Rossler Attractor with animations...

I was looking at the application center about attractors and found the Rossler attractor app that illustrates the Rossler Attractor with animations, as you can see below. But when I try to run it on my laptop  the two last plots remain empty. Why is this happening?

Rossler Flow System - Rossler Attractor

by Yufang Hao, <yhao@student.math.uwaterloo.ca>

This worksheet contains the images of the Rossler Attractor and the animations that follow the trajectory.

 > restart; with(DEtools): with(plots):
 Warning, the name changecoords has been redefined

The Rossler attractor is defined by a set of three Differential equations:

x' =

y' =

z' = b +  -

where the coefficients a, b, and c are adjustable constants.

 > rosslerEqns := [ diff(x(t),t) = -(y(t)+z(t)), diff(y(t),t) = x(t) + a*y(t), diff(z(t),t) = b + x(t)*z(t) - c*z(t) ];
 (1)
 > a:=0.17: b:=0.4: c:=8.5: DEplot3d(rosslerEqns, {x(t),y(t),z(t)}, t=0..300,          [[x(0)=0, y(0)=0, z(0)=0]],          x =-15..15, y=-15..15,z=-5..25,          stepsize=0.05, linecolour=1+sin(t*Pi/3)/2,          thickness=1, orientation = [-110,71]);
 > a:=0.17: b:=0.4: c:=8.5: display(   [seq(     DEplot3d(rosslerEqns, {x(t),y(t),z(t)}, t=0..4*i,          [[x(0)=0, y(0)=0, z(0)=0]],          x =-15..15, y=-15..15,z=-5..25,          stepsize=0.05, linecolour=1+sin((i-t)*Pi/5)/2,          thickness=2, orientation = [-110,71]),     i=1..25) # end seq   ], # end DEplot3d list insequence=true);
 > a:=0.17: b:=0.4: c:=8.5: display(   [seq(     DEplot3d(rosslerEqns, {x(t),y(t),z(t)}, t=0..4*i,          [[x(0)=0, y(0)=0, z(0)=0]],          x =-15..15, y=-15..15,z=-5..25,          stepsize=0.05, linecolour=1+sin((i-t)*Pi/5)/2,          thickness=2, orientation = [-110,71]),     i=1..25) # end seq   ], # end DEplot3d list insequence=true);
 >
 >
 >

From radians to degrees & degrees, minutes and sec...

1) Maple gives me the result in radians and I want it in degrees, example:

evalf(17*sin(34)/sin(115)) = 9.513506993

The result in degrees should be 10.48901874

2) How do I transform degrees into degrees, minutes and seconds?

Example: 15.925º

= 15º 55' 30''

simplify equation befor convert the math equatio...

when i do the convert in maple to latex  is do but not fully simplify and some kind of clearer must write for paper and i must do this case by case by hand but how i can simplify before i convert to latex and remove all extra thing like multiply between two squar root

 >
 >
 (1)
 >
 \left[A_{1} = 0, A_{0} = 0, B_{1} = \mp \frac{\sqrt{2}\, \sqrt{a_{5}}}{\sqrt{a_{4}}}, k = k, a_{2} = -a_{5}, w = -\frac{2 a_{5} a_{3} \left(4 k^{2}-1\right)}{3 a_{4}}, a_{1} = \frac{8 a_{5} a_{3}}{3 a_{4}}, v = 2 a_{1} k\right]
 >

Is it possible to animate spacecurves that fade wi...

In this post about a vibrating T-shaped structure, the ends of the T are traced over time.
The trace of the end encircled below in yellow fades with time

How to do the same with Maple? For example, can an attractor be animated this way?

Problem finding the center of the circumcircle to ...

restart;
_local(D, O);
with(Student:-MultivariateCalculus);
A := [0, 0, 0];
B := [a, 0, 0];
C := [a, b, 0];
D := [0, b, 0];
S := [0, 0, h];
O := [x, y, z];
lineSC := Line(S, C);
lineSD := Line(S, D);
H := Projection(A, lineSC);
K := Projection(A, lineSD);
OH := H - O;
OK := K - O;
OC := C - O;
M := Matrix([OH, OK, OC]);
O := eval(O, %);
simplify(Distance(O, H));
O

Error, invalid input: eval received Matrix(3, 3, {(1, 1) = -x+h^2*a/(a^2+b^2+h^2), (1, 2) = -y+h^2*b/(a^2+b^2+h^2), (1, 3) = -z+h*(a^2+b^2)/(a^2+b^2+h^2), (2, 1) = -x, (2, 2) = -y+h^2*b/(b^2+h^2), (2, 3) = -z+h*b^2/(b^2+h^2), (3, 1) = -x+a, (3, 2) = -y+b, (3, 3) = -z}), which is not valid for its 2nd argument, eqns
How to correct this error ? Thank you.

why am i facing problem while using two loops in ...

i am writing code for an iterative process at the end i want to evaluate the summation expression with two loops but it is not evaluating kindly help me out here automatic_differentiation.mw

 >
 >
 >
 >
 >
 >
 (1)
 >
 >
 >
 >
 >
 >
 u_1 = -alpha*u[1]*(20*u[2]-20*u[0])+1600*u[0]-3200*u[1]+1600*u[2] u_2 = -alpha*u[2]*(20*u[3]-20*u[1])+1600*u[1]-3200*u[2]+1600*u[3] u_3 = -alpha*u[3]*(20*u[4]-20*u[2])+1600*u[2]-3200*u[3]+1600*u[4] u_4 = -alpha*u[4]*(20*u[5]-20*u[3])+1600*u[3]-3200*u[4]+1600*u[5] u_5 = -alpha*u[5]*(20*u[6]-20*u[4])+1600*u[4]-3200*u[5]+1600*u[6] u_6 = -alpha*u[6]*(20*u[7]-20*u[5])+1600*u[5]-3200*u[6]+1600*u[7] u_7 = -alpha*u[7]*(20*u[8]-20*u[6])+1600*u[6]-3200*u[7]+1600*u[8] u_8 = -alpha*u[8]*(20*u[9]-20*u[7])+1600*u[7]-3200*u[8]+1600*u[9] u_9 = -alpha*u[9]*(20*u[10]-20*u[8])+1600*u[8]-3200*u[9]+1600*u[10] u_10 = -alpha*u[10]*(20*u[11]-20*u[9])+1600*u[9]-3200*u[10]+1600*u[11] u_11 = -alpha*u[11]*(20*u[12]-20*u[10])+1600*u[10]-3200*u[11]+1600*u[12] u_12 = -alpha*u[12]*(20*u[13]-20*u[11])+1600*u[11]-3200*u[12]+1600*u[13] u_13 = -alpha*u[13]*(20*u[14]-20*u[12])+1600*u[12]-3200*u[13]+1600*u[14] u_14 = -alpha*u[14]*(20*u[15]-20*u[13])+1600*u[13]-3200*u[14]+1600*u[15] u_15 = -alpha*u[15]*(20*u[16]-20*u[14])+1600*u[14]-3200*u[15]+1600*u[16] u_16 = -alpha*u[16]*(20*u[17]-20*u[15])+1600*u[15]-3200*u[16]+1600*u[17] u_17 = -alpha*u[17]*(20*u[18]-20*u[16])+1600*u[16]-3200*u[17]+1600*u[18] u_18 = -alpha*u[18]*(20*u[19]-20*u[17])+1600*u[17]-3200*u[18]+1600*u[19] u_19 = -alpha*u[19]*(20*u[20]-20*u[18])+1600*u[18]-3200*u[19]+1600*u[20] u_20 = -alpha*u[20]*(20*u[21]-20*u[19])+1600*u[19]-3200*u[20]+1600*u[21] u_21 = -alpha*u[21]*(20*u[22]-20*u[20])+1600*u[20]-3200*u[21]+1600*u[22] u_22 = -alpha*u[22]*(20*u[23]-20*u[21])+1600*u[21]-3200*u[22]+1600*u[23] u_23 = -alpha*u[23]*(20*u[24]-20*u[22])+1600*u[22]-3200*u[23]+1600*u[24] u_24 = -alpha*u[24]*(20*u[25]-20*u[23])+1600*u[23]-3200*u[24]+1600*u[25] u_25 = -alpha*u[25]*(20*u[26]-20*u[24])+1600*u[24]-3200*u[25]+1600*u[26] u_26 = -alpha*u[26]*(20*u[27]-20*u[25])+1600*u[25]-3200*u[26]+1600*u[27] u_27 = -alpha*u[27]*(20*u[28]-20*u[26])+1600*u[26]-3200*u[27]+1600*u[28] u_28 = -alpha*u[28]*(20*u[29]-20*u[27])+1600*u[27]-3200*u[28]+1600*u[29] u_29 = -alpha*u[29]*(20*u[30]-20*u[28])+1600*u[28]-3200*u[29]+1600*u[30] u_30 = -alpha*u[30]*(20*u[31]-20*u[29])+1600*u[29]-3200*u[30]+1600*u[31] u_31 = -alpha*u[31]*(20*u[32]-20*u[30])+1600*u[30]-3200*u[31]+1600*u[32] u_32 = -alpha*u[32]*(20*u[33]-20*u[31])+1600*u[31]-3200*u[32]+1600*u[33] u_33 = -alpha*u[33]*(20*u[34]-20*u[32])+1600*u[32]-3200*u[33]+1600*u[34] u_34 = -alpha*u[34]*(20*u[35]-20*u[33])+1600*u[33]-3200*u[34]+1600*u[35] u_35 = -alpha*u[35]*(20*u[36]-20*u[34])+1600*u[34]-3200*u[35]+1600*u[36] u_36 = -alpha*u[36]*(20*u[37]-20*u[35])+1600*u[35]-3200*u[36]+1600*u[37] u_37 = -alpha*u[37]*(20*u[38]-20*u[36])+1600*u[36]-3200*u[37]+1600*u[38] u_38 = -alpha*u[38]*(20*u[39]-20*u[37])+1600*u[37]-3200*u[38]+1600*u[39] u_39 = -alpha*u[39]*(20*u[40]-20*u[38])+1600*u[38]-3200*u[39]+1600*u[40]
 >