Maple 2017.1 and 2017.2 introduced several improvements in the solution of PDE & Boundary conditions problems (exact solutions).  Maple 2017.3 includes more improvements in this same area.

 

The following is a set of 25 examples of different PDE & Boundary Conditions problems that are solvable in Maple 2017.3 but not in Maple 2017.2 or previous releases. In the examples that follow, in some cases the PDE is different, in other cases the boundary conditions are of a different kind or solving the problem involves different computational strategies.

As usual, at the end there is a link pointing to the corresponding worksheet.

 

pde[1] := diff(u(x, t), t) = k*(diff(u(x, t), x, x)); bc[1] := u(x, 0) = 6+4*cos(3*Pi*x/L), (D[1](u))(0, t) = 0, (D[1](u))(L, t) = 0

diff(u(x, t), t) = k*(diff(diff(u(x, t), x), x))

 

u(x, 0) = 6+4*cos(3*Pi*x/L), (D[1](u))(0, t) = 0, (D[1](u))(L, t) = 0

(1)

`assuming`([pdsolve([pde[1], bc[1]], u(x, t))], [L > 0, k > 0])

u(x, t) = 6+4*cos(3*Pi*x/L)*exp(-9*k*Pi^2*t/L^2)

(2)

pde[2] := diff(g(t, x), t) = diff(g(t, x), x, x)+a*g(t, x); bc[2] := g(0, x) = 1

diff(g(t, x), t) = diff(diff(g(t, x), x), x)+a*g(t, x)

 

g(0, x) = 1

(3)

pdsolve([pde[2], bc[2]])

g(t, x) = exp(a*t)

(4)

pde[3] := diff(u(x, t), t) = diff(u(x, t), x, x)

bc[3] := u(x, 0) = f(x), u(-1, t) = 0, u(1, t) = 0

diff(u(x, t), t) = diff(diff(u(x, t), x), x)

 

u(x, 0) = f(x), u(-1, t) = 0, u(1, t) = 0

(5)

pdsolve([pde[3], bc[3]], u(x, t))

u(x, t) = Sum((Int(f(x)*sin(n*Pi*x), x = -1 .. 1))*sin(n*Pi*x)*exp(-Pi^2*n^2*t), n = 1 .. infinity)

(6)

pde[4] := diff(u(x, t), t) = k*(diff(u(x, t), x, x)); bc[4] := u(0, t) = 0, u(L, t) = 0, u(x, 0) = piecewise(0 < x and x <= (1/2)*L, 1, (1/2)*L < x and x < L, 2)

pde[4] := diff(u(x, t), t) = k*(diff(u(x, t), x, x))

 

u(0, t) = 0, u(L, t) = 0, u(x, 0) = piecewise(0 < x and x <= (1/2)*L, 1, (1/2)*L < x and x < L, 2)

(7)

`assuming`([pdsolve([pde[4], bc[4]], u(x, t))], [L > 0])

u(x, t) = Sum((2*cos((1/2)*Pi*n)+2+4*(-1)^(1+n))*sin(n*Pi*x/L)*exp(-k*Pi^2*n^2*t/L^2)/(Pi*n), n = 1 .. infinity)

(8)

pde[5] := diff(u(x, t), t) = k*(diff(u(x, t), x, x))

bc[5] := (D[1](u))(0, t) = 0, (D[1](u))(L, t) = 0, u(x, 0) = -3*cos(8*Pi*x/L)

diff(u(x, t), t) = k*(diff(diff(u(x, t), x), x))

 

(D[1](u))(0, t) = 0, (D[1](u))(L, t) = 0, u(x, 0) = -3*cos(8*Pi*x/L)

(9)

`assuming`([pdsolve([pde[5], bc[5]], u(x, t))], [0 < L, 0 < k])

u(x, t) = -3*cos(8*Pi*x/L)*exp(-64*k*Pi^2*t/L^2)

(10)

pde[6] := diff(u(x, t), t) = k*(diff(u(x, t), x, x))+f(x, t); bc[6] := u(0, t) = 0, u(l, t) = 0, u(x, 0) = g(x)

diff(u(x, t), t) = k*(diff(diff(u(x, t), x), x))+f(x, t)

 

u(0, t) = 0, u(l, t) = 0, u(x, 0) = g(x)

(11)

pdsolve([pde[6], bc[6]], u(x, t))

u(x, t) = Sum(2*(Int(g(tau1)*sin(Pi*n1*tau1/l), tau1 = 0 .. l))*sin(Pi*n1*x/l)*exp(-k*Pi^2*n1^2*t/l^2)/l, n1 = 1 .. infinity)+Int(Sum(2*(Int(f(x, tau1)*sin(Pi*n*x/l), x = 0 .. l))*sin(Pi*n*x/l)*exp(-k*Pi^2*n^2*(t-tau1)/l^2)/l, n = 1 .. infinity), tau1 = 0 .. t)

(12)

pde[7] := diff(u(x, t), t) = diff(u(x, t), x, x); bc[7] := u(x, 0) = f(x), u(-1, t) = 0, u(1, t) = 0

diff(u(x, t), t) = diff(diff(u(x, t), x), x)

 

u(x, 0) = f(x), u(-1, t) = 0, u(1, t) = 0

(13)

pdsolve([pde[7], bc[7]], u(x, t))

u(x, t) = Sum((Int(f(x)*sin(n*Pi*x), x = -1 .. 1))*sin(n*Pi*x)*exp(-Pi^2*n^2*t), n = 1 .. infinity)

(14)

pde[8] := diff(u(x, t), t) = k*(diff(u(x, t), x, x))-h*u(x, t); bc[8] := u(x, 0) = sin(x), u(-Pi, t) = u(Pi, t), (D[1](u))(-Pi, t) = (D[1](u))(Pi, t)

diff(u(x, t), t) = k*(diff(diff(u(x, t), x), x))-h*u(x, t)

 

u(x, 0) = sin(x), u(-Pi, t) = u(Pi, t), (D[1](u))(-Pi, t) = (D[1](u))(Pi, t)

(15)

pdsolve([pde[8], bc[8]], u(x, t))

u(x, t) = sin(x)*exp(-t*(k+h))

(16)

pde[9] := diff(u(x, t), t) = diff(u(x, t), x, x)

bc[9] := u(0, t) = 20, u(1, t) = 50, u(x, 0) = 0

diff(u(x, t), t) = diff(diff(u(x, t), x), x)

 

u(0, t) = 20, u(1, t) = 50, u(x, 0) = 0

(17)

pdsolve([pde[9], bc[9]], u(x, t))

u(x, t) = 20+Sum((-40+100*(-1)^n)*sin(n*Pi*x)*exp(-Pi^2*n^2*t)/(Pi*n), n = 1 .. infinity)+30*x

(18)

pde[10] := diff(u(x, y), x, x)+diff(u(x, y), y, y) = 0; bc[10] := u(x, 0) = 0, u(x, 1) = 0, u(0, y) = y^2-y, u(1, y) = 0

diff(diff(u(x, y), x), x)+diff(diff(u(x, y), y), y) = 0

 

u(x, 0) = 0, u(x, 1) = 0, u(0, y) = y^2-y, u(1, y) = 0

(19)

pdsolve([pde[10], bc[10]], u(x, y))

u(x, y) = Sum(-4*((-1)^n-1)*sin(Pi*y*n)*(exp(Pi*n*(2*x-1))-exp(Pi*n))*exp(-Pi*n*(x-1))/((exp(2*Pi*n)-1)*Pi^3*n^3), n = 1 .. infinity)

(20)

pde[11] := diff(u(x, y), x, x)+diff(u(x, y), y, y) = 0

bc[11] := (D[1](u))(0, y) = 0, (D[1](u))(L, y) = 0, u(x, H) = f(x), u(x, 0) = 0

diff(diff(u(x, y), x), x)+diff(diff(u(x, y), y), y) = 0

 

(D[1](u))(0, y) = 0, (D[1](u))(L, y) = 0, u(x, H) = f(x), u(x, 0) = 0

(21)

`assuming`([pdsolve([pde[11], bc[11]], u(x, y))], [0 < L, 0 < H])

u(x, y) = Sum(2*(Int(cos(Pi*x*n/L)*f(x), x = 0 .. L))*cos(Pi*x*n/L)*exp(Pi*n*(H-y)/L)*(exp(2*Pi*y*n/L)-1)/(L*(exp(2*Pi*H*n/L)-1)), n = 1 .. infinity)

(22)

pde[12] := diff(u(x, y), x, x)+diff(u(x, y), y, y) = 0

bc[12] := (D[1](u))(L, y) = 0, u(x, H) = 0, u(x, 0) = 0, (D[1](u))(0, y) = g(y)

diff(diff(u(x, y), x), x)+diff(diff(u(x, y), y), y) = 0

 

(D[1](u))(L, y) = 0, u(x, H) = 0, u(x, 0) = 0, (D[1](u))(0, y) = g(y)

(23)

`assuming`([pdsolve([pde[12], bc[12]], u(x, y))], [0 < x, x <= L, 0 < y, y <= H])

u(x, y) = Sum(-2*(Int(sin(Pi*y*n/H)*g(y), y = 0 .. H))*sin(Pi*y*n/H)*(exp(-Pi*n*(L-2*x)/H)+exp(Pi*L*n/H))*exp(Pi*n*(L-x)/H)/(Pi*n*(exp(2*Pi*L*n/H)-1)), n = 1 .. infinity)

(24)

pde[13] := diff(u(x, y), x, x)+diff(u(x, y), y, y) = 0

bc[13] := (D[1](u))(0, y) = 0, u(x, 0) = 0, u(x, H) = 0, u(L, y) = g(y)

diff(diff(u(x, y), x), x)+diff(diff(u(x, y), y), y) = 0

 

(D[1](u))(0, y) = 0, u(x, 0) = 0, u(x, H) = 0, u(L, y) = g(y)

(25)

`assuming`([pdsolve([pde[13], bc[13]], u(x, y))], [0 < L, 0 < H])

u(x, y) = Sum(2*(Int(sin(Pi*y*n/H)*g(y), y = 0 .. H))*sin(Pi*y*n/H)*exp(Pi*n*(L-x)/H)*(exp(2*Pi*x*n/H)+1)/(H*(exp(2*Pi*L*n/H)+1)), n = 1 .. infinity)

(26)

pde[14] := diff(u(x, y), x, x)+diff(u(x, y), y, y) = 0

bc[14] := u(0, y) = g(y), u(L, y) = 0, (D[2](u))(x, 0) = 0, u(x, H) = 0

diff(diff(u(x, y), x), x)+diff(diff(u(x, y), y), y) = 0

 

u(0, y) = g(y), u(L, y) = 0, (D[2](u))(x, 0) = 0, u(x, H) = 0

(27)

`assuming`([pdsolve([pde[14], bc[14]], u(x, y))], [0 < x, x <= L, 0 < y, y <= H])

u(x, y) = Sum(-2*(exp(-(L-2*x)*(1/2+n)*Pi/H)-exp((1/2)*Pi*(1+2*n)*L/H))*cos((1/2)*Pi*(1+2*n)*y/H)*(Int(cos((1/2)*Pi*(1+2*n)*y/H)*g(y), y = 0 .. H))*exp((1/2)*Pi*(1+2*n)*(L-x)/H)/(H*(exp(Pi*(1+2*n)*L/H)-1)), n = 0 .. infinity)

(28)

pde[15] := diff(u(x, y), x, x)+diff(u(x, y), y, y) = 0

bc[15] := u(0, y) = 0, u(L, y) = 0, u(x, 0) = (D[2](u))(x, 0), u(x, H) = f(x)

diff(diff(u(x, y), x), x)+diff(diff(u(x, y), y), y) = 0

 

u(0, y) = 0, u(L, y) = 0, u(x, 0) = (D[2](u))(x, 0), u(x, H) = f(x)

(29)

`assuming`([pdsolve([pde[15], bc[15]], u(x, y))], [0 < x, x <= L, 0 < y, y <= H])

u(x, y) = Sum(2*exp(Pi*n*(H-y)/L)*sin(Pi*x*n/L)*((Pi*n+L)*exp(2*Pi*y*n/L)+Pi*n-L)*(Int(sin(Pi*x*n/L)*f(x), x = 0 .. L))/(L*((Pi*n+L)*exp(2*Pi*H*n/L)+Pi*n-L)), n = 1 .. infinity)

(30)

pde[16] := diff(u(x, t), t, t) = c^2*(diff(u(x, t), x, x))

bc[16] := u(0, t) = 0, (D[1](u))(L, t) = 0, (D[2](u))(x, 0) = 0, u(x, 0) = f(x)

diff(diff(u(x, t), t), t) = c^2*(diff(diff(u(x, t), x), x))

 

u(0, t) = 0, (D[1](u))(L, t) = 0, (D[2](u))(x, 0) = 0, u(x, 0) = f(x)

(31)

`assuming`([pdsolve([pde[16], bc[16]], u(x, t))], [0 < x, x <= L])

u(x, t) = Sum(2*cos((1/2)*c*Pi*(1+2*n)*t/L)*(Int(sin((1/2)*Pi*(1+2*n)*x/L)*f(x), x = 0 .. L))*sin((1/2)*Pi*(1+2*n)*x/L)/L, n = 0 .. infinity)

(32)

pde[17] := diff(w(x1, x2, x3, t), t) = diff(w(x1, x2, x3, t), x1, x1)+diff(w(x1, x2, x3, t), x2, x2)+diff(w(x1, x2, x3, t), x3, x3)

bc[17] := w(x1, x2, x3, 0) = exp(x1)+x2*x3^5

diff(w(x1, x2, x3, t), t) = diff(diff(w(x1, x2, x3, t), x1), x1)+diff(diff(w(x1, x2, x3, t), x2), x2)+diff(diff(w(x1, x2, x3, t), x3), x3)

 

w(x1, x2, x3, 0) = exp(x1)+x2*x3^5

(33)

pdsolve([pde[17], bc[17]])

w(x1, x2, x3, t) = Sum(t^n*((proc (U) options operator, arrow; diff(diff(U, x1), x1)+diff(diff(U, x2), x2)+diff(diff(U, x3), x3) end proc)@@n)(exp(x1)+x2*x3^5)/factorial(n), n = 0 .. infinity)

(34)

pde[18] := diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x)) = -x

bc[18] := u(x, 0) = x

diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x)) = -x

 

u(x, 0) = x

(35)

pdsolve([pde[18], bc[18]], u(x, t))

u(x, t) = x/tan(t+(1/4)*Pi)

(36)

pde[19] := diff(u(x, t), t)-u(x, t)^2*(diff(u(x, t), x)) = 3*u(x, t)

bc[19] := u(x, 0) = x

diff(u(x, t), t)-u(x, t)^2*(diff(u(x, t), x)) = 3*u(x, t)

 

u(x, 0) = x

(37)

pdsolve([pde[19], bc[19]], u(x, t))

u(x, t) = -exp(3*t)*((-6*exp(6*t)*x+6*x+9)^(1/2)-3)/(exp(6*t)-1)

(38)

pde[20] := diff(u(x, t), t)-x*u(x, t)*(diff(u(x, t), x)) = 0

bc[20] := u(x, 0) = x

diff(u(x, t), t)-x*u(x, t)*(diff(u(x, t), x)) = 0

 

u(x, 0) = x

(39)

pdsolve([pde[20], bc[20]], u(x, t))

u(x, t) = -LambertW(-t*x)/t

(40)

pde[21] := diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x)) = 0

bc[21] := u(x, 0) = x

diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x)) = 0

 

u(x, 0) = x

(41)

pdsolve([pde[21], bc[21]], u(x, t))

u(x, t) = x/(t+1)

(42)

pde[22] := (t+u(x, t))*(diff(u(x, t), x))+t*(diff(u(x, t), t)) = 0; bc[22] := u(x, 1) = x

(t+u(x, t))*(diff(u(x, t), x))+t*(diff(u(x, t), t)) = 0

 

u(x, 1) = x

(43)

pdsolve([pde[22], bc[22]], u(x, t))

u(x, t) = (t-x-1)/(ln(1/t)-1)

(44)

pde[23] := (diff(r*(diff(u(r, theta), r)), r))/r+(diff(u(r, theta), theta, theta))/r^2 = 0; bc[23] := u(a, theta) = f(theta), u(r, -Pi) = u(r, Pi), (D[2](u))(r, -Pi) = (D[2](u))(r, Pi)

(diff(u(r, theta), r)+r*(diff(diff(u(r, theta), r), r)))/r+(diff(diff(u(r, theta), theta), theta))/r^2 = 0

 

u(a, theta) = f(theta), u(r, -Pi) = u(r, Pi), (D[2](u))(r, -Pi) = (D[2](u))(r, Pi)

(45)

`assuming`([pdsolve([pde[23], bc[23]], u(r, theta), HINT = boundedseries)], [a > 0])

u(r, theta) = (1/2)*(2*(Sum(r^n*(sin(n*theta)*(Int(f(theta)*sin(n*theta), theta = -Pi .. Pi))+cos(n*theta)*(Int(f(theta)*cos(n*theta), theta = -Pi .. Pi)))*a^(-n)/Pi, n = 1 .. infinity))*Pi+Int(f(theta), theta = -Pi .. Pi))/Pi

(46)

pde[24] := diff(g(t, x), t) = diff(g(t, x), x, x)+a*g(t, x); bc[24] := g(0, x) = f(x)

diff(g(t, x), t) = diff(diff(g(t, x), x), x)+a*g(t, x)

 

g(0, x) = f(x)

(47)

pdsolve([pde[24], bc[24]])

g(t, x) = exp(a*t)*invfourier(fourier(f(x), x, s1)*exp(-t*s1^2), s1, x)

(48)

pde[25] := diff(u(x, y), x, x)+diff(u(x, y), y, y) = 0; bc[25] := u(0, y) = y*(-y+1), u(1, y) = 0, (D[2](u))(x, 0) = 0, (D[2](u))(x, 1) = 0

diff(diff(u(x, y), x), x)+diff(diff(u(x, y), y), y) = 0

 

u(0, y) = y*(-y+1), u(1, y) = 0, (D[2](u))(x, 0) = 0, (D[2](u))(x, 1) = 0

(49)

pdsolve([pde[25], bc[25]], u(x, y))

u(x, y) = Sum(2*((-1)^n+1)*cos(Pi*y*n)*(exp(Pi*n*(2*x-1))-exp(Pi*n))*exp(-Pi*n*(x-1))/((exp(2*Pi*n)-1)*Pi^2*n^2), n = 1 .. infinity)

(50)

``


 

Download ImprovementsInPdsolve.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft


Please Wait...