Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hey guys, 

From a former calculation I got a set of points as a implicit RootOf function for an intervall. Now I want to check, if these points are in a certain area. So i thougt I take the RootOf function, the intervall and the inequalities (which describe the target area) and use the solve command. But then I get the warning, solutions may have been lost and no solution. When you draw the implicit function you can see thats in the right area (above y=1 and below y=x). So there should be a clear anwer, giving me back the whole RootOf function in the intervall.

Download QUESTI~2.MW

Since there was an error uploading the picture here the code 

restart;
Sol := {x = RootOf(_Z^2 - y, index = real[2]) + 1, 1 < y, y < 2};
area := {1 < y, y < x};
Sol_area := solve(Sol union area);
print(Sol_area);

So why do I get this warning, the calculation seems quite easy? And is there a workaround? Or a diffrent kind of solve function? SemiAlgebraic is as far as i know only for polynomials. So I got an error as well. Since the websites are down I could start an own reasearch before. So thank you in advance. 

Regards

Felix

I found this version after Maple 2025 installation in Windows programs menu. It looks like a fully functional Maple version using the old GUI.

Why is it called "for screen readers"? I do not understand the link to persons with disabilites (I assume that the icon stands for it)?
In which respect is the new GUI less suited for visually impaired(?) people? I think the readabilty of the new GUI is at least as good as the old GUI.

In case Maple 2025 for Screen Readers is a fully functional Maple version, I give two thumbs up to Maplesoft. Smart move not to immediately impose a "disruptive" new GUI with allot of potential for new users to everyone.

Hey guys, 

I have a problem with the solve command. And since the websites are down, I cant help myself. I have a function x(y) and an intervall for y. This function or the set of points described by the function should now be transformed to another area of the plane. So now I can get a(x,y)=1/y and b(x,y)=x/(x+y-1) with just plugging in, then everything depeends from the y Invtervall. But I want to get the form b(a) and an intervall for a. So that I can see the function directly. So i thought I just put everything into the solve command and than ask for a solution for {a,b} and expected to get what I want. (Uploading the script here gives an error)
 

restart;
Sol := solve({a = 1/y, b = x/(x + y - 1), x = (y - 1)^2, 1 < y, y < 5/4});
Sol_ab := solve({a = 1/y, b = x/(x + y - 1), x = (y - 1)^2, 1 < y, y < 5/4}, {a, b});

#expected (or wanted) solution
#with y = 1/a and the inequalities we get 4/5 < a and a < 1 with y
#with y = we get x(a)/a and y(a) and reach b = 1/a - 1
#all together: Sol={b=1/a - 1, 4/4<a, a<1};

THe problem is, that I get an empty set which is obviously wrong. So I somehow make an error when making the variables I want concrete with adding {a,b}. What do I do wrong? Or is there a better command for what I want to achieve? In this case I can solve the problem via hand, but I have more complex tranformations and mor ecomplex functions x(y), so thats why I ask for general help with my problem. 

Thank ypu in advance

Felix

Download QUESTI~1.MW

On Ubuntu 24.04 or LinuxMint 22.1 (based on Ubuntu 24.04) I have the problem with(Matlab) funtions functionality

Matlab[openlink]();
Error, (in Matlab:-openlink) There was a problem initializing the Matlab engine. Refer to ?Matlab,setup for help configuring your system to work with the Matlab-link.  The error was: Maple/Matlab Link: Can't start Matlab engine; environment variable $MATLAB_BASEDIR not set

+ other error mesages from CLI:

starting mmatlink
In connectToMatlab
/bin/csh: /opt/MATLAB/R2024b/bin/glnxa64/libbsd.so.0: version `LIBBSD_0.7' not found (required by /bin/csh)

MATLAB R2024b using obsolete libbsd ver. 0.4.2 !!! So this is probably the problem...

$MATLAB_BASEDIR is properly defined at maple script:

# In order to link to MATLAB from within Maple, correct the following path
# and uncomment the next four lines, or define the environment variable,
# $MATLAB_BASEDIR outside this script.
if [ -z "$MATLAB_BASEDIR" ] ; then
MATLAB_BASEDIR=/opt/MATLAB/R2024b
export MATLAB_BASEDIR
fi

# C-shell is required for link to MATLAB (sudo apt install csh)

Any help???

Good day, all.

Please, I am working on the following code but found out that the command solve is not displaying any result. Your assistance and suggestions would be appreciated. Thank you, and best regards.

 

restart;
NULL;
t := sum(a[j]*q^j, j = 0 .. 9);
H := diff(t, q);
F := diff(t, q $ 2);
p1 := simplify(eval(t, q = x)) = y[n];
p2 := simplify(eval(F, q = x)) = f[n];
p3 := simplify(eval(F, q = x + h/4)) = f[n + 1/4];
p4 := simplify(eval(F, q = x + h/2)) = f[n + 1/2];
p5 := simplify(eval(F, q = x + (3*h)/4)) = f[n + 3/4];
p6 := simplify(eval(F, q = x + h)) = f[n + 1];
p7 := simplify(eval(F, q = x + (5*h)/4)) = f[n + 5/4];
p8 := simplify(eval(F, q = x + (3*h)/2)) = f[n + 3/2];
p9 := simplify(eval(F, q = x + (7*h)/4)) = f[n + 7/4];
p10 := simplify(eval(F, q = x + 2*h)) = f[n + 2];
r := seq(a[i], i = 0 .. 9);
s := p || (1 .. 10);

solve({s}, {r});

in a lot of paper i see that they just use the Auxiliary function without mention any detail but now i have to find out how i can reach this function, always i used u=Rdiff(ln(f),x#1,2) or u=Rdiff(ln(f),y,x)  (eq17) in mw. and it is answer for me untill now without knowing finding, but i have to figure out how they reach this in more than 1000 paper i didn't see any explanation about that they just used just in one of the paper mentioned something  like a series which i think they used this series but again is so complicated for undrestanding , i will put some problem picture and now i want to know how find them  eq17 for any equation based on the series in last picture mentioned

 

second example

third example which is so  different from other and i don't know how author reach this point 

i have to find this auxiliary function by using something like series  as mentioned in other question? how i can use this series for finding my auxiliary function u= u_0+R*diff(ln(f),x)  


 

#picture one

NULL

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

Warning, A new binding for the name `gamma` has been created. The global instance of this name is still accessible using the :- prefix, :-`gamma`.  See ?protect for details.

 

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(2)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(3)

pde := diff(diff(u(x, y, z, t), t)+6*u(x, y, z, t)*(diff(u(x, y, z, t), x))+diff(u(x, y, z, t), `$`(x, 3)), x)+diff(alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+delta*(diff(u(x, y, z, t), z)), x)+mu*(diff(u(x, y, z, t), `$`(t, 2)))

diff(diff(u(x, y, z, t), t), x)+6*(diff(u(x, y, z, t), x))^2+6*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))+diff(diff(diff(diff(u(x, y, z, t), x), x), x), x)+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))+mu*(diff(diff(u(x, y, z, t), t), t))

(4)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, u(x, y, z, t) = a*u(x, y, z, t)))/a, a) end proc, expand(pde))

diff(diff(u(x, y, z, t), t), x)+diff(diff(diff(diff(u(x, y, z, t), x), x), x), x)+alpha*(diff(diff(u(x, y, z, t), x), x))+beta*(diff(diff(u(x, y, z, t), x), y))+delta*(diff(diff(u(x, y, z, t), x), z))+mu*(diff(diff(u(x, y, z, t), t), t)), 6*(diff(u(x, y, z, t), x))^2+6*u(x, y, z, t)*(diff(diff(u(x, y, z, t), x), x))

(5)

thetai := k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]; eval(pde_linear, u(x, y, z, t) = exp(thetai)); eq15 := isolate(%, w[i])

k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]

 

k[i]^2*w[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+k[i]^4*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+alpha*k[i]^2*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+beta*k[i]^2*l[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+delta*k[i]^2*r[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+mu*k[i]^2*w[i]^2*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])

 

w[i] = (1/2)*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu

(6)

eqf := f(x, y, z, t) = 1+eval(exp(thetai), eq15)

f(x, y, z, t) = 1+exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i])

(7)

eq17 := u(x, y, z, t) = R*(diff(ln(f(x, y, z, t)), `$`(x, 2)))

u(x, y, z, t) = R*((diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2)

(8)

eval(eq17, eqf); simplify(eval(pde, %)); sort([solve(%, R)]); eq17 := eval(eq17, R = simplify(%[2]))

u(x, y, z, t) = R*(k[i]^2*exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i])/(1+exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i]))-k[i]^2*(exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i]))^2/(1+exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i]))^2)

 

12*R*k[i]^6*exp(((1+(-4*beta*l[i]-4*delta*r[i]-4*k[i]^2-4*alpha)*mu)^(1/2)*t*k[i]+((2*y*l[i]+2*z*r[i]+2*x)*mu-t)*k[i]+2*eta[i]*mu)/mu)*(exp(((1+(-4*beta*l[i]-4*delta*r[i]-4*k[i]^2-4*alpha)*mu)^(1/2)*t*k[i]+((2*y*l[i]+2*z*r[i]+2*x)*mu-t)*k[i]+2*eta[i]*mu)/mu)-3*exp((1/2)*((1+(-4*beta*l[i]-4*delta*r[i]-4*k[i]^2-4*alpha)*mu)^(1/2)*t*k[i]+((2*y*l[i]+2*z*r[i]+2*x)*mu-t)*k[i]+2*eta[i]*mu)/mu)+1)*(R-2)/(1+exp((1/2)*((1+(-4*beta*l[i]-4*delta*r[i]-4*k[i]^2-4*alpha)*mu)^(1/2)*t*k[i]+((2*y*l[i]+2*z*r[i]+2*x)*mu-t)*k[i]+2*eta[i]*mu)/mu))^6

 

[0, 2]

 

u(x, y, z, t) = 2*(diff(diff(f(x, y, z, t), x), x))/f(x, y, z, t)-2*(diff(f(x, y, z, t), x))^2/f(x, y, z, t)^2

(9)

eq19 := eval(eq17, eqf)

u(x, y, z, t) = 2*k[i]^2*exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i])/(1+exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i]))-2*k[i]^2*(exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i]))^2/(1+exp(k[i]*((1/2)*t*(-1+(-4*beta*mu*l[i]-4*delta*mu*r[i]-4*mu*k[i]^2-4*alpha*mu+1)^(1/2))/mu+y*l[i]+z*r[i]+x)+eta[i]))^2

(10)

simplify(eq19)

u(x, y, z, t) = 2*k[i]^2*exp((1/2)*((1+(-4*beta*l[i]-4*delta*r[i]-4*k[i]^2-4*alpha)*mu)^(1/2)*t*k[i]+((2*y*l[i]+2*z*r[i]+2*x)*mu-t)*k[i]+2*eta[i]*mu)/mu)/(1+exp((1/2)*((1+(-4*beta*l[i]-4*delta*r[i]-4*k[i]^2-4*alpha)*mu)^(1/2)*t*k[i]+((2*y*l[i]+2*z*r[i]+2*x)*mu-t)*k[i]+2*eta[i]*mu)/mu))^2

(11)

pdetest(eq19, pde)

0

(12)

#second example

NULL

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

``

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(13)

declare(u(x, y, t))

u(x, y, t)*`will now be displayed as`*u

(14)

declare(f(x, y, t))

f(x, y, t)*`will now be displayed as`*f

(15)

pde := diff(u(x, y, t), x, t)+alpha*(diff(u(x, y, t), `$`(x, 4))+6*(diff(u(x, y, t), x))*(diff(u(x, y, t), `$`(x, 2))))+beta*(diff(u(x, y, t), `$`(y, 2)))+a*(diff(u(x, y, t), `$`(x, 2)))+b*(diff(u(x, y, t), x, y))

diff(diff(u(x, y, t), t), x)+alpha*(diff(diff(diff(diff(u(x, y, t), x), x), x), x)+6*(diff(u(x, y, t), x))*(diff(diff(u(x, y, t), x), x)))+beta*(diff(diff(u(x, y, t), y), y))+a*(diff(diff(u(x, y, t), x), x))+b*(diff(diff(u(x, y, t), x), y))

(16)

oppde := [op(expand(pde))]; u_occurrences := map(proc (i) options operator, arrow; numelems(select(has, [op([op(i)])], u)) end proc, oppde); linear_op_indices := ListTools:-SearchAll(1, u_occurrences); pde_linear := add(oppde[[linear_op_indices]]); pde_nonlinear := expand(simplify(expand(pde)-pde_linear))

diff(diff(u(x, y, t), t), x)+alpha*(diff(diff(diff(diff(u(x, y, t), x), x), x), x))+beta*(diff(diff(u(x, y, t), y), y))+a*(diff(diff(u(x, y, t), x), x))+b*(diff(diff(u(x, y, t), x), y))

 

6*alpha*(diff(u(x, y, t), x))*(diff(diff(u(x, y, t), x), x))

(17)

thetai := k[i]*(t*w[i]+y*l[i]+x)+eta[i]; eval(pde_linear, u(x, y, t) = 1+exp(thetai)); eq15 := isolate(%, w[i])

k[i]*(t*w[i]+y*l[i]+x)+eta[i]

 

k[i]^2*w[i]*exp(k[i]*(t*w[i]+y*l[i]+x)+eta[i])+alpha*k[i]^4*exp(k[i]*(t*w[i]+y*l[i]+x)+eta[i])+beta*k[i]^2*l[i]^2*exp(k[i]*(t*w[i]+y*l[i]+x)+eta[i])+a*k[i]^2*exp(k[i]*(t*w[i]+y*l[i]+x)+eta[i])+b*k[i]^2*l[i]*exp(k[i]*(t*w[i]+y*l[i]+x)+eta[i])

 

w[i] = -alpha*k[i]^2-beta*l[i]^2-b*l[i]-a

(18)

eqf := f(x, y, t) = 1+eval(exp(thetai), eq15)

f(x, y, t) = 1+exp(k[i]*((-alpha*k[i]^2-beta*l[i]^2-b*l[i]-a)*t+l[i]*y+x)+eta[i])

(19)

eq17 := u(x, y, t) = R*(diff(ln(f(x, y, t)), x))

u(x, y, t) = R*(diff(f(x, y, t), x))/f(x, y, t)

(20)

eval(eq17, eqf); simplify(eval(pde, %)); sort([solve(%, R)]); eq17 := eval(eq17, R = simplify(%[2]))

[0, 2]

 

u(x, y, t) = 2*(diff(f(x, y, t), x))/f(x, y, t)

(21)

eq19 := eval(eq17, eqf)

u(x, y, t) = 2*k[i]*exp(k[i]*((-alpha*k[i]^2-beta*l[i]^2-b*l[i]-a)*t+l[i]*y+x)+eta[i])/(1+exp(k[i]*((-alpha*k[i]^2-beta*l[i]^2-b*l[i]-a)*t+l[i]*y+x)+eta[i]))

(22)

M := eval(rhs(eq19), i = 1)

2*k[1]*exp(k[1]*(t*(-alpha*k[1]^2-beta*l[1]^2-b*l[1]-a)+y*l[1]+x)+eta[1])/(1+exp(k[1]*(t*(-alpha*k[1]^2-beta*l[1]^2-b*l[1]-a)+y*l[1]+x)+eta[1]))

(23)

simplify(eq19)

u(x, y, t) = 2*k[i]*exp(-alpha*t*k[i]^3+((-beta*l[i]^2-b*l[i]-a)*t+y*l[i]+x)*k[i]+eta[i])/(1+exp(-alpha*t*k[i]^3+((-beta*l[i]^2-b*l[i]-a)*t+y*l[i]+x)*k[i]+eta[i]))

(24)

pdetest(eq19, pde)

0

(25)

#third example which is so different and really i don't know how the author reach this point? which is diff(arctan(f),x)?

NULL

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

_local(gamma)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(26)

declare(u(x, y, z, t))

u(x, y, z, t)*`will now be displayed as`*u

(27)

declare(f(x, y, z, t))

f(x, y, z, t)*`will now be displayed as`*f

(28)

pde := diff(u(x, y, z, t), t)+6*u(x, y, z, t)^2*(diff(u(x, y, z, t), x))+diff(u(x, y, z, t), `$`(x, 3))+alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+delta*(diff(u(x, y, z, t), z))+lambda*(diff(u(x, y, z, t), x, t))+mu*(diff(u(x, y, z, t), `$`(t, 2)))

diff(u(x, y, z, t), t)+6*u(x, y, z, t)^2*(diff(u(x, y, z, t), x))+diff(diff(diff(u(x, y, z, t), x), x), x)+alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+delta*(diff(u(x, y, z, t), z))+lambda*(diff(diff(u(x, y, z, t), t), x))+mu*(diff(diff(u(x, y, z, t), t), t))

(29)

pde_linear, pde_nonlinear := selectremove(proc (term) options operator, arrow; not has((eval(term, u(x, y, z, t) = a*u(x, y, z, t)))/a, a) end proc, expand(pde))

diff(u(x, y, z, t), t)+diff(diff(diff(u(x, y, z, t), x), x), x)+alpha*(diff(u(x, y, z, t), x))+beta*(diff(u(x, y, z, t), y))+delta*(diff(u(x, y, z, t), z))+lambda*(diff(diff(u(x, y, z, t), t), x))+mu*(diff(diff(u(x, y, z, t), t), t)), 6*u(x, y, z, t)^2*(diff(u(x, y, z, t), x))

(30)

thetai := k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]; eval(pde_linear, u(x, y, z, t) = exp(thetai)); eq15 := isolate(%, w[i])

k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i]

 

k[i]*w[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+k[i]^3*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+alpha*k[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+beta*k[i]*l[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+delta*k[i]*r[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+lambda*k[i]^2*w[i]*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])+mu*k[i]^2*w[i]^2*exp(k[i]*(t*w[i]+y*l[i]+z*r[i]+x)+eta[i])

 

w[i] = (1/2)*(-lambda*k[i]-1+(-4*beta*mu*k[i]*l[i]-4*delta*mu*k[i]*r[i]+lambda^2*k[i]^2-4*mu*k[i]^3-4*alpha*mu*k[i]+2*lambda*k[i]+1)^(1/2))/(mu*k[i])

(31)

eqf := f(x, y, z, t) = 1+eval(exp(thetai), eq15)

f(x, y, z, t) = 1+exp(k[i]*((1/2)*(-lambda*k[i]-1+(-4*beta*mu*k[i]*l[i]-4*delta*mu*k[i]*r[i]+lambda^2*k[i]^2-4*mu*k[i]^3-4*alpha*mu*k[i]+2*lambda*k[i]+1)^(1/2))*t/(mu*k[i])+l[i]*y+r[i]*z+x)+eta[i])

(32)

eq17 := u(x, y, z, t) = R*(diff(ln(f(x, y, z, t)), x))

u(x, y, z, t) = R*((diff(diff(f(x, y, z, t), y), y))/f(x, y, z, t)-(diff(f(x, y, z, t), y))^2/f(x, y, z, t)^2)

(33)

eval(eq17, eqf); simplify(eval(pde, %)); sort([solve(%, R)]); eq17 := eval(eq17, R = simplify(%[2]))


 

Download F-series.mw

Thanks for any help!

Hi,

Ideas to remove the rank column (i.e., the first column displaying indices 1, 2, 3, ...) from my DataFrame?

Thanks

Q_DataFrame.mw

Hi

does anyone know when Maple Online Help will be up again?

Regards

Henning

Does Maple 2025 have a dark theme or GUI color customization?

Does this happen in Maple 2025?

Why when adding Physics:-Setup(assumingusesAssume = true): now Maple gives internal exception which can not even be cought?

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1849 and is the same as the version installed in this computer, created 2025, March 12, 12:37 hours Pacific Time.`

restart;

ode:=diff(y(x),x) = (ln(y(x))^2+2*_C1)^(1/2)*y(x);
sol:=y(x) = exp((-2*_C1)^(1/2))

diff(y(x), x) = (ln(y(x))^2+2*_C1)^(1/2)*y(x)

y(x) = exp((-2*_C1)^(1/2))

odetest(sol,ode) assuming positive;

-(ln(exp(I*2^(1/2)*_C1^(1/2)))^2+2*_C1)^(1/2)*exp(I*2^(1/2)*_C1^(1/2))

restart;

ode:=diff(y(x),x) = (ln(y(x))^2+2*_C1)^(1/2)*y(x);
sol:=y(x) = exp((-2*_C1)^(1/2)) ;

diff(y(x), x) = (ln(y(x))^2+2*_C1)^(1/2)*y(x)

y(x) = exp((-2*_C1)^(1/2))

Physics:-Setup(assumingusesAssume = true):

odetest(sol,ode) assuming positive;

Error, (in type/evalc/cx) too many levels of recursion

restart;

ode:=diff(y(x),x) = (ln(y(x))^2+2*_C1)^(1/2)*y(x);
sol:=y(x) = exp((-2*_C1)^(1/2)) ;

diff(y(x), x) = (ln(y(x))^2+2*_C1)^(1/2)*y(x)

y(x) = exp((-2*_C1)^(1/2))

Physics:-Setup(assumingusesAssume = false):

odetest(sol,ode) assuming positive;

-(ln(exp(I*2^(1/2)*_C1^(1/2)))^2+2*_C1)^(1/2)*exp(I*2^(1/2)*_C1^(1/2))

 

 

Download ode_test_with_physics_march_25_2025.mw

Dear Maple users

I have an Interactive Planck Curve working great in Maple 2023, but not in Maple 2024 and 2025. Can you explain why? When I drag in the Temperature slider it fails with the window: (in plottools:-getdata) range out of bounds. 

Is it a bug or has some command changed?

File attached.

Kind regards,

Erik

Planck_Curve.mw

Neither dragging the Maple Window to the screen edge nor Windows key & Arrow keys works on my
Windows 10 machine.

Is this only my installation?

Anything I can do get normal Windows windows behaviour back?

I've posted this issue in the beta forum for Maple previously, but apparently this issue was never addressed, so I am going to repost it here.

Contrary to Maple 2024, components like TextArea now ignore the general view zoom factor in Maple 2025.

I'll submit it as a software change request once Maple 2025 is on the list.

Hi all, I have recently started playing around with Maple after using Mathematica for years. I am trying to understand how to do pattern matching in Maple, and am being frustrated by the following example using indices:

patmatch(S[a],S[b::symbol])

I would expect this to evaluate to true when none of the symbols have been given other meanings, but this isn't the case. For the life of my I can't work out what I'm doing wrong, and have been unable to find an example of pattern matching with indices online. What am I missing here?

The equivalent statement using functions:

patmatch(S(a),S(b::symbol))

returns true as expected.

Many thanks in advance!

I’m absolutely delighted to announce the launch of Maple 2025!

Although you see a new release every year, new features take anything from a few fast-paced weeks to develop, to months of careful cultivation.

Working on so many features in parallel, each with varying time scales, isn't easy! We have to fastidiously manage and track our work.

So it's easy to lose ourselves in the daily minutiae of software development. To help us maintain perspective, we constantly ask ourselves questions like:

  • What user problem are we solving and how often does this problem occur?
  • Can we validate our proposed solution with preliminary user feedback?
  • Is this a solution to a problem that doesn't exist and will never exist, or are we pre-empting a future need?
  • Are we offering value to our users?

Given the answers, we course-correct to make sure we stay on track for our central mission - to make you happy, and to keep you coming back year-after-year.

With Maple 2025, I think we've smashed that goal. We have many new features that'll appeal to many different types of users - from students, educators and mathematicians, to engineers, scientists and technical professionals

Let me walk you through some of my personal highlights.

It’ll be difficult for anyone to miss this - Maple 2025 has a new interface! It’s a ribbon-based UI that look clean and contemporary, and helps you find and discover tools more quickly than before.

You have large, meaningful icons.

Items are logically grouped.

The ribbons is contextual. If you click on a plot, you get new tabs for interacting with and drawing on the plot.

A new Education tab collects pedagogical resources that were scattered around the interface in prior releases.

This is the biggest visual overhaul to Maple in many years. We hope you like it! 

We also appreciate that changes in look and feel can be divisive. Please rest assured that we will refine and finesse the interface with each successive release; your comments and suggestions are most welcome.

The new interface is available on Windows and Linux, and as a technology preview on Mac.

The right arrow key on my keyboard is wearing out…and it’s all because of Maple. I’m knee deep in Maple nearly every day entering equations, and I’m always using right-arrow to move the cursor. It gets kind of tedious!

This anecdote reflects some investigative work we did. We comprehensively examined our internal library of thousands of Maple worksheets and discovered that these three input patterns are extremely common.

Previously, you’d use the right-arrow key to move the cursor out of the exponential, division or subscript.

Now, in Maple 2025, when you

  • type ^, /, or enter a literal subscript with a double-underscore,
  • followed by a number or symbol
  • and then input another operator (such as +)

the operator is automatically inserted on the baseline (except when y = 1).

Of course, you can also make the cursor return to or stay in the exponent or denominator with a simple keystroke, when that is what is needed.

This is one of those little quality of life refinements that I’m very fond of - it’s a little visual and usability dopamine hit.

The sum command (and its typeset form) now indexes into vectors without you needing to spam unevaluation quotes all over your expression.

Maple 2024

Maple 2025

We’ve been integrating units deeper into the Maple system, release after release. Much of this is driven by our engineering users.

A few releases ago, we made int(numeric) compatible with units. With Maple 2025, you can now numerically differentiate  expressions and procedures that have units.

I’m a grizzled thermodynamics hack, so here’s an example in which I calculate the specific heat capacity of water by differentiating enthalpy with respect to temperature (and then confirm the result with the built-in value):

This is in addition to many other improvements to the units experience.

Although this is a part of Maple that I don’t touch often (my colleague Karishma takes point on the education side), I REALLY wish I’d had this when I was struggling with math.

You can now automatically generate unlimited variants of the same problem for students to solve with the Try Another feature, which has been added to Maple’s Check My Work tools (another feature I really could have used!). This is available for many common math principles, including factorization, simplification, integration and more.

This is just one of the improvements in Maple 2025 for teaching and learning.

 If you’ve ever found yourself going back and forth (and back and forth) between two large, almost identical-looking Maple expressions, trying to figure out how they are different, you’re going to love this one.  ExpressionTools is a new package that lets you compare the differences between two expressions.

I really like the use of color to highlight differences. Less squinting at the screen!

You can now run Maple Flow worksheets from Maple (you don’t need Maple Flow installed to do this). You can send parameters into the Flow worksheet and extract your desired results.

This means you can use the entire flexibility of Maple to analysis and manipulate your Flow worksheet. You could, for example:

  • Attach a Flow worksheet to a Maple workbook and create an interactive application
  • Carry out parameter studies of a Flow worksheet by evaluating it over many parameter sets in Maple
  • Create an Excel interface for a Flow worksheet using the Maple add-in for Excel

Simplify is one of those functions that literally tens of thousands of people use each day. Every time we make an incremental improvement, the cumulative benefits across our entire user base are significant.

We’ve refined simplify in a number of critical ways. For example, simplify now recognizes when exponentials can be profitably converted to hyperbolic trig functions:

The analysis of many scientific phenomena result in Laplace transforms that do not have a symbolic inverse which can be expressed in terms of elementary functions. This includes applications in heat transfer, fluid mechanics, fractional diffusion processes, control systems and electrical transmission.

For example, this monster Laplace transform results from an analysis of voltage on a transmission line:

You can now numerically invert this transform courtesy of an enhancement to inttrans:-invlaplace - a fast quadrature method.

I’ve saved what I think has the most future potential for last.

I’m sure nearly all of you have experimented with the various AI tools. They’re an inevitable part of our present and future, whether we're comfortable with it or not.

This is something we've been mulling over for some time.

  • In Maple 2019, the DeepLearning package made its debut. This package provides tools for machine learning, supporting operations such as classification and regression using neural networks.
  • In Maple 2024, we introduced an AI-powered formula lookup feature.

In Maple 2025, we’re giving you an early-stage technology preview of AI-powered document generation.

You can automatically generate worksheet content by prompting an AI, and then gradually refine the content

If you’re an educator, you might want some content that describes applications of calculus. So you might ask the AI “How do I derive the formula for the area of a circle” by entering your prompt into this text box:

This is the worksheet content that may be returned:

If you’re structural engineer who wants to know how to calculate the hardness of concrete, you might ask the AI: “How do I calculate the compressive strength of slow hardening concrete as a function of time? Use the CEB-FIP Model Code 90. Include a worked example with Maple code”.

This worksheet content that could be generated (note the live Maple code):

We’re labelling AI-generated worksheet content as a technology preview. You might see

  • text that might be misleading (but sounds plausible)
  • code that doesn’t work (but looks plausible)
  • or different results each time you click “Generate Document”

For the moment, I would not rely on AI-generated worksheet content without realistic expectations, a healthy dose of scepticism and a modicum of detached analysis. But AI models are rapidly growing in robustness, and we want to position ourselves to best exploit their future potential. The next few years will be VERY exciting.

We can never cover everything in a short blog post like this. So if you want to know more, head on over to the What’s New pages for Maple 2025!

1 2 3 4 5 6 7 Last Page 1 of 2192