mu, `~alpha`]*Physics[Christoffel][`~beta`, beta, nu]-Physics[Christoffel][`~alpha`, mu, nu])*Physics[d_][alpha](Physics[g_][`~mu`, `~nu`], [X])-(1/2)*(Physics[g_][mu, `~alpha`]*Physics[Christoffel][`~beta`, beta, nu]-Physics[Christoffel][`~alpha`, mu, nu])*Physics[g_][`~mu`, `~nu`]*%g_[determinant]*Physics[g_][`~kappa`, `~lambda`]*Physics[d_][alpha](Physics[g_][kappa, lambda], [X])/(-%g_[determinant])^(1/2)+(-%g_[determinant])^(1/2)*(Physics[g_][mu, `~alpha`]*Physics[d_][alpha](Physics[Christoffel][`~beta`, beta, nu], [X])-Physics[d_][alpha](Physics[Christoffel][`~alpha`, mu, nu], [X]))*Physics[g_][`~mu`, `~nu`]+(-%g_[determinant])^(1/2)*Physics[d_][nu](Physics[Christoffel][`~nu`, alpha, lambda], [X])*Physics[g_][`~alpha`, `~lambda`]-(-%g_[determinant])^(1/2)*Physics[d_][lambda](Physics[Christoffel][`~nu`, alpha, nu], [X])*Physics[g_][`~alpha`, `~lambda`]+2*(-%g_[determinant])^(1/2)*Physics[Christoffel][`~beta`, alpha, lambda]*Physics[Christoffel][`~nu`, beta, nu]*Physics[g_][`~alpha`, `~lambda`]-2*(-%g_[determinant])^(1/2)*Physics[Christoffel][`~beta`, alpha, nu]*Physics[Christoffel][`~nu`, beta, lambda]*Physics[g_][`~alpha`, `~lambda`])

0

(17)

That said, it is also true that TD = -L[22]-2*L[11] results in the Lagrangian L[1] = -L[11], and since the equations of movement don't depend on the sign of the Lagrangian, for this Lagrangian `≡`(L[C], (-%g_[determinant])^(1/2)*Physics[g_][`~alpha`, `~lambda`]*(Physics[d_][nu](Physics[Christoffel][`~nu`, alpha, lambda], [X])-Physics[d_][lambda](Physics[Christoffel][`~nu`, alpha, nu], [X])+Physics[Christoffel][`~beta`, alpha, lambda]*Physics[Christoffel][`~nu`, beta, nu]-Physics[Christoffel][`~beta`, alpha, nu]*Physics[Christoffel][`~nu`, beta, lambda])) adding the term TD happens to be equivalent to just discarding the terms of L__C involving derivatives of Christoffel symbols.

 

Derivation step by step using functional differentiation (variational principle)

 

Also new in Maple 2025, due to the extension of Fundiff  to compute in curved spacetimes, it is now possible to compute Einstein's equations from first principles by constructing the action,

S := Intc(L, X)

Int(Int(Int(Int((-%g_[determinant])^(1/2)*Physics:-Ricci[alpha, `~alpha`], x = -infinity .. infinity), y = -infinity .. infinity), z = -infinity .. infinity), t = -infinity .. infinity)

(18)

and equating to zero the functional derivative with respect to the metric. To avoid displaying the resulting large expression, end the input line with ":"

EE__unsimplified := Fundiff(S, g_[alpha, beta]) = 0

Simplifying this result, we get an expression in terms of Christoffel  symbols and its derivatives

EEC := Simplify(EE__unsimplified)

(1/4)*(2*Physics:-Christoffel[chi, iota, kappa]*Physics:-Christoffel[`~iota`, `~chi`, `~kappa`]-2*Physics:-Christoffel[chi, iota, `~chi`]*Physics:-Christoffel[`~iota`, kappa, `~kappa`]-2*Physics:-D_[iota](Physics:-Christoffel[chi, `~chi`, `~iota`], [X])+2*Physics:-D_[chi](Physics:-Christoffel[`~chi`, iota, `~iota`], [X]))*Physics:-g_[`~alpha`, `~beta`]+(1/4)*(Physics:-Christoffel[`~alpha`, chi, `~beta`]+Physics:-Christoffel[`~beta`, chi, `~alpha`])*Physics:-Christoffel[`~chi`, iota, `~iota`]-(1/4)*Physics:-Christoffel[`~beta`, chi, iota]*Physics:-Christoffel[`~chi`, `~alpha`, `~iota`]-(1/2)*Physics:-Christoffel[chi, iota, `~alpha`]*Physics:-Christoffel[`~iota`, `~beta`, `~chi`]+(1/2)*Physics:-Christoffel[chi, `~alpha`, `~beta`]*Physics:-Christoffel[iota, `~chi`, `~iota`]-(1/4)*Physics:-Christoffel[`~alpha`, chi, iota]*Physics:-Christoffel[`~chi`, `~beta`, `~iota`]+(1/4)*Physics:-D_[chi](Physics:-Christoffel[`~alpha`, `~beta`, `~chi`], [X])+(1/4)*Physics:-D_[chi](Physics:-Christoffel[`~beta`, `~alpha`, `~chi`], [X])-(1/2)*Physics:-D_[chi](Physics:-Christoffel[`~chi`, `~alpha`, `~beta`], [X])-(1/4)*Physics:-D_[`~alpha`](Physics:-Christoffel[`~beta`, chi, `~chi`], [X])+(1/2)*Physics:-D_[`~beta`](Physics:-Christoffel[chi, `~alpha`, `~chi`], [X])-(1/4)*Physics:-D_[`~beta`](Physics:-Christoffel[`~alpha`, chi, `~chi`], [X]) = 0

(19)

In this result, we see`▿` derivatives of Christoffel  symbols, expressed using the D_  command for covariant differentiation. Although, such objects have not the geometrical meaning of a covariant derivative, computationally, they here represent what would be a covariant derivative if the Christoffel symbols were a tensor. For example,

"`▿`[chi](GAMMA[]^(alpha,beta,chi)) :"

% = expand(%)

Physics:-D_[chi](Physics:-Christoffel[`~alpha`, `~beta`, `~chi`], [X]) = Physics:-d_[chi](Physics:-Christoffel[`~alpha`, `~beta`, `~chi`], [X])+Physics:-Christoffel[`~alpha`, chi, mu]*Physics:-Christoffel[`~mu`, `~beta`, `~chi`]+Physics:-Christoffel[`~beta`, chi, mu]*Physics:-Christoffel[`~alpha`, `~chi`, `~mu`]+Physics:-Christoffel[`~chi`, chi, mu]*Physics:-Christoffel[`~alpha`, `~beta`, `~mu`]

(20)

With this computational meaning for the`▿` derivatives of Christoffel symbols appearing in (19), rewrite EEC(19) in terms of the Ricci  and Riemann  tensors. For that, consider the definition

Ricci[definition]

Physics:-Ricci[mu, nu] = Physics:-d_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X])-Physics:-d_[nu](Physics:-Christoffel[`~alpha`, mu, alpha], [X])+Physics:-Christoffel[`~beta`, mu, nu]*Physics:-Christoffel[`~alpha`, beta, alpha]-Physics:-Christoffel[`~beta`, mu, alpha]*Physics:-Christoffel[`~alpha`, nu, beta]

(21)

Rewrite the noncovariant derivatives `∂` in terms of`▿` derivatives using the computational representation (20), simplify and isolate one of them

convert(Physics[Ricci][mu, nu] = Physics[d_][alpha](Physics[Christoffel][`~alpha`, mu, nu], [X])-Physics[d_][nu](Physics[Christoffel][`~alpha`, mu, alpha], [X])+Physics[Christoffel][`~beta`, mu, nu]*Physics[Christoffel][`~alpha`, beta, alpha]-Physics[Christoffel][`~beta`, mu, alpha]*Physics[Christoffel][`~alpha`, nu, beta], D_)

Physics:-Ricci[mu, nu] = Physics:-D_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X])-Physics:-Christoffel[`~alpha`, alpha, kappa]*Physics:-Christoffel[`~kappa`, mu, nu]+Physics:-Christoffel[`~kappa`, alpha, mu]*Physics:-Christoffel[`~alpha`, kappa, nu]+Physics:-Christoffel[`~kappa`, alpha, nu]*Physics:-Christoffel[`~alpha`, mu, kappa]-Physics:-D_[nu](Physics:-Christoffel[`~alpha`, alpha, mu], [X])-Physics:-Christoffel[`~lambda`, mu, nu]*Physics:-Christoffel[`~alpha`, alpha, lambda]+Physics:-Christoffel[`~beta`, mu, nu]*Physics:-Christoffel[`~alpha`, alpha, beta]-Physics:-Christoffel[`~beta`, alpha, mu]*Physics:-Christoffel[`~alpha`, beta, nu]

(22)

Simplify(Physics[Ricci][mu, nu] = D_[alpha](Physics[Christoffel][`~alpha`, mu, nu], [X])-Physics[Christoffel][`~alpha`, alpha, kappa]*Physics[Christoffel][`~kappa`, mu, nu]+Physics[Christoffel][`~kappa`, alpha, mu]*Physics[Christoffel][`~alpha`, kappa, nu]+Physics[Christoffel][`~kappa`, alpha, nu]*Physics[Christoffel][`~alpha`, mu, kappa]-D_[nu](Physics[Christoffel][`~alpha`, alpha, mu], [X])-Physics[Christoffel][`~lambda`, mu, nu]*Physics[Christoffel][`~alpha`, alpha, lambda]+Physics[Christoffel][`~beta`, mu, nu]*Physics[Christoffel][`~alpha`, alpha, beta]-Physics[Christoffel][`~beta`, alpha, mu]*Physics[Christoffel][`~alpha`, beta, nu])

Physics:-Ricci[mu, nu] = Physics:-Christoffel[alpha, beta, mu]*Physics:-Christoffel[`~beta`, nu, `~alpha`]-Physics:-Christoffel[beta, mu, nu]*Physics:-Christoffel[alpha, `~alpha`, `~beta`]+Physics:-D_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X])-Physics:-D_[nu](Physics:-Christoffel[alpha, mu, `~alpha`], [X])

(23)

C_to_Ricci := isolate(Physics[Ricci][mu, nu] = Physics[Christoffel][alpha, beta, mu]*Physics[Christoffel][`~beta`, nu, `~alpha`]-Physics[Christoffel][beta, mu, nu]*Physics[Christoffel][alpha, `~alpha`, `~beta`]+D_[alpha](Physics[Christoffel][`~alpha`, mu, nu], [X])-D_[nu](Physics[Christoffel][alpha, mu, `~alpha`], [X]), D_[alpha](Christoffel[`~alpha`, mu, nu]))

Physics:-D_[alpha](Physics:-Christoffel[`~alpha`, mu, nu], [X]) = -Physics:-Christoffel[alpha, beta, mu]*Physics:-Christoffel[`~beta`, nu, `~alpha`]+Physics:-Christoffel[beta, mu, nu]*Physics:-Christoffel[alpha, `~alpha`, `~beta`]+Physics:-Ricci[mu, nu]+Physics:-D_[nu](Physics:-Christoffel[alpha, mu, `~alpha`], [X])

(24)

Analogously, derive an expression to rewrite`▿` derivatives of Christoffel symbols using the Riemann  tensor

Riemann[`~alpha`, beta, mu, nu, definition]

Physics:-Riemann[`~alpha`, beta, mu, nu] = Physics:-d_[mu](Physics:-Christoffel[`~alpha`, beta, nu], [X])-Physics:-d_[nu](Physics:-Christoffel[`~alpha`, beta, mu], [X])+Physics:-Christoffel[`~alpha`, upsilon, mu]*Physics:-Christoffel[`~upsilon`, beta, nu]-Physics:-Christoffel[`~alpha`, upsilon, nu]*Physics:-Christoffel[`~upsilon`, beta, mu]

(25)

convert(Physics[Riemann][`~alpha`, beta, mu, nu] = Physics[d_][mu](Physics[Christoffel][`~alpha`, beta, nu], [X])-Physics[d_][nu](Physics[Christoffel][`~alpha`, beta, mu], [X])+Physics[Christoffel][`~alpha`, upsilon, mu]*Physics[Christoffel][`~upsilon`, beta, nu]-Physics[Christoffel][`~alpha`, upsilon, nu]*Physics[Christoffel][`~upsilon`, beta, mu], D_)

Physics:-Riemann[`~alpha`, beta, mu, nu] = Physics:-D_[mu](Physics:-Christoffel[`~alpha`, beta, nu], [X])+Physics:-Christoffel[`~kappa`, mu, nu]*Physics:-Christoffel[`~alpha`, beta, kappa]-Physics:-Christoffel[`~alpha`, kappa, mu]*Physics:-Christoffel[`~kappa`, beta, nu]+Physics:-Christoffel[`~kappa`, beta, mu]*Physics:-Christoffel[`~alpha`, kappa, nu]-Physics:-D_[nu](Physics:-Christoffel[`~alpha`, beta, mu], [X])-Physics:-Christoffel[`~lambda`, mu, nu]*Physics:-Christoffel[`~alpha`, beta, lambda]-Physics:-Christoffel[`~lambda`, beta, nu]*Physics:-Christoffel[`~alpha`, lambda, mu]+Physics:-Christoffel[`~alpha`, lambda, nu]*Physics:-Christoffel[`~lambda`, beta, mu]+Physics:-Christoffel[`~alpha`, mu, upsilon]*Physics:-Christoffel[`~upsilon`, beta, nu]-Physics:-Christoffel[`~alpha`, nu, upsilon]*Physics:-Christoffel[`~upsilon`, beta, mu]

(26)

Simplify(Physics[Riemann][`~alpha`, beta, mu, nu] = D_[mu](Physics[Christoffel][`~alpha`, beta, nu], [X])+Physics[Christoffel][`~kappa`, mu, nu]*Physics[Christoffel][`~alpha`, beta, kappa]-Physics[Christoffel][`~alpha`, kappa, mu]*Physics[Christoffel][`~kappa`, beta, nu]+Physics[Christoffel][`~kappa`, beta, mu]*Physics[Christoffel][`~alpha`, kappa, nu]-D_[nu](Physics[Christoffel][`~alpha`, beta, mu], [X])-Physics[Christoffel][`~lambda`, mu, nu]*Physics[Christoffel][`~alpha`, beta, lambda]-Physics[Christoffel][`~lambda`, beta, nu]*Physics[Christoffel][`~alpha`, lambda, mu]+Physics[Christoffel][`~alpha`, lambda, nu]*Physics[Christoffel][`~lambda`, beta, mu]+Physics[Christoffel][`~alpha`, mu, upsilon]*Physics[Christoffel][`~upsilon`, beta, nu]-Physics[Christoffel][`~alpha`, nu, upsilon]*Physics[Christoffel][`~upsilon`, beta, mu])

Physics:-Riemann[`~alpha`, beta, mu, nu] = -Physics:-Christoffel[`~alpha`, kappa, mu]*Physics:-Christoffel[`~kappa`, beta, nu]+Physics:-Christoffel[`~kappa`, beta, mu]*Physics:-Christoffel[`~alpha`, kappa, nu]+Physics:-D_[mu](Physics:-Christoffel[`~alpha`, beta, nu], [X])-Physics:-D_[nu](Physics:-Christoffel[`~alpha`, beta, mu], [X])

(27)

C_to_Riemann := isolate(Physics[Riemann][`~alpha`, beta, mu, nu] = -Physics[Christoffel][`~alpha`, kappa, mu]*Physics[Christoffel][`~kappa`, beta, nu]+Physics[Christoffel][`~kappa`, beta, mu]*Physics[Christoffel][`~alpha`, kappa, nu]+D_[mu](Physics[Christoffel][`~alpha`, beta, nu], [X])-D_[nu](Physics[Christoffel][`~alpha`, beta, mu], [X]), D_[mu](Christoffel[`~alpha`, beta, nu]))

Physics:-D_[mu](Physics:-Christoffel[`~alpha`, beta, nu], [X]) = Physics:-Christoffel[`~alpha`, kappa, mu]*Physics:-Christoffel[`~kappa`, beta, nu]-Physics:-Christoffel[`~kappa`, beta, mu]*Physics:-Christoffel[`~alpha`, kappa, nu]+Physics:-Riemann[`~alpha`, beta, mu, nu]+Physics:-D_[nu](Physics:-Christoffel[`~alpha`, beta, mu], [X])

(28)

Substitute  these two equations, in sequence, into Einstein's equations EEC≡(19)

Substitute(C_to_Riemann, C_to_Ricci, EEC)

(1/4)*(2*Physics:-Christoffel[chi, iota, kappa]*Physics:-Christoffel[`~iota`, `~chi`, `~kappa`]-2*Physics:-Christoffel[chi, iota, `~chi`]*Physics:-Christoffel[`~iota`, kappa, `~kappa`]-2*Physics:-Christoffel[alpha4, alpha5, alpha6]*Physics:-Christoffel[`~alpha6`, `~alpha4`, `~alpha5`]+2*Physics:-Christoffel[alpha4, alpha6, `~alpha5`]*Physics:-Christoffel[`~alpha6`, alpha5, `~alpha4`]-2*Physics:-D_[`~alpha5`](Physics:-Christoffel[alpha4, alpha5, `~alpha4`], [X])+2*Physics:-Christoffel[`~alpha1`, alpha1, alpha3]*Physics:-Christoffel[`~alpha3`, alpha2, `~alpha2`]-2*Physics:-Christoffel[`~alpha1`, alpha3, `~alpha2`]*Physics:-Christoffel[`~alpha3`, alpha1, alpha2]+2*Physics:-Ricci[alpha2, `~alpha2`]+2*Physics:-D_[`~alpha2`](Physics:-Christoffel[`~alpha1`, alpha1, alpha2], [X]))*Physics:-g_[`~alpha`, `~beta`]-Physics:-Ricci[`~alpha`, `~beta`]+(1/2)*Physics:-Christoffel[alpha10, `~alpha`, `~beta`]*Physics:-Christoffel[alpha9, `~alpha10`, `~alpha9`]-(1/2)*Physics:-Christoffel[alpha9, alpha10, `~alpha`]*Physics:-Christoffel[`~alpha10`, `~alpha9`, `~beta`]-(1/4)*Physics:-Christoffel[`~alpha`, chi, iota]*Physics:-Christoffel[`~chi`, `~beta`, `~iota`]-(1/4)*Physics:-Christoffel[`~beta`, chi, iota]*Physics:-Christoffel[`~chi`, `~alpha`, `~iota`]+(1/2)*Physics:-Christoffel[chi, `~alpha`, `~beta`]*Physics:-Christoffel[iota, `~chi`, `~iota`]+(1/4)*(Physics:-Christoffel[`~alpha`, chi, `~beta`]+Physics:-Christoffel[`~beta`, chi, `~alpha`])*Physics:-Christoffel[`~chi`, iota, `~iota`]-(1/2)*Physics:-Christoffel[chi, iota, `~alpha`]*Physics:-Christoffel[`~iota`, `~beta`, `~chi`]-(1/4)*Physics:-Christoffel[`~alpha`, rho, `~beta`]*Physics:-Christoffel[`~rho`, rho1, `~rho1`]+(1/4)*Physics:-Christoffel[`~alpha`, rho, `~rho1`]*Physics:-Christoffel[`~rho`, rho1, `~beta`]-(1/2)*Physics:-Christoffel[omicron, zeta, `~omicron`]*Physics:-Christoffel[`~zeta`, `~alpha`, `~beta`]+(1/2)*Physics:-Christoffel[omicron, zeta, `~beta`]*Physics:-Christoffel[`~zeta`, `~alpha`, `~omicron`]-(1/4)*Physics:-Christoffel[`~beta`, psi, `~alpha`]*Physics:-Christoffel[`~psi`, omega, `~omega`]+(1/4)*Physics:-Christoffel[`~beta`, psi, `~omega`]*Physics:-Christoffel[`~psi`, omega, `~alpha`]+(1/2)*Physics:-Christoffel[`~tau`, upsilon, `~alpha`]*Physics:-Christoffel[`~upsilon`, tau, `~beta`]-(1/2)*Physics:-Christoffel[`~tau`, `~alpha`, `~beta`]*Physics:-Christoffel[`~upsilon`, tau, upsilon]+(1/4)*Physics:-Christoffel[`~beta`, nu, sigma]*Physics:-Christoffel[`~sigma`, `~alpha`, `~nu`]-(1/4)*Physics:-Christoffel[`~beta`, sigma, `~nu`]*Physics:-Christoffel[`~sigma`, nu, `~alpha`]-(1/4)*Physics:-Christoffel[`~alpha`, lambda, `~mu`]*Physics:-Christoffel[`~lambda`, mu, `~beta`]+(1/4)*Physics:-Christoffel[`~alpha`, lambda, mu]*Physics:-Christoffel[`~lambda`, `~beta`, `~mu`]-(1/2)*Physics:-D_[`~beta`](Physics:-Christoffel[`~upsilon`, upsilon, `~alpha`], [X])+(1/4)*Physics:-D_[`~nu`](Physics:-Christoffel[`~beta`, nu, `~alpha`], [X])+(1/4)*Physics:-D_[`~mu`](Physics:-Christoffel[`~alpha`, mu, `~beta`], [X])-(1/4)*Physics:-D_[`~omega`](Physics:-Christoffel[`~beta`, omega, `~alpha`], [X])+(1/2)*Physics:-D_[`~beta`](Physics:-Christoffel[alpha9, `~alpha`, `~alpha9`], [X])-(1/4)*Physics:-D_[`~rho1`](Physics:-Christoffel[`~alpha`, rho1, `~beta`], [X]) = 0

(29)

Simplify  to arrive at the traditional compact form of Einstein's equations

Simplify(-(1/2)*D_[`~beta`](Physics[Christoffel][`~upsilon`, upsilon, `~alpha`], [X])+(1/4)*D_[`~nu`](Physics[Christoffel][`~beta`, nu, `~alpha`], [X])+(1/4)*D_[`~mu`](Physics[Christoffel][`~alpha`, mu, `~beta`], [X])-(1/4)*D_[`~omega`](Physics[Christoffel][`~beta`, omega, `~alpha`], [X])+(1/2)*D_[`~beta`](Physics[Christoffel][alpha9, `~alpha`, `~alpha9`], [X])-(1/4)*D_[`~rho1`](Physics[Christoffel][`~alpha`, rho1, `~beta`], [X])-Physics[Ricci][`~alpha`, `~beta`]-(1/2)*Physics[Christoffel][alpha9, alpha10, `~alpha`]*Physics[Christoffel][`~alpha10`, `~alpha9`, `~beta`]-(1/4)*Physics[Christoffel][`~alpha`, chi, iota]*Physics[Christoffel][`~chi`, `~beta`, `~iota`]-(1/4)*Physics[Christoffel][`~beta`, chi, iota]*Physics[Christoffel][`~chi`, `~alpha`, `~iota`]+(1/2)*Physics[Christoffel][chi, `~alpha`, `~beta`]*Physics[Christoffel][iota, `~chi`, `~iota`]+(1/4)*(Physics[Christoffel][`~alpha`, chi, `~beta`]+Physics[Christoffel][`~beta`, chi, `~alpha`])*Physics[Christoffel][`~chi`, iota, `~iota`]-(1/2)*Physics[Christoffel][chi, iota, `~alpha`]*Physics[Christoffel][`~iota`, `~beta`, `~chi`]-(1/4)*Physics[Christoffel][`~alpha`, rho, `~beta`]*Physics[Christoffel][`~rho`, rho1, `~rho1`]+(1/4)*Physics[Christoffel][`~alpha`, rho, `~rho1`]*Physics[Christoffel][`~rho`, rho1, `~beta`]-(1/2)*Physics[Christoffel][omicron, zeta, `~omicron`]*Physics[Christoffel][`~zeta`, `~alpha`, `~beta`]+(1/2)*Physics[Christoffel][omicron, zeta, `~beta`]*Physics[Christoffel][`~zeta`, `~alpha`, `~omicron`]-(1/4)*Physics[Christoffel][`~beta`, psi, `~alpha`]*Physics[Christoffel][`~psi`, omega, `~omega`]+(1/4)*Physics[Christoffel][`~beta`, psi, `~omega`]*Physics[Christoffel][`~psi`, omega, `~alpha`]+(1/2)*Physics[Christoffel][`~tau`, upsilon, `~alpha`]*Physics[Christoffel][`~upsilon`, tau, `~beta`]-(1/2)*Physics[Christoffel][`~tau`, `~alpha`, `~beta`]*Physics[Christoffel][`~upsilon`, tau, upsilon]+(1/4)*Physics[Christoffel][`~beta`, nu, sigma]*Physics[Christoffel][`~sigma`, `~alpha`, `~nu`]-(1/4)*Physics[Christoffel][`~beta`, sigma, `~nu`]*Physics[Christoffel][`~sigma`, nu, `~alpha`]-(1/4)*Physics[Christoffel][`~alpha`, lambda, `~mu`]*Physics[Christoffel][`~lambda`, mu, `~beta`]+(1/4)*Physics[Christoffel][`~alpha`, lambda, mu]*Physics[Christoffel][`~lambda`, `~beta`, `~mu`]+(1/4)*(2*Physics[Christoffel][chi, iota, kappa]*Physics[Christoffel][`~iota`, `~chi`, `~kappa`]-2*Physics[Christoffel][chi, iota, `~chi`]*Physics[Christoffel][`~iota`, kappa, `~kappa`]-2*Physics[Christoffel][alpha4, alpha5, alpha6]*Physics[Christoffel][`~alpha6`, `~alpha4`, `~alpha5`]+2*Physics[Christoffel][alpha4, alpha6, `~alpha5`]*Physics[Christoffel][`~alpha6`, alpha5, `~alpha4`]-2*D_[`~alpha5`](Physics[Christoffel][alpha4, alpha5, `~alpha4`], [X])+2*Physics[Christoffel][`~alpha1`, alpha1, alpha3]*Physics[Christoffel][`~alpha3`, alpha2, `~alpha2`]-2*Physics[Christoffel][`~alpha1`, alpha3, `~alpha2`]*Physics[Christoffel][`~alpha3`, alpha1, alpha2]+2*Physics[Ricci][alpha2, `~alpha2`]+2*D_[`~alpha2`](Physics[Christoffel][`~alpha1`, alpha1, alpha2], [X]))*Physics[g_][`~alpha`, `~beta`]+(1/2)*Physics[Christoffel][alpha10, `~alpha`, `~beta`]*Physics[Christoffel][alpha9, `~alpha10`, `~alpha9`] = 0)

(1/2)*Physics:-Ricci[chi, `~chi`]*Physics:-g_[`~alpha`, `~beta`]-Physics:-Ricci[`~alpha`, `~beta`] = 0

(30)

NULL


 

Download Einstein_Equations_From_First_Principles.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions

Recently, @zenterix asked a question related to solving the quantum mechanics of the finite-wall-height particle-in-a-box problem. In the last two decades or so I've been teaching a quantum mechanics course every second year, in which I sketch the method of solution of this problem for the class, I but do not get into the mathematical details. A few times I've started to work on it in Maple, but abandoned it because of lack of time. So I decided to persist this time.

This post is more about some of the challenges and tradeoffs in making it work, hence the title. The title is also a nod to the fact that this problem appears in Engel's textbook [1] in a chapter entitled "Applying the particle in a box model to real-world topics". You don't need to know much about quantum mechanics to understand it. From the mathematical point of view you are solving three ordinary differential equations (in three regions) and stitching the solutions together so that the solution, a wavefunction, is continuous with continuous derivative and tends to zero at plus infinity and minus infinity.

The three regions and the wavefunctions for three eigenvalues (energies) are shown here in the figure, which is the final output of the worksheet. Next is the worksheet and I'll comment further on it below.

(It's a quirk of quantum mechanics that we plot two things with different units (wavefunctions and energy) on the same axis, and worse, we offset one by the other.)

Bound states for particle in finite height box of wall height
V(x) = piecewise(x < -(1/2)*a, V__0, -(1/2)*a <= x and x <= (1/2)*a, 0, (1/2)*a < x, V__0)
I'll call these regions left, box and right respectively.

restart

Schroedinger equation. Here as elsewhere "=0" is implied.

Schroedinger := -`&hbar;`^2*(diff(psi(x), x, x))/(2*m)+V*psi(x)-E*psi(x)

-(1/2)*`&hbar;`^2*(diff(diff(psi(x), x), x))/m+V*psi(x)-E*psi(x)

(1)

Nondimensionalize length as units of box length, X = x/a. Since psi(x)^2*dx is unitless probability, psi(x) has dimensions 1/length^(1/2)so we define a dimensionless Phi = a^(1/2)*psi

tr := {x = a*X, psi(x) = Phi(X)/sqrt(a)}; NDSchroedinger := PDETools:-dchange(tr, Schroedinger, [X, Phi(X)], params = [`&hbar;`, m, a], simplify)

{x = a*X, psi(x) = Phi(X)/a^(1/2)}

 

-((1/2)*`&hbar;`^2*(diff(diff(Phi(X), X), X))+a^2*m*Phi(X)*(E-V))/(a^(5/2)*m)

(2)

This will also change the normalization integrals, e.g., over the box region:

normint := Int(psi(x)^2, x = -(1/2)*a .. (1/2)*a); NDnormint := PDETools:-dchange(tr, normint, [X, Phi(X)], params = [`&hbar;`, m, a], simplify)

Int(psi(x)^2, x = -(1/2)*a .. (1/2)*a)

 

Int(Phi(X)^2, X = -1/2 .. 1/2)

(3)

Outside the box we have 0 <= E and E < V with V = V__0. Define a dimensionless positive constant kappa:

`&kappa;__eqn` := kappa = a*sqrt(2*m*(V__0-E)/`&hbar;`^2); de_outside := simplify(sqrt(a)*kappa^2*(eval(NDSchroedinger, {isolate(`&kappa;__eqn`, m), V = V__0}))/(E-V__0)); outside := rhs(dsolve(de_outside))

kappa = a*2^(1/2)*(m*(V__0-E)/`&hbar;`^2)^(1/2)

 

diff(diff(Phi(X), X), X)-kappa^2*Phi(X)

 

c__1*exp(-kappa*X)+c__2*exp(kappa*X)

(4)

Inside the box we have V = 0 and E > 0. Define a dimensionless positive constant k.

k__eqn := k = a*sqrt(2*m*E/`&hbar;`^2); de_box := simplify(-sqrt(a)*k^2*(eval(NDSchroedinger, {isolate(k__eqn, m), V = 0}))/E); box := rhs(eval(dsolve(de_box), {c__1 = A, c__2 = B}))

k = a*2^(1/2)*(m*E/`&hbar;`^2)^(1/2)

 

diff(diff(Phi(X), X), X)+k^2*Phi(X)

 

A*sin(k*X)+B*cos(k*X)

(5)

We have seven unknowns {A, B, E, c__1(L), c__1(R), c__2(L), c__2(R)}, where for example c__1(L) means Maple's c__1 for the left region. We need seven equations: goes to 0 at x = -infinityand at x = infinity(or Phi(X) wouldn't be square integrable), continuity at the two box boundaries, slopes continuous at the two box boundaries, and normalization. We deal with the ones at `&+-`(infinity)first.

At X = -infinity the wavefunction will be unbounded unless one of the constants goes to zero. We'll rename the other one A__L or A__R. The code here is just to handle the fact that c__1 and c__2 can be the the opposite way around, depending on the session.

`assuming`(['limit(outside, X = -infinity)' = limit(outside, X = -infinity)], [kappa > 0]); left0 := eval(outside, `~`[`=`](`minus`(indets(rhs(%), name), {infinity}), 0)); left1 := eval(left0, `~`[`=`](indets(left0, suffixed(c)), A__L)); `assuming`(['limit(outside, X = infinity)' = limit(outside, X = infinity)], [kappa > 0]); right0 := eval(outside, `~`[`=`](`minus`(indets(rhs(%), name), {infinity}), 0)); right1 := eval(right0, `~`[`=`](indets(right0, suffixed(c)), A__R))

limit(c__1*exp(-kappa*X)+c__2*exp(kappa*X), X = -infinity) = signum(c__1)*infinity

 

A__L*exp(kappa*X)

 

limit(c__1*exp(-kappa*X)+c__2*exp(kappa*X), X = infinity) = signum(c__2)*infinity

 

A__R*exp(-kappa*X)

(6)

Now we have five unknowns {A, A__L, A__R, B, E}. The strategy will be to eliminate A, A__L, A__R and then find the eigenvalues E. Then we will have expressions for all three regions containing the unknown B, which we will find by the normalization condition (The normalization condition fixes the scale of the wavefunction so that the probability of finding the particle somewhere is one.)

Continuity of the wavefunction and its derivative at the left boundary are below
We eliminate A__L and A using this boundary

bcleft := {eval(left1-box, X = -1/2), eval(diff(left1, X)-(diff(box, X)), X = -1/2)}; sol := solve(bcleft, {A, A__L}); left2 := eval(left1, sol); box2 := eval(box, sol)

{A__L*exp(-(1/2)*kappa)+A*sin((1/2)*k)-B*cos((1/2)*k), A__L*kappa*exp(-(1/2)*kappa)-A*k*cos((1/2)*k)-B*k*sin((1/2)*k)}

 

{A = -B*(sin((1/2)*k)*k-cos((1/2)*k)*kappa)/(sin((1/2)*k)*kappa+cos((1/2)*k)*k), A__L = B*k*(sin((1/2)*k)^2+cos((1/2)*k)^2)/(exp(-(1/2)*kappa)*(sin((1/2)*k)*kappa+cos((1/2)*k)*k))}

 

B*k*(sin((1/2)*k)^2+cos((1/2)*k)^2)*exp(kappa*X)/(exp(-(1/2)*kappa)*(sin((1/2)*k)*kappa+cos((1/2)*k)*k))

 

-B*(sin((1/2)*k)*k-cos((1/2)*k)*kappa)*sin(k*X)/(sin((1/2)*k)*kappa+cos((1/2)*k)*k)+B*cos(k*X)

(7)

Eliminate A__R at the right box boundary

bcright := {eval(box2-right1, X = 1/2), eval(diff(box2, X)-(diff(right1, X)), X = 1/2)}; elim := eliminate(bcright, A__R); right2 := eval(right1, elim[1]); energy_eqn := elim[2][]/B

{-B*(sin((1/2)*k)*k-cos((1/2)*k)*kappa)*sin((1/2)*k)/(sin((1/2)*k)*kappa+cos((1/2)*k)*k)+B*cos((1/2)*k)-A__R*exp(-(1/2)*kappa), -B*(sin((1/2)*k)*k-cos((1/2)*k)*kappa)*k*cos((1/2)*k)/(sin((1/2)*k)*kappa+cos((1/2)*k)*k)-B*k*sin((1/2)*k)+A__R*kappa*exp(-(1/2)*kappa)}

 

[{A__R = B*(2*sin((1/2)*k)*cos((1/2)*k)*kappa+2*cos((1/2)*k)^2*k-k)/(exp(-(1/2)*kappa)*(sin((1/2)*k)*kappa+cos((1/2)*k)*k))}, {-2*(sin((1/2)*k)*cos((1/2)*k)*k^2-sin((1/2)*k)*cos((1/2)*k)*kappa^2-2*cos((1/2)*k)^2*k*kappa+k*kappa)*B}]

 

B*(2*sin((1/2)*k)*cos((1/2)*k)*kappa+2*cos((1/2)*k)^2*k-k)*exp(-kappa*X)/(exp(-(1/2)*kappa)*(sin((1/2)*k)*kappa+cos((1/2)*k)*k))

 

-2*sin((1/2)*k)*cos((1/2)*k)*k^2+2*sin((1/2)*k)*cos((1/2)*k)*kappa^2+4*cos((1/2)*k)^2*k*kappa-2*k*kappa

(8)

Now we will get the quantized energies by finding which values will make energy_eqn zero. We recall the relationships of `&kappa;__` and k to energy:

k__eqn; `&kappa;__eqn;`

k = a*2^(1/2)*(m*E/`&hbar;`^2)^(1/2)

 

kappa = a*2^(1/2)*(m*(V__0-E)/`&hbar;`^2)^(1/2)

(9)

The energy scale is set by V__0, so can get a non-dimensionalized energy e = E/V__0 and a non-dimensional parameter b = a*sqrt(2*m*V__0/`&hbar;`^2).

b__eqn := b = a*sqrt(2*m*V__0/`&hbar;`^2); e__eqn := e = E/V__0; eqns := `assuming`([{simplify(eval(eval(k__eqn, isolate(e__eqn, E)), isolate(b__eqn, V__0))), simplify(eval(eval(`&kappa;__eqn`, isolate(e__eqn, E)), isolate(b__eqn, V__0)))}], [a > 0])

b = a*2^(1/2)*(m*V__0/`&hbar;`^2)^(1/2)

 

e = E/V__0

 

{k = (e*b^2)^(1/2), kappa = (-b^2*(e-1))^(1/2)}

(10)

So now for any values of the box length and height, one finds the parameter b describing the problem and solves for the possible e values.

energy_eqn2 := `assuming`([simplify((eval(energy_eqn, eqns))/b^2)], [b > 0, e > 0, e < 1])

2*e^(1/2)*(-e+1)^(1/2)*cos(b*e^(1/2))-2*e*sin(b*e^(1/2))+sin(b*e^(1/2))

(11)

Maple cannot find an analytical solution, so we will find the eigenvalues numerically. The zero solution is unphysical.

solve(energy_eqn2, e)

0, RootOf(-2*(-(_Z^2-b^2)/b^2)^(1/2)*(_Z^2/b^2)^(1/2)*b^2+2*tan(_Z)*_Z^2-tan(_Z)*b^2)^2/b^2

(12)

For any b, read off the possible energies off the vertical line for that b, e.g. there are 3 bound states for b = 9. For other values, choose bval and nsols on the next line appropriately.

bval := 9; nsols := 3; plots:-implicitplot([b = bval, energy_eqn2], b = 0 .. 15, e = 0 .. 1)

9

 

3

 

 

evals := [fsolve(eval(energy_eqn2, b = bval), e = 0 .. 1, maxsols = nsols)]

[0.8115199822e-1, .3189598393, .6884466500]

(13)

In terms of the parameters b and e and normalization constant B, the non-dimensionalized wavefunctions of the 3 regions are as below. The scale factor gives a simpler form and prevents 0/0 problems later in the calculation.

scale := `assuming`([denom(simplify(eval(left2, eqns)))], [positive]); left3 := `assuming`([simplify(eval(scale*left2, eqns))], [positive]); box3 := `assuming`([simplify(eval(scale*box2, eqns))], [positive]); right3 := `assuming`([simplify(eval(scale*right2, eqns))], [positive])

sin((1/2)*b*e^(1/2))*(-e+1)^(1/2)+cos((1/2)*b*e^(1/2))*e^(1/2)

 

B*e^(1/2)*exp((1/2)*b*(-e+1)^(1/2)*(2*X+1))

 

-(sin((1/2)*b*e^(1/2))*(e^(1/2)*sin(b*e^(1/2)*X)-(-e+1)^(1/2)*cos(b*e^(1/2)*X))-cos((1/2)*b*e^(1/2))*(cos(b*e^(1/2)*X)*e^(1/2)+sin(b*e^(1/2)*X)*(-e+1)^(1/2)))*B

 

B*exp(-(1/2)*b*(-e+1)^(1/2)*(-1+2*X))*(e^(1/2)*cos(b*e^(1/2))+(-e+1)^(1/2)*sin(b*e^(1/2)))

(14)

It remains to find the normalization constant B. The three parts of the normalization integral are:

P__L := `assuming`([int(left3^2, X = -infinity .. -1/2)], [positive]); P__box := `assuming`([int(box3^2, X = -1/2 .. 1/2)], [positive]); P__R := `assuming`([int(right3^2, X = 1/2 .. infinity)], [positive])

(1/2)*B^2*e/(b*(-e+1)^(1/2))

 

-(1/4)*B^2*(2*e^(1/2)*(-e+1)^(1/2)*cos(2*b*e^(1/2))-2*e^(1/2)*(-e+1)^(1/2)-2*b*e^(1/2)-2*e*sin(2*b*e^(1/2))+sin(2*b*e^(1/2)))/(b*e^(1/2))

 

(1/2)*B^2*(e^(1/2)*cos(b*e^(1/2))+(-e+1)^(1/2)*sin(b*e^(1/2)))^2/(b*(-e+1)^(1/2))

(15)

Solve for B. There are two (messy) solutions for B of opposite sign; it is conventional to choose the sign such that the ground state has positive values.

Bval := sort([solve(P__L+P__box+P__R = 1, B)])[2]

Assemble it into a single piecewise function.

`&Phi;__all` := eval(piecewise(X < -1/2, left3, `and`(X >= -1/2, X <= 1/2), box3, X > 1/2, right3), B = Bval)

Plot. Plots offset vertically by the energy as usual

Xmax := 1.5; psiscale := .15; colors := [red, blue, magenta]; wavefns := plot([seq(eval(psiscale*`&Phi;__all`, {b = bval, e = evals[i]})+evals[i], i = 1 .. nsols)], X = -Xmax .. Xmax, color = colors); walls := plot([-1/2, y, y = 0 .. 1], color = black), plot([1/2, y, y = 0 .. 1], color = black), plot(1, X = -Xmax .. -1/2, color = black), plot(0, X = -1/2 .. 1/2, color = black), plot(1, X = 1/2 .. Xmax, color = black); evalplot := plot(evals, X = -Xmax .. Xmax, linestyle = dash, color = colors); plots:-display(wavefns, walls, evalplot, axes = boxed, labels = [X, psiscale*Phi+E/V__0])

 

NULL

Download finite_box_non-dim2.mw

Comments
1. The first general comment is about the issue of how much Maple can do. In principle one should be able to give dsolve the three ODEs and the boundary conditions and it should output the result. We are still far away from that. Even for one region, the boundary conditions at infinity are not handled by dsolve. The other extreme is to solve the ODEs for their general solutions, and follow the algebraic manipulations for implementing the boundary conditions as one might do it on paper. Engel for example has a comment "At this point we notice that by dividing the equations in each pair, the coefficients can be eliminated to give [...]". Maple will not easily do that trick or the manipulations that led to the special form on which the trick is applied. Levine's textbook [2] gives a different non-intuitive set of steps.

But Maple can solve complicated equations, so I wanted a more general strategy that avoids as much as possible the requirement to manipulate into special forms. On the other hand, it is tempting (as @zenterix tried) to just give the three general solutions with 6 arbitrary constants and the boundary conditions to Maple's solve, and solve for the six constants. One finds that all six are zero. This us a consequence of the fact that the ODEs are linear, and misses the crucial point that it is an eigenvalue problem. So there must be some sort of step-by-step guidance for Maple and there is a general but non-obvious strategy to solving such problems.

2. The second general comment is that there is a trade-off between presenting the solution steps without any arcane Maple code, and getting to the solution efficiently and programmatically, without too many manual manipulations. One of my suggestions to @zenterix involved manually dividing both sides of an equations by a fairly complicated expression, to which @acer expressed a preference for programmatic solutions. At the time, I mainly did that to keep close the to existing solution, and was thinking that I usually set things up so that is not necessary. But I found here that I do it a lot, and it is a natural consequence of the interactive way I use Maple. Here's two examples:

In the second line of label (4), I originally got a more complicated form of de_outside, then manually figured out the factor to put inside simplify to get the form you see. I do this frequently with Maple, especially when I use dchange.

In the last line of label (8), I manually divided by B to remove it. Had B been in the denominator, I could have removed it programmatically with numer (an operation I use frequently, though it somewhat recklessly ignores denominator zeroes).

Programmatically doing things can be relatively unreadable and disrupt the readability for the non-Maple reader. For example in label (6) there is "extraneous" code to find which coefficient to set to zero so that the solution goes to zero at +/- infinity. This was forced on me since after generating the nice figure I re-ran the worksheet only to have multiple errors. I originally used eval(outside, {c__1 = B__L, c__2 = A__L}); to change Maple's dsolve constants to read the way I wanted. But I realized that dsolve does not reproducibly assign c__1 and c__2 to the same term each time, raising the general issue of: 

3. Session to session reproducibility. If I am only going to use a worksheet myself, I don't usually worry too much about this, since I can usually debug this fairly easily. On the other hand if the worksheet is for others, it needs to be foolproof. I have taken to always sorting the output of solve, e.g., the assignment to bval in the execution group after label (15). The code added for the dsolve constants works, but is non-trivial Maple (suffixed type testing). (Solving this issue for Eigenvectors is yet more difficult.)

4. Some efforts to make the worksheet more readable were hard to do.

- For some reason, Engel chose to call the two constants in the left region B and B'. Entering B*exp(-k*x) + B'*exp(k*x) in 2D leads to B(x)*exp(-k*x) + diff(B(x), x)*exp(k*x). No doubt this can be fixed, but I didn't pursue this.

- I would normally use upper case Psi for the non-dimensionalized psi, but Psi is the name of a special function in Maple. But wait, now we can use "local Psi;" to solve this problem. However diff(Psi(x),x,x) displays as Psi(2,x), so I had to settle for Phi. (SCR submitted.)

- I build up the left wavefunctions incrementally as expressions assigned to left1, left2, etc, which is rather ugly. Why not use arrow procedures so we can use psi(x), D(psi)(x) etc. Aside from some awkwardness in updating such procedures by redefining them as needed, I ran into the following problem:

limit(A*exp(-k*x) + B*exp(k*x), x = infinity) assuming k > 0; gives as expected
signum(B)*infinity;

but

psi := x -> A*exp(-k*x) + B*exp(k*x);
limit(psi(x), x = infinity) assuming k > 0;
returns unevaluated. What happened to full evaluation?

- I'm used to entering hbar as hbar in 1D; it displays as h with the bar through. In 2-D entering hbar^2 is displayed nicely, but internally it is `&hbar;`. We can have the following puzzle:

(hbar/m)^2-`&hbar;`^2/m^2

hbar^2/m^2-`&hbar;`^2/m^2

NULL

- I originally wanted a vertical axis label Psi, E/V__0, but labels = [X, Psi, E/V__0] obviously won't work. It took some time to figure out the answer is to make "Psi, E/V__0" an atomic variable. I finally settled on the more honest, if cryptic, label shown.

5. solve gives an "invalid" solution. Originally I worked with solutions left2 etc (see label (6)) after simplify(eval(left2, eqns)). Every second wavefunction was about 10^9 times higher than the others, which was difficult to debug. It turns out the denominator of those wavefunctions was exactly zero but numerically 10^(-10), meaning they plotted as large-scaled versions of the right shape, without any division-by-zero error. The fix is to remove the denominators by scaling (see label (14)).

This is just a consequence of Maple giving generic solutions, and the only way around it is to be aware of it.

Summary

To solve such problems with Maple requires one to play around in an interactive way. After hacking to a solution, it can take some effort to make it presentable and usable to others. But the final result is pleasing, and is certainly much easier than working through the problem on paper. The ability to manipulate complicated expressions means circumventing tricks that might be needed in manual solutions. 

References
[1] T. Engel, Quantum Chemistry and spectroscopy. Pearson 2019, 4th ed. Sec. 5.1, Prob. 5.3. 
[2] I. N. Levine, Quantum Chemistry. Pearson 2009, 6th ed. Sec. 2.4. 

 

 

For Maple 17, in 2013, we introduced the GroupTheory package. It has seen a lot of improvements since its introduction, and I figured I would write something about how you can use it to teach a group theory course.

 

First of all, I think it would be a great idea to have your students just play with the GroupTheory package in Maple, and get some intuition for what makes group theory tick by getting their hands dirty. But that is not what I want to talk about today. Instead, I want to discuss how you might use it for giving your lectures - to show some visualizations while you show your beamer presentation or write on the black- or whiteboard.

 

When starting out with the definition of a group, you might want to compare the Cayley table of a group with that of a binary operation that doesn't define a group. A set with any binary operation is called a magma; to find good examples, we might want to use one group; one magma that has an identity and is associative but not invertible; and one magma that is has an identity and is invertible but not associative. Maybe we also want the group to not be cyclic (so the group order will have to not be prime), because those Cayley tables look a little boring. For this we can use the Magma package.

 

We note that a magma that is invertible and has an identity element is called a loop. We can enumerate all magmas of a given order and with certain properties using the command Magma:-Enumerate, finding either the number of such objects (by default) or a list of the multiplication tables (with the output = list option). Can we find interesting examples of order 4?

 

with(Magma)

Enumerate(4, group), Enumerate(4, loop), Enumerate(4, associative, identity)

2, 2, 35

(1)

 

No: all loops of order 4 are groups. Let's try order 6.

 

Enumerate(6, group), Enumerate(6, loop), Enumerate(6, associative, identity)

2, 109, 2237

(2)

 

Yes, we can find examples here. We find the Cayley tables of three suitable magmas; we call the non-cyclic group one m1, the non-associative loop one m2, and the non-invertible magma m3.

 

Enumerate(6, group, output = list)

(3)

"m1 := ?[2]:"

Enumerate(6, loop, output = list)[1 .. 5]

(4)

 

"m2 := ?[2]:"

Enumerate(6, associative, identity, output = list)[1 .. 5]

(5)

 

Most of these appear to have many more of one value than of another (e.g., many more threes). Let's find one where that is not so extreme. For example, we might want to minimize the standard deviation of the frequencies of the values occurring in the Cayley table.

 

lst := Enumerate(6, associative, identity, output = list)

lst := remove(IsLeftInvertible, lst)

numelems(lst)

2235

(6)

frequencies := map(proc (m) options operator, arrow; map2(numboccur, m, [seq(1 .. 6)]) end proc, lst)``

with(Statistics)

sds := map(StandardDeviation, convert(frequencies, 'set'))

{HFloat(2.449489742783178), HFloat(3.0983866769659336), HFloat(3.1622776601683795), HFloat(3.22490309931942), HFloat(3.286335345030997), HFloat(3.3466401061363027), HFloat(3.4058772731852804), HFloat(3.4641016151377544), HFloat(3.464101615137755), HFloat(3.521363372331802), HFloat(3.5213633723318023), HFloat(3.5777087639996634), HFloat(3.6331804249169903), HFloat(3.687817782917155), HFloat(3.7416573867739413), HFloat(3.794733192202055), HFloat(3.8470768123342687), HFloat(3.847076812334269), HFloat(3.898717737923586), HFloat(3.9496835316262997), HFloat(3.9496835316263), HFloat(3.9999999999999996), HFloat(4.0), HFloat(4.049691346263318), HFloat(4.09878030638384), HFloat(4.147288270665544), HFloat(4.195235392680606), HFloat(4.1952353926806065), HFloat(4.2895221179054435), HFloat(4.33589667773576), HFloat(4.3817804600413295), HFloat(4.427188724235731), HFloat(4.47213595499958), HFloat(4.5166359162544865), HFloat(4.560701700396552), HFloat(4.604345773288535), HFloat(4.604345773288536), HFloat(4.6475800154489), HFloat(4.69041575982343), HFloat(4.732863826479693), HFloat(4.774934554525329), HFloat(4.77493455452533), HFloat(4.8166378315169185), HFloat(4.857983120596447), HFloat(4.898979485566356), HFloat(4.9396356140913875), HFloat(4.939635614091388), HFloat(4.979959839195493), HFloat(5.019960159204453), HFloat(5.059644256269407), HFloat(5.0990195135927845), HFloat(5.138093031466052), HFloat(5.176871642217914), HFloat(5.215361924162119), HFloat(5.253570214625479), HFloat(5.291502622129181), HFloat(5.329165037789691), HFloat(5.366563145999495), HFloat(5.403702434442518), HFloat(5.440588203494177), HFloat(5.477225575051661), HFloat(5.513619500836089), HFloat(5.549774770204643), HFloat(5.585696017507577), HFloat(5.621387729022079), HFloat(5.656854249492381), HFloat(5.692099788303083), HFloat(5.727128425310542), HFloat(5.761944116355173), HFloat(5.796550698475776), HFloat(5.830951894845301), HFloat(5.865151319446072), HFloat(5.8991524815010505), HFloat(5.93295878967653), HFloat(5.932958789676531), HFloat(5.966573556070519), HFloat(6.0), HFloat(6.0332412515993425), HFloat(6.066300355241241), HFloat(6.066300355241242), HFloat(6.099180272790763), HFloat(6.131883886702357), HFloat(6.164414002968976), HFloat(6.196773353931867), HFloat(6.228964600958975), HFloat(6.260990336999411), HFloat(6.29285308902091), HFloat(6.324555320336759), HFloat(6.356099432828282), HFloat(6.418722614352485), HFloat(6.48074069840786), HFloat(6.511528238439883), HFloat(6.542170893518451), HFloat(6.572670690061994), HFloat(6.603029607687671), HFloat(6.603029607687672), HFloat(6.6332495807108), HFloat(6.663332499583073), HFloat(6.6932802122726045), HFloat(6.693280212272605), HFloat(6.723094525588644), HFloat(6.723094525588645), HFloat(6.752777206453653), HFloat(6.782329983125268), HFloat(6.811754546370561), HFloat(6.928203230275509), HFloat(6.957010852370435), HFloat(6.985699678629192), HFloat(7.014271166700073), HFloat(7.042726744663604), HFloat(7.0710678118654755), HFloat(7.127411872482185), HFloat(7.155417527999327), HFloat(7.183313998427188), HFloat(7.18331399842719), HFloat(7.293833011524188), HFloat(7.429670248402684), HFloat(7.4565407529228995), HFloat(7.4565407529229), HFloat(7.483314773547883), HFloat(7.536577472566709), HFloat(7.53657747256671), HFloat(7.563068160475615), HFloat(7.64198926981712), HFloat(7.77174369109018), HFloat(7.8993670632526), HFloat(7.92464510246358), HFloat(7.9498427657407165), HFloat(8.024961059095553), HFloat(8.12403840463596), HFloat(8.366600265340756), HFloat(8.390470785361211), HFloat(8.390470785361213), HFloat(8.414273587185052), HFloat(8.438009243891594), HFloat(8.508818954473059), HFloat(8.854377448471462), HFloat(8.87693640846886), HFloat(8.921883209278185), HFloat(9.338094023943), HFloat(9.338094023943002), HFloat(9.359487165438072), HFloat(9.81835016690686), HFloat(9.818350166906862), HFloat(10.295630140987)}

(7)

 

Aha, the smallest standard deviation is a bit under two and a half, and the next possible value is greater than 3. Let's examine the Cayley tables that show this standard deviation.

NULL

small_sd_index := select(proc (i) options operator, arrow; StandardDeviation(frequencies[i]) < 3 end proc, [seq(1 .. numelems(frequencies))])

[1636, 1638, 2234, 2235]

(8)

small_sd := lst[small_sd_index]

(9)

 

The last of these looks interesting.

 

m3 := small_sd[-1]

NULL

Now we can display these three Cayley tables:

CayleyColorTable(m1); CayleyColorTable(m2); CayleyColorTable(m3)

 

It's clear that the multiplication shown in the third Cayley table is not invertible (because multiplying by any element other than 1, on either side, is not a permutation of the elements: rows and columns beyond the first don't have all colors). It's less visually obvious that the second Cayley table doesn't show an associative multiplication, but a quick loop showed that 5*(3*3) = 5*5 and 5*5 = 4 whereas 3*(3*5) = 3 and 3 = 3. I'm not sure if there is something real underpinning this, but to my mind this is a nice parallel to the fact that when you're proving a set with a given operation is a group, it's easier to show that there are inverses than that the operation is associative.

 

A second nice visualization, also usable in the first week or two of a group theory course, is also named after Cayley: Cayley graphs. Here is a Cayley graph for the dihedral group D[3] of order 6:

 

with(GroupTheory)

D3 := DihedralGroup(3)

_m132248572811840

(10)

with(GraphTheory)

DrawGraph(CayleyGraph(D3), layout = spring)

 

NULL

Here is a well-known presentation of the alternating group on 4 letters. I find "grabbing and turning" the 3D plot shows the structure much better than simply an embedding of the graph in the plane.

 

a4 := `<|>`(`<,>`(a, b), `<,>`(a^3, b^2, a.b.a = b.(a^2).b))

_m132249105458016

(11)

DrawGraph(CayleyGraph(a4), layout = spring, dimension = 3, size = [800, 800])

 

 

Another great opportunity for a visualization comes a couple of weeks later, when you talk about subgroup lattices. Here are a few examples:

 

with(GroupTheory)``

qd := QuasiDihedralGroup(2)

_m132249751531168

(12)

GroupOrder(qd)

16

(13)

DrawSubgroupLattice(qd, normal = false, center = false)

 

 

This is the plain subgroup lattice. Note how the subgroups in the first and second nontrivial "layer" from the bottom are grouped by conjugacy class. The default visualization of a subgroup lattice highlights the centre in light blue and the (in this case six) other normal subgroups in green.

 

DrawSubgroupLattice(qd)

 

 

We see that every conjugacy class of size one is a normal subgroup. We can also highlight other subgroups, if we want. Maybe we want to show which are the (cyclic) subgroups generated by one of the chosen generators:

 

generators := Generators(qd)

[_m132249751506336, _m132249751509600]

(14)

DrawSubgroupLattice(qd, highlight = [seq({g}, `in`(g, generators))])

 

 

Of course you can also show more advanced topics in this way. For example, here is the Frattini series of this group.

 

DrawSubgroupLattice(qd, highlight = FrattiniSeries(qd))

 

NULL NULL


 

Download blogpost-algebra.mw

With the new release of Maple Flow 2024.2 the units "Area" and "Speed" don't work.

I run a MaxBook Pro with macOS Sequoia 15.2 and uninstalled MF2024.2.

 

Major deficiency in Physics[Vectors]; Distinct sets of basis vectors are not recognized!

You can't define vectors in alternative bases like: {\hat{i}',\hat{j}',\hat{k}'} or {\hat{i}_{1},\hat{j}_{2},\hat{k}_{3}}.

This deficiency has been around for a while. I have found other posts regarding this problem.

The deficiency greatly reduces the allowable calculations with Physics[Vector].

Are there any plans to fix this?

Here is my example which shows this deficiency in more detail.

physics_vectors_and_multiple_unit_vectors.mw
 

restart

NULL

NULL

with(Physics[Vectors])

[`&x`, `+`, `.`, Assume, ChangeBasis, ChangeCoordinates, CompactDisplay, Component, Curl, DirectionalDiff, Divergence, Gradient, Identify, Laplacian, Nabla, Norm, ParametrizeCurve, ParametrizeSurface, ParametrizeVolume, Setup, Simplify, `^`, diff, int]

(1)

NULL

Crucial Deficiency in Physics[Vectors]

 

NULL

I can only guess the purpose of the Physics[Vectors] package from reviewing it's corresponding help documentation. My interpretation of the documentation leads me to believe that the package is best used for generating vector equation formulas in different coordinate bases of a SINGLE coordinate system.

 

This means one can easily generate position vector expressions such as:

 

r_ = _i*x+_j*y+_k*z

r_ = _i*x+_j*y+_k*z

(1.1)

Cylindrical Position Vector

 

The position vector in a cylindrical basis is given by:

 

r_ = ChangeBasis(rhs(r_ = _i*x+_j*y+_k*z), 2)

r_ = (x*cos(phi)+y*sin(phi))*_rho+(cos(phi)*y-sin(phi)*x)*_phi+z*_k

(1.1.1)

r_ = ChangeBasis(rhs(r_ = _i*x+_j*y+_k*z), 2, alsocomponents)

r_ = _k*z+_rho*rho

(1.1.2)

NULL

NULLNULLNULL

Spherical Position Vector

 

NULL

r_ = ChangeBasis(rhs(r_ = _i*x+_j*y+_k*z), 3)

r_ = (y*sin(phi)*sin(theta)+x*sin(theta)*cos(phi)+z*cos(theta))*_r+(y*sin(phi)*cos(theta)+x*cos(phi)*cos(theta)-z*sin(theta))*_theta+(cos(phi)*y-sin(phi)*x)*_phi

(1.2.1)

r_ = ChangeBasis(rhs(r_ = _i*x+_j*y+_k*z), 3, alsocomponents)

r_ = r*_r

(1.2.2)

NULL

NULL

As is known from the vector analysis of curvilinear coordinate systems the basis vectors can depend on the coordinates in question.

 

In cylindrical, the basis vectors are

 

_rho = ChangeBasis(_rho, 1)

_rho = _i*cos(phi)+sin(phi)*_j

(1.2)

_phi = ChangeBasis(_phi, 1)

_phi = -sin(phi)*_i+cos(phi)*_j

(1.3)

and in spherical, the basis vectors are

 

_r = ChangeBasis(_r, 1)

_r = sin(theta)*cos(phi)*_i+sin(theta)*sin(phi)*_j+cos(theta)*_k

(1.4)

_theta = ChangeBasis(_theta, 1)

_theta = cos(theta)*cos(phi)*_i+cos(theta)*sin(phi)*_j-sin(theta)*_k

(1.5)

_phi = ChangeBasis(_phi, 1)

_phi = -sin(phi)*_i+cos(phi)*_j

(1.6)

NULL

NULL

NULL

Example of this Deficiency using Biot-Savart Law

 

NULL

Biot-Savart law can be used to calculate a magnetic field due to a current carrying wire. The deficiency in question can be observed by explicity constructing the integrand in the Biot-Savart integral defined below.

NULL

NULL

NULL

In electrodynamics, quantum mechanics and applied mathematics, it is common practice to define a position of observation by a vector `#mover(mi("r"),mo("&rarr;"))` and a position of the source responsible for generating the field by a vector diff(`#mover(mi("r"),mo("&rarr;"))`(x), x).

 

It is just as common to define the difference in these vectors as

 

l_ = r_-(diff(r(x), x))*_

l_ = r_-`r'_`

(1.3.1)

and thus

 

dl_ = dr_-(diff(dr(x), x))*_

dl_ = dr_-`dr'_`

(1.3.2)

as found in the integrand of the Biot-Savart integral.

NULL

It suffices to consider `#mover(mi("l"),mo("&rarr;"))` = `#mover(mi("r"),mo("&rarr;"))`-`#mover(mi("r'"),mo("&rarr;"))` in a cylindrical basis for this argument.

 

The observation position is:

 

`#mover(mi("r"),mo("&rarr;"))` = rho*`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`+z*`#mover(mi("k"),mo("&and;"))`

NULL

The source position is:

 

diff(`#mover(mi("r"),mo("&rarr;"))`(x), x) = (diff(z(x), x))*(diff(`#mover(mi("k"),mo("&and;"))`(x), x))+(diff(rho(x), x))*(diff(`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`(x), x))

NULL

`#mover(mi("l"),mo("&rarr;"))` = `#mover(mi("r"),mo("&rarr;"))`-(diff(`#mover(mi("r"),mo("&rarr;"))`(x), x)) and `#mover(mi("r"),mo("&rarr;"))`-(diff(`#mover(mi("r"),mo("&rarr;"))`(x), x)) = z(x)*`#mover(mi("k"),mo("&and;"))`-(diff(z(x), x))*(diff(`#mover(mi("k"),mo("&and;"))`(x), x))+rho*`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`-(diff(rho(x), x))*(diff(`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`(x), x))

NULL

The deficiency in question arises because MAPLE cannot define multiple unit vectors in distinct bases such as {`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`, diff(`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`(x), x)} or {`#mscripts(mi("&rho;",fontstyle = "normal"),mn("1"),none(),none(),mo("&and;"),none(),none())`, `#mscripts(mi("&rho;",fontstyle = "normal"),mn("2"),none(),none(),mo("&and;"),none(),none())`}.  These pairs of unit vectors arise naturally, as shown above in Biot-Savart law.

NULL

If we look at `#mover(mi("&rho;",fontstyle = "normal"),mo("&circ;"))` and  diff(`#mover(mi("&rho;",fontstyle = "normal"),mo("&circ;"))`(x), x) generally, they look like:

NULL

`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))` = `#mover(mi("i"),mo("&and;"))`*cos(phi)+sin(phi)*`#mover(mi("j"),mo("&and;"))`

NULL

diff(`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`(x), x) = (diff(`#mover(mi("i"),mo("&and;"))`(x), x))*cos(diff(phi(x), x))+sin(diff(phi(x), x))*(diff(`#mover(mi("j"),mo("&and;"))`(x), x))

NULL

If the bases vectors {`#mover(mi("i"),mo("&and;"))`, `#mover(mi("j"),mo("&and;"))`, `#mover(mi("k"),mo("&and;"))`} and {diff(`#mover(mi("i"),mo("&and;"))`(x), x), diff(`#mover(mi("j"),mo("&and;"))`(x), x), diff(`#mover(mi("k"),mo("&and;"))`(x), x)} are Cartesian and are not related related through rotations so that

NULL

"(i)*i' =(|i|)*|i'|*cos(0)=1"``NULL

NULL

"(j)*(j)' =(|j|)*|(j)'|*cos(0)=1"NULL

NULL

"(k)*(k)' =(|k|)*|(k)'|*cos(0)=1 "

NULL

and so,NULL

 

`#mover(mi("i"),mo("&circ;"))` = diff(`#mover(mi("i"),mo("&circ;"))`(x), x)

NULL

`#mover(mi("j"),mo("&circ;"))` = diff(`#mover(mi("j"),mo("&circ;"))`(x), x)

NULL

`#mover(mi("k"),mo("&circ;"))` = diff(`#mover(mi("k"),mo("&circ;"))`(x), x)

NULL

the radial unit vectors in cylindrical are then,

 

`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))` = `#mover(mi("i"),mo("&and;"))`*cos(phi)+sin(phi)*`#mover(mi("j"),mo("&and;"))`

NULL

diff(`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`(x), x) = `#mover(mi("i"),mo("&and;"))`*cos(diff(phi(x), x))+sin(diff(phi(x), x))*`#mover(mi("j"),mo("&and;"))`

NULL

In typical problems, the anglular location of the observation point, φ, is distinct from the angular location of the source, diff(phi(x), x) and so under this condition, `#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))` <> diff(`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`(x), x).

 

Consider the classic problem of the magnetic field due to a circular current carrying wire. Surely, the angular coordinate of one location of the current carrying wire  is different from the angular coordinate  of an observation point hovering above and off-axis on the other side of the current carrying wire. See figure below.

NULL

NULL

NULL

NULL

Therefore,

 

`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))` <> diff(`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`(x), x)

NULL

NULL

What happens in MAPLE when you try to define a second distinct unit vector diff(`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`(x), x)?

NULL

One can easily find `#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`.

NULL

_rho

_rho

(1.3.3)

NULL

NULLIf you try to define diff(`#mover(mi("&rho;",fontstyle = "normal"),mo("&and;"))`(x), x) ...

 

 

diff(_rho(x), x)

`_rho'`

(1.3.4)

So using a prime doesn't work.

NULL

You could try a numbered subscript...

`_&rho;__2`

_rho__2

(1.3.5)

but that doesn't work.

 

You could try an indexed unit vector...

NULL

_rho[2]

_rho[2]

(1.3.6)

which can be define but is not recognized by Physics[Vectors] since...

 

NULL

ChangeBasis(_rho[2], 1)

Error, (in Physics:-Vectors:-Identify) incorrect indexed use of a unit vector: _rho[2]

 

NULL

And so it's just not possible with the current implementation.

``

``

NULL

NULL


 

Download physics_vectors_and_multiple_unit_vectors.mw

 

 

Maple Transactions has just published the Autumn 2024 issue at mapletransactions.org

From the header:

This Autumn Issue contains a "Puzzles" section, with some recherché questions, which we hope you will find to be fun to think about.  The Borwein integral (not the Borwein integral of XKCD fame, another one) set out in that section is, so far as we know, open: we "know" the value of the integral because how could the identity be true for thousands of digits but yet not be really true? Even if there is no proof.  But, Jon and Peter Borwein had this wonderful paper on Strange Series and High Precision Fraud showing examples of just that kind of trickery.  So, we don't know.  Maybe you will be the one to prove it! (Or prove it false.)

We also have some historical papers (one by a student, discussing the work of his great grandfather), and another paper describing what I think is a fun use of Maple not only to compute integrals (and to compute them very rapidly) but which actually required us to make an improvement to a well-known tool in asymptotic evaluation of integrals, namely Watson's Lemma, just to explain why Maple is so successful here.

Finally, we have an important paper on rational interpolation, which tells you how to deal well with interpolation points that are not so well distributed.

Enjoy the issue, and keep your contributions coming.

We have just released updates to Maple and MapleSim.

Maple 2024.2 includes ability to tear away tabs into new windows, improvements to scrollable matrices, corrections to PDF export, small improvements throughout the math engine, and moreWe recommend that all Maple 2024 users install this update.

This update also include a fix to the problem with the simplify extension mechanism, as first reported on MaplePrimes. Thanks, as always, for helping us make Maple better.

This update is available through Tools>Check for Updates in Maple, and is also available from the Maple 2024.2 download page, where you can find more details.

At the same time, we have also released an update to MapleSim, which contains a variety of improvements to MapleSim and its add-ons. You can find more information on the MapleSim 2024.2 download page.

The tab key, and the mouse can be used to trigger completion selection in Maple 2024.1 like previous versions. 

For interface resposiveness, a new option (disabled by default) has been added to the interface tab of Maple 2024.1 Options (available from the Tools menu). Users that prefer to use enter to trigger completion selection can enable the option. 

Change the option here and apply to the session or globally if using enter to trigger completion selection is preferred.

This is a task from one forum:  “Let's mark an arbitrary point on the circle. Let's draw a segment from this point, perpendicular to the diameter, and draw a circle, the center of which is at this point, and the radius is equal to this segment. Let's mark the intersection point of the segment connecting the intersection points of the circles with the perpendicular segment. Prove that the locus of all such points is an ellipse.”
I wanted to get a picture of a numerically animated "proof" using Maple tools.

МАTH_HЕLP_PLANET.mw
 And in fact, it turned out that AB=2AC, or AC=BC.

From a discussion about expanding unit expressions with compound units I concluded that expanding derived units such as Newton, Watt, Volt, Tesla,... to SI base units is difficult in Maple.

Unintentionally, I came across a rather simple solution for SI units.

toSIbu := x -> x = Units:-Unit(simplify(x/Unit('kg'))*Unit('kg'));

converts derived SI units to SI base units. It’s the inverse of what the units packages and simplify do (i.e. simplification to derived units).

What makes it maybe more interesting: It also works, again unintentionally, on other units than SI units. If, one day, you come along an erg or a hartree or or a kyne and you cannot guess the SI units convert/units needs, try

toSIbu(Unit('pound'));
toSIbu(Unit('hp'));
toSIbu(Unit('electron'));
toSIbu(Unit('hartree'));
toSIbu(Unit('bohr'));
toSIbu(Unit('barye'));
toSIbu(Unit('kyne'));
toSIbu(Unit('erg'));
toSIbu(Unit(mile/gal(petroleum)));

Maybe handy one day when you do not trust AI or the web.


 

NULL 

toSIbu := x -> x = Units:-Unit(simplify(x/Unit('kg'))*Unit('kg')):
toSIbu(Unit('N'));
toSIbu(Unit('J'));
toSIbu(Unit('W'));
toSIbu(Unit('Pa'));
toSIbu(Unit('C'));
toSIbu(Unit('F'));
toSIbu(Unit('S'));
toSIbu(Unit('H'));
toSIbu(Unit('T'));
toSIbu(Unit('V'));
toSIbu(Unit('Wb'));
toSIbu(Unit('Omega'));
toSIbu(Unit('lx'));
toSIbu(Unit('lm'));
toSIbu(Unit('degC'));
toSIbu(Unit('rad'));
toSIbu(Unit('sr'));

Units:-Unit(N) = Units:-Unit(m*kg/s^2)

 

Units:-Unit(J) = Units:-Unit(m^2*kg/s^2)

 

Units:-Unit(W) = Units:-Unit(m^2*kg/s^3)

 

Units:-Unit(Pa) = Units:-Unit(kg/(m*s^2))

 

Units:-Unit(C) = Units:-Unit(A*s)

 

Units:-Unit(F) = Units:-Unit(A^2*s^4/(m^2*kg))

 

Units:-Unit(S) = Units:-Unit(A^2*s^3/(m^2*kg))

 

Units:-Unit(H) = Units:-Unit(m^2*kg/(A^2*s^2))

 

Units:-Unit(T) = Units:-Unit(kg/(A*s^2))

 

Units:-Unit(V) = Units:-Unit(m^2*kg/(A*s^3))

 

Units:-Unit(Wb) = Units:-Unit(m^2*kg/(A*s^2))

 

Units:-Unit(`&Omega;`) = Units:-Unit(m^2*kg/(A^2*s^3))

 

Units:-Unit(lx) = Units:-Unit(cd/m^2)

 

Units:-Unit(lm) = Units:-Unit(cd)

 

Units:-Unit(`&deg;C`) = Units:-Unit(K)

 

Units:-Unit(rad) = Units:-Unit(m/m(radius))

 

Units:-Unit(sr) = Units:-Unit(m^2/m(radius)^2)

(1)

NULL


 

Download toSIbu.mw


(All done with Maple 2024 without loading any package)

 

 

 

This is another attempt to tell about one way to solve the problem of inverse kinematics of a manipulator.  
We have a flat three-link manipulator. Its movement is determined by changing three angles - these are three control parameters. 1. the first link rotates around the black fixed point, 2. the second link rotates around the extreme movable point of the first link, 3. the third link − around the last point of the second link. These movable points are red. (The order of the links is from thick to thin.) The working point is green. For example, we need it to move along a circle. But the manipulator has one extra mobility (degree of freedom), that is, the problem has an infinite number of solutions. We have the ability to remove this extra degree of freedom mathematically. And this can also be done in an infinite number of ways.
Let us give two examples where the same manipulator performs the same movement of the working point in different ways. In one case the last red point moves in a straight line, and in the other case it moves in an ellipse. The result is the same. In the corresponding program texts, the manipulator model is described by a system of nonlinear equations f1, f2, f3, f4, f5 relative to the coordinates of the ends of the links (very easy to understand). The specific additional connection that takes away one degree of freedom is highlighted in blue. Equation of a circle in red color.

1.mw

2.mw


And as an elective. The same circle was obtained using a spatial 3-link manipulator with 5 degrees of freedom. In the last text, blue and red colors perform the same functions as in the previous texts.
3.mw

 

1 2 3 4 5 6 7 Last Page 1 of 65