Maple 2015 Questions and Posts

These are Posts and Questions associated with the product, Maple 2015

Hello Everyone;

Hope you are fine. My problem is convert into nonlinear system of ODE's and further i need make the code of apply rk-4 for the formulated ODE's. Kindly guide me. The file is attached. I am waiting for your kind response.

Thanks

Question3.mw

 


 

restart

``

var111 := [C[1, 1](t), C[1, 2](t), C[1, 3](t), C[2, 1](t), C[2, 2](t), C[2, 3](t), C[3, 1](t), C[3, 2](t), C[3, 3](t), ZETA[1](t), ZETA[2](t), ZETA[3](t)]:

sysM := [diff(C[1, 1](t), t) = -(3/16)*Pi*(C[2, 1](t)+4*C[1, 1](t)), diff(C[1, 2](t), t) = -5*Pi*(C[2, 2](t)+4*C[1, 2](t)), diff(C[1, 3](t), t) = -(945/4)*Pi*(C[2, 3](t)+4*C[1, 3](t)), diff(C[2, 1](t), t) = -(1/8)*Pi*(C[3, 1](t)+6*C[2, 1](t)+6*C[1, 1](t)), diff(C[2, 2](t), t) = -10.4719755119659774615421446110*C[3, 2](t)-62.8318530717958647692528676658*C[2, 2](t)-62.8318530717958647692528676658*C[1, 2](t)-2.38361014507273884349657421134*10^15*ZETA[1](t)*C[1, 1](t), diff(C[2, 3](t), t) = -494.800842940392435057866332869*C[3, 3](t)-2968.80505764235461034719799721*C[2, 3](t)-2968.80505764235461034719799721*C[1, 3](t)-1.35954060126371030332767566128*10^16*ZETA[1](t)*C[1, 2](t)-1.35954060126371030332767566128*10^16*ZETA[2](t)*C[1, 1](t), diff(C[3, 1](t), t) = -(3/8)*Pi*(2*C[3, 1](t)+3*C[2, 1](t)), diff(C[3, 2](t), t) = -62.8318530717958647692528676658*C[3, 2](t)-94.2477796076937971538793014986*C[2, 2](t)-1.12625579354686910355213131486*10^17*ZETA[1](t)*C[2, 1](t), diff(C[3, 3](t), t) = -2968.80505764235461034719799721*C[3, 3](t)-4453.20758646353191552079699581*C[2, 3](t)-6.42382934097103118322326749959*10^17*ZETA[1](t)*C[2, 2](t)-6.42382934097103118322326749959*10^17*ZETA[2](t)*C[2, 1](t), diff(ZETA[1](t), t) = -(1/3)*C[2, 1](t), diff(ZETA[2](t), t) = -(1/3)*C[2, 2](t), diff(ZETA[3](t), t) = -(1/3)*C[2, 3](t)]:

ICS := [C[1, 1] = 0.998238989835086492681507032141e-1, C[1, 2] = -0.137051161872492529218951625903e-1, C[1, 3] = -0.629146365720807620696267926206e-2, C[2, 1] = 0.923300332435106257640735267282e-1, C[2, 2] = -0.126762613568515069966837491839e-1, C[2, 3] = -0.581915808273854734025727975244e-2, C[3, 1] = -0.190143920352772604950256237747e-1, C[3, 2] = 0.261054171122321128306306984717e-2, C[3, 3] = 0.119839394846335068333097530793e-2, ZETA[1] = .464598743230343884242076682299, ZETA[2] = .429720916976380440572769663279, ZETA[3] = -0.884964696113332752036741498040e-1]:

``


 

Download Question3.mw

Hello Everyone;

Hope you are fine. I have set of following ODE's;

Every variable has two ODE's. I need to take one ODE for each variable. Is that any way?
I am waiting for your kind response.

Thanks

Question2.mw

Hello Everyone;Hope you are fine. I am trying to convert the nonlinear system of ODE's into matric form using the following comand but not working it.

 

Kindly help me to do this. The cose is pasted and also attached. I am waiting for your kind response.

Thanks.

Question1_NEW.mw


 

restart; with(PDEtools, Solve); with(LinearAlgebra); with(plots); with(plottools); printlevel := 2

NULL

ZETA[0] := proc (t) options operator, arrow; 0 end proc:

sys222 := [(3/16)*Pi*C[2, 1](t)+(3/4)*Pi*C[1, 1](t)+diff(C[1, 1](t), t) = 0, 5*Pi*C[2, 2](t)+20*Pi*C[1, 2](t)+diff(C[1, 2](t), t) = 0, 800*ZETA[0](t)*C[1, 1](t)*Pi+(3/4)*Pi*C[2, 1](t)+(3/4)*Pi*C[1, 1](t)+diff(C[2, 1](t), t) = 0, 4320*ZETA[1](t)*C[1, 1](t)*Pi+4320*ZETA[0](t)*C[1, 2](t)*Pi+20*Pi*C[2, 2](t)+20*Pi*C[1, 2](t)+diff(C[2, 2](t), t) = 0, diff(ZETA[1](t), t)+(1/3)*C[2, 1](t) = 0, diff(ZETA[2](t), t)+(1/3)*C[2, 2](t) = 0]

[(3/16)*Pi*C[2, 1](t)+(3/4)*Pi*C[1, 1](t)+diff(C[1, 1](t), t) = 0, 5*Pi*C[2, 2](t)+20*Pi*C[1, 2](t)+diff(C[1, 2](t), t) = 0, (3/4)*Pi*C[2, 1](t)+(3/4)*Pi*C[1, 1](t)+diff(C[2, 1](t), t) = 0, 4320*ZETA[1](t)*C[1, 1](t)*Pi+20*Pi*C[2, 2](t)+20*Pi*C[1, 2](t)+diff(C[2, 2](t), t) = 0, diff(ZETA[1](t), t)+(1/3)*C[2, 1](t) = 0, diff(ZETA[2](t), t)+(1/3)*C[2, 2](t) = 0]

(1)

var1 := {C[1, 1](t), C[1, 2](t), C[2, 1](t), C[2, 2](t), ZETA[1](t), ZETA[2](t)};

{C[1, 1](t), C[1, 2](t), C[2, 1](t), C[2, 2](t), ZETA[1](t), ZETA[2](t)}

(2)

f, diffs := eval(GenerateMatrix(`~`[`-`](`~`[rhs](sys222), `~`[lhs](sys222)), var1))

f, diffs := Matrix(6, 6, {(1, 1) = -(3/4)*Pi, (1, 2) = 0, (1, 3) = -(3/16)*Pi, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (2, 1) = 0, (2, 2) = -20*Pi, (2, 3) = 0, (2, 4) = -5*Pi, (2, 5) = 0, (2, 6) = 0, (3, 1) = -(3/4)*Pi, (3, 2) = 0, (3, 3) = -(3/4)*Pi, (3, 4) = 0, (3, 5) = 0, (3, 6) = 0, (4, 1) = 0, (4, 2) = -20*Pi, (4, 3) = 0, (4, 4) = -20*Pi, (4, 5) = 0, (4, 6) = 0, (5, 1) = 0, (5, 2) = 0, (5, 3) = -1/3, (5, 4) = 0, (5, 5) = 0, (5, 6) = 0, (6, 1) = 0, (6, 2) = 0, (6, 3) = 0, (6, 4) = -1/3, (6, 5) = 0, (6, 6) = 0}), Vector(6, {(1) = diff(C[1, 1](t), t), (2) = diff(C[1, 2](t), t), (3) = diff(C[2, 1](t), t), (4) = 4320*ZETA[1](t)*C[1, 1](t)*Pi+diff(C[2, 2](t), t), (5) = diff(ZETA[1](t), t), (6) = diff(ZETA[2](t), t)})

(3)

NULL


 

Download Question1_NEW.mw

Hello Everyone.

Hope you are fine. I have two following queries

1. Are there any builtin commands in Maple, so that we can apply the finite difference method directly to the PDE's?

2. We all know about "BurdenFaires, and Burden's NUMERICAL ANALYSIS" book. The important Maple codes are discussed on this book. Is there any website where I can take these codes on Maple files?

I am waiting for kind response.

Thanks

I have  a:=1; b:= 2; c:=1; d:= 6; e:= 2;

P:= a*b*c*d*e;

How do I get  P:=1*2*1*6*2  result with the Maple command?

Thank you for your help!

     Hello everyone !

     I have a problem asking for help:

     In the Oxy coordinate plane, for rectangles are limited by straight lines: x=1, x=7, y=1, y=9 and there are 63 points distinguished from coordinates that are integers located on this rectangle.

     These include:

  • 7 black points with coordinates are listed in the list:

[[1,1], [2,1], [3,1], [4,1], [5,1], [6,1], [7,1]].

  • 7 red points with coordinates are listed in the list:

[[1,2], [2,2], [3,2], [4,2], [5,2], [6,2], [7,2]].

  • 8 yellow points with coordinates are listed in the list:

[[1,3], [4,3], [5,3], [7,3], [1,4], [4,4], [5,4], [7,4] ].

  • 6 pink points with coordinates are listed in the list:

[[2,3], [3,3], [6,3], [2,4], [3,4], [6,4]].

  • 8 brown points with coordinates are listed in the list:

[[1,5], [3,5], [5,5], [7,5], [1,6], [3,6], [5,6], [7,6]].

  • 6 purple points with coordinates are listed:

[[2,5], [4,5], [6,5], [2,6], [4,6], [6,6]].

  • 9 blue points with coordinates are listed in the list:

[[1,7], [2,7], [7,7], [1,8], [2,8], [7,8], [1,9], [2,9], [7,9]].

  • 6 green points with coordinates are listed:

[[3,7], [5,7], [3,8], [5,8], [3,9], [5,9]].

  • 6 orange points with coordinates are listed in the list:

[[4,7], [6,7], [4,8], [6,8], [4,9], [6,9]].

     Help me find the integer coordinates of the 63 points when arranging them on the rectangle knowing that their HorizontalCoord has not changed, and the VerticalCoord of the points of the same color is always different with the Maple command.

     Thank you so much for your help!

Hi!

Somebody know how Maple computes (numerically) the values of the Z function? That is, if we run the command evalf(Z(3)), How compute Maple this number?

Many thanks in advance for your comments.

Dear Users! Hope everyone is fine here. I have some points x_0,x_1,..,x_N and corresponding to these number have values y_0, _1, ..., y_N as,

restart
a := 1; b := 5; h := 1; f := 1/x; N := (b-a)/h;
for i from 0 while i <= N do x[i] := h*i+a; y[i] := eval(f, x = x[i]) end do;

Now I want to develope the following difference table using the values of y_0, y_1, ..., y_N as,

where difference column generated using the following concept

Please help me in this regard. Thanks in advance

Hello Everyone;

I have 2D domain meshing defined. I need to plot it like figure given at end. I need to heighlights boundry and ineer points saperately and need to mention the points on it. Domain and mesh is given in Maple file attched. Kindly guide me.

Thanks

Download Question2.mw

Hello Everyone;

Hope you are fine. I am solving system of odes using rk-4 method. For this purpose I formulate the "residual" (on maple file) which is further function of "x" and "y". With the help of discritization point further I convert "residual" into system of ode's. Then i used "sys111 := solve(odes_Combine, `~`[diff](var, t))" to simplify the system. Finnally i applied RK-1. Code is pasted and attached. This all process is for "N=4". When i increase the value of "N", number of Odes increase accordingly. With increasing value of "N" the comand "sys111 := solve(odes_Combine, `~`[diff](var, t))" taking a lot of time due to heavy computation. Is that any way to proceed without this comand for rk-1?

Question1.mw

 


 

restart; with(PDEtools, Solve); with(LinearAlgebra); with(plots); DD := 30; Digits := DD; N := 4; nu := 1.0; t0, tf := 0, 1; Ntt := 10; h := evalf((tf-t0)/(Ntt-1)); xmin := 0; xmax := Pi; `&Delta;xx` := 1.0*xmax/N; ymin := 0; ymax := xmax; `&Delta;yy` := 1.0*ymax/N

0, 1

 

.111111111111111111111111111111

 

.785398163397448309615660845820

 

.785398163397448309615660845820

(1)

residual := 1.000000000*(diff(A[0, 0](t), t))-32.00000000*A[2, 0](t)-32.00000002*A[0, 2](t)+(diff(A[1, 1](t), t))*(4.000000001-8.000000003*y-8.000000003*x+16.00000000*x*y)+(diff(A[1, 0](t), t))*(-2.000000000+4.000000000*x)+(diff(A[0, 3](t), t))*(-4.000000000+40.00000000*y-95.99999994*y^2+64.00000001*y^3)+(diff(A[0, 2](t), t))*(3.000000000-16.00000001*y+16.00000001*y^2)+(diff(A[0, 1](t), t))*(-2.000000001+4.000000000*y)-A[3, 3](t)*(768.0000000-7680.000000*y+18432.00000*y^2-12288.00000*y^3-1536.000000*x+15360.00000*x*y-36863.99998*x*y^2+24576.00000*x*y^3)-A[3, 2](t)*(-576.0000002+3072.000000*y-3072.000000*y^2+1152.000000*x-6144.000000*x*y+6144.000000*x*y^2)-A[3, 1](t)*(384.0000000-768.0000000*y-768.0000006*x+1536.000000*x*y)-A[3, 0](t)*(-192.0000000+384.0000000*x)-A[2, 3](t)*(-128.0000000+1280.000000*y-3072.000000*y^2+2048.000000*y^3)-A[2, 2](t)*(96.00000000-512.0000002*y+512.0000002*y^2)-A[2, 1](t)*(-64.00000002+128.0000000*y)-A[3, 3](t)*(767.9999998-1536.000000*y-7679.999998*x+15360.00000*x*y+18432.00000*x^2-36864.00000*x^2*y-12288.00000*x^3+24576.00000*x^3*y)-A[2, 3](t)*(-575.9999998+1152.000000*y+3072.000000*x-6144.000000*x*y-3072.000000*x^2+6144.000000*x^2*y)-A[3, 2](t)*(-128.0000000+1280.000000*x-3072.000000*x^2+2048.000000*x^3)-A[1, 2](t)*(-64.00000002+128.0000000*x)-A[1, 3](t)*(384.0000000-768.0000000*y-767.9999998*x+1536.000000*x*y)-A[2, 2](t)*(96.00000004-512.0000002*x+512.0000002*x^2)+(diff(A[3, 3](t), t))*(16.00000000-160.0000000*y+383.9999999*y^2-256.0000000*y^3-160.0000000*x+1600.000000*x*y-3839.999999*x*y^2+2560.000000*x*y^3+384.0000000*x^2-3840.000000*x^2*y+9215.999998*x^2*y^2-6144.000001*x^2*y^3-256.0000000*x^3+2560.000000*x^3*y-6143.999998*x^3*y^2+4096.000000*x^3*y^3)+(diff(A[3, 2](t), t))*(-12.00000000+64.00000002*y-64.00000002*y^2+120.0000000*x-640.0000002*x*y+640.0000002*x*y^2-288.0000001*x^2+1536.000000*x^2*y-1536.000000*x^2*y^2+192.0000000*x^3-1024.000000*x^3*y+1024.000000*x^3*y^2)+(diff(A[3, 1](t), t))*(8.000000003-16.00000000*y-80.00000003*x+160.0000000*x*y+192.0000000*x^2-384.0000000*x^2*y-128.0000001*x^3+256.0000000*x^3*y)-A[0, 3](t)*(-191.9999999+384.0000000*y)+(diff(A[3, 0](t), t))*(-4.000000000+40.00000000*x-96.00000002*x^2+64.00000001*x^3)+(diff(A[2, 3](t), t))*(-12.00000000+120.0000000*y-287.9999999*y^2+192.0000000*y^3+64.00000000*x-640.0000000*x*y+1536.000000*x*y^2-1024.000000*x*y^3-64.00000000*x^2+640.0000000*x^2*y-1536.000000*x^2*y^2+1024.000000*x^2*y^3)+(diff(A[2, 2](t), t))*(8.999999999-48.00000002*y+48.00000002*y^2-48.00000000*x+256.0000001*x*y-256.0000001*x*y^2+48.00000000*x^2-256.0000001*x^2*y+256.0000001*x^2*y^2)+(diff(A[2, 1](t), t))*(-6.000000002+12.00000000*y+32.00000001*x-64.00000000*x*y-32.00000001*x^2+64.00000000*x^2*y)+(diff(A[2, 0](t), t))*(3.000000000-16.00000000*x+16.00000000*x^2)+(diff(A[1, 3](t), t))*(8.000000003-80.00000003*y+192.0000000*y^2-128.0000000*y^3-16.00000000*x+160.0000000*x*y-383.9999999*x*y^2+256.0000000*x*y^3)+(diff(A[1, 2](t), t))*(-6.000000000+32.00000001*y-32.00000001*y^2+12.00000000*x-64.00000002*x*y+64.00000002*x*y^2):

for i2 from 0 while i2 <= N-1 do odes11[0, i2] := simplify(eval(residual, [x = 0, y = i2*ymax/(N-1)])) = 0; odes11[N-1, i2] := simplify(eval(residual, [x = xmax, y = i2*ymax/(N-1)])) = 0 end do:

8

(2)

odes_Combine := {seq(seq(odes11[i, j], i = 0 .. N-1), j = 0 .. N-1)}:

sys111 := solve(odes_Combine, `~`[diff](var, t)):

ICS1 := {A[0, 0](0) = .444104979341173495851499233536, A[0, 1](0) = .198590961107083475045046921568, A[0, 2](0) = -0.167999146492673347540059075790e-1, A[0, 3](0) = -0.869171705198864625153083083786e-3, A[1, 0](0) = .198590961107083475045046921567, A[1, 1](0) = 0.888041604305848495880917177172e-1, A[1, 2](0) = -0.751243816645416714455046298805e-2, A[1, 3](0) = -0.388668563362181391196975707953e-3, A[2, 0](0) = -0.167999146492673347540059075793e-1, A[2, 1](0) = -0.751243816645416714455046298835e-2, A[2, 2](0) = 0.635518954643030408055028178047e-3, A[2, 3](0) = 0.328796368925226898150257328603e-4, A[3, 0](0) = -0.869171705198864625153083083734e-3, A[3, 1](0) = -0.388668563362181391196975707910e-3, A[3, 2](0) = 0.328796368925226898150257328592e-4, A[3, 3](0) = 0.170108305076655667148638268230e-5}:

f, diffs := eval(GenerateMatrix(`~`[`-`](`~`[rhs](sys222), `~`[lhs](sys222)), var1))

f, diffs := Matrix(16, 16, {(1, 1) = 0, (1, 2) = 0, (1, 3) = 32., (1, 4) = 0.494812294492356575865153049102e-27, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0.120000000000000000001649374315e-7, (1, 8) = -0.107999999927999999998854228220e-6, (1, 9) = 32.0000000200000000000000000000, (1, 10) = -0.199999999999999999998350625685e-7, (1, 11) = 0.249999999859375000081951230025e-7, (1, 12) = -0.700000000203125000132933066388e-7, (1, 13) = 0.196000000000000000000494812294e-6, (1, 14) = 0.292000000072000000001204420404e-6, (1, 15) = -0.458000000726562499721923065316e-6, (1, 16) = 0.682900000453875000014432471170e-5, (2, 1) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = -0.377561971763063776372092766396e-27, (2, 5) = 0, (2, 6) = 0, (2, 7) = 32.0000000000000000000000000000, (2, 8) = 0.719999999999999999998878327317e-7, (2, 9) = 0, (2, 10) = -0.125853990587687925457364255465e-27, (2, 11) = 0.906355783222184042180194163758e-27, (2, 12) = 0.135077431625990682476379737660e-25, (2, 13) = 96.0000000000000000000000000001, (2, 14) = 0.719999999999999999989394464730e-7, (2, 15) = -0.549999999914062500010607576813e-6, (2, 16) = 0.202000000048749999997617654955e-5, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0.855583965847405137008732798371e-28, (3, 5) = 0, (3, 6) = 0, (3, 7) = -0.257808598553160159742093659020e-28, (3, 8) = -0.377264825438544618607975742790e-27, (3, 9) = 0, (3, 10) = 0.285194655282468379002910932790e-28, (3, 11) = 31.9999999925000000046874999970, (3, 12) = 0.326865301360930805043812804544e-26, (3, 13) = -0.773425795659480479226280977060e-28, (3, 14) = -0.313579545661510489918366218529e-27, (3, 15) = -0.149999999882812500075601322065e-6, (3, 16) = 0.324999999796875000093151106353e-6, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = -0.384112032581666751703476763000e-29, (4, 5) = 0, (4, 6) = 0, (4, 7) = 0.265935771387910529598689301718e-29, (4, 8) = 0.399754551928273029196600976861e-28, (4, 9) = 0, (4, 10) = -0.128037344193888917234492254333e-29, (4, 11) = 0.173718566046259004921454811253e-28, (4, 12) = -0.553232882345597286403223410199e-27, (4, 13) = 0.797807314163731588796067905154e-29, (4, 14) = 0.427742792008362106477653509643e-28, (4, 15) = 31.9999999950000000007812499996, (4, 16) = 0.583137134641934297089284679036e-26, (5, 1) = 0, (5, 2) = 0, (5, 3) = 0, (5, 4) = 96.0000000000000000000000000001, (5, 5) = 0, (5, 6) = 0, (5, 7) = -0.125853990576278889372664086359e-27, (5, 8) = -0.780000000000000000003341913398e-7, (5, 9) = 0, (5, 10) = 32.0000000000000000000000000000, (5, 11) = 0.155215894719877680168982772333e-28, (5, 12) = 0.179999999957812500011610427218e-6, (5, 13) = -0.377561971728836668117992259076e-27, (5, 14) = 0.121999999999999999999928850210e-6, (5, 15) = 0.957742348838601502120463181878e-26, (5, 16) = 0.413250000106171874986265224797e-5, (6, 1) = 0, (6, 2) = 0, (6, 3) = 0, (6, 4) = -0.821348457439978150891092618719e-28, (6, 5) = 0, (6, 6) = 0, (6, 7) = -0.273782819058452669879599110853e-28, (6, 8) = 95.9999999999999999999999999997, (6, 9) = 0, (6, 10) = -0.273782819146659383630364206240e-28, (6, 11) = 0.294057068291966163490658104104e-27, (6, 12) = -0.253498333196688505804635565222e-27, (6, 13) = -0.821348457175358009638797332558e-28, (6, 14) = 95.9999999999999999999999999997, (6, 15) = 0.212121033252676198558579131631e-28, (6, 16) = 0.649999999999999999980740836208e-6, (7, 1) = 0, (7, 2) = 0, (7, 3) = 0, (7, 4) = 0.186123768597305842557431955743e-28, (7, 5) = 0, (7, 6) = 0, (7, 7) = 0.214460223691860703703477959545e-28, (7, 8) = 0.317673924810187018756335641686e-28, (7, 9) = 0, (7, 10) = 0.620412561991019475191439852476e-29, (7, 11) = 0.753895620987131323747484439705e-28, (7, 12) = 95.9999999700000000093749999970, (7, 13) = 0.643380671075582111110433878635e-28, (7, 14) = 0.348244413167432788858088750543e-30, (7, 15) = -0.195081345734130085456007896310e-26, (7, 16) = 0.162499999949218750020914346448e-6, (8, 1) = 0, (8, 2) = 0, (8, 3) = 0, (8, 4) = -0.835597462589282450911924283887e-30, (8, 5) = 0, (8, 6) = 0, (8, 7) = -0.168983990754200234313642237958e-29, (8, 8) = 0.255518912827614707211229660888e-30, (8, 9) = 0, (8, 10) = -0.278532487529760816970641427962e-30, (8, 11) = -0.912041057783558505972445866734e-29, (8, 12) = 0.152862192823148604497047654434e-28, (8, 13) = -0.506951972262600702940926713875e-29, (8, 14) = 0.212025424265299406832408057357e-29, (8, 15) = 0.158222957859551043617221056103e-27, (8, 16) = 96.0000000000000000000000000002, (9, 1) = 0, (9, 2) = 0, (9, 3) = 0, (9, 4) = -0.773425795970180636575593526265e-28, (9, 5) = 0, (9, 6) = 0, (9, 7) = 0.285194655390087477280223771532e-28, (9, 8) = -0.241100887243597349107036806234e-27, (9, 9) = 0, (9, 10) = -0.257808598656726878858531175422e-28, (9, 11) = 32.0000000125000000000000000004, (9, 12) = 0.999999999843750000174507862823e-8, (9, 13) = 0.855583966170262431840671314596e-28, (9, 14) = -0.104420360226003256663758222866e-27, (9, 15) = 0.600000000000000000027497059897e-7, (9, 16) = 0.900000000046874999977170328969e-6, (10, 1) = 0, (10, 2) = 0, (10, 3) = 0, (10, 4) = 0.643380671224932994877201196193e-28, (10, 5) = 0, (10, 6) = 0, (10, 7) = 0.620412562284547562356437593923e-29, (10, 8) = -0.782971264706294608812923943602e-28, (10, 9) = 0, (10, 10) = 0.214460223741644331625733732064e-28, (10, 11) = -0.117716452160171050903010422567e-27, (10, 12) = -0.324249553007268016939337229307e-26, (10, 13) = 0.186123768685364268706931278177e-28, (10, 14) = 0.210791990319339808396292213890e-27, (10, 15) = 95.9999999999999999999999999990, (10, 16) = 0.601289924118833452883693495332e-26, (11, 1) = 0, (11, 2) = 0, (11, 3) = 0, (11, 4) = -0.145794923079456919867181504653e-28, (11, 5) = 0, (11, 6) = 0, (11, 7) = -0.485983076931523066223938348837e-29, (11, 8) = 0.703045314344404024740114826873e-28, (11, 9) = 0, (11, 10) = -0.485983076931523066223938348844e-29, (11, 11) = 0.154061910958820937154327251969e-28, (11, 12) = 0.586431085917646726477197552134e-27, (11, 13) = -0.145794923079456919867181504651e-28, (11, 14) = 0.327116591013740734656854347967e-28, (11, 15) = 0.186427448215109472676159333906e-27, (11, 16) = 0.727156843809743343593213639608e-26, (12, 1) = 0, (12, 2) = 0, (12, 3) = 0, (12, 4) = 0.654542236344866764687318521378e-30, (12, 5) = 0, (12, 6) = 0, (12, 7) = 0.382930495785563772474113758933e-30, (12, 8) = -0.765771840140216030924576968705e-29, (12, 9) = 0, (12, 10) = 0.218180745448288921562439507126e-30, (12, 11) = -0.591357855581324858104400230586e-30, (12, 12) = 0.164090126078907967224367765176e-28, (12, 13) = 0.114879148735669131742234127680e-29, (12, 14) = -0.733606589050003370341598338138e-29, (12, 15) = 0.279365514914751130455040418258e-28, (12, 16) = -0.138821502091830040436688448298e-26, (13, 1) = 0, (13, 2) = 0, (13, 3) = 0, (13, 4) = 0.797807313447167969819086050522e-29, (13, 5) = 0, (13, 6) = 0, (13, 7) = -0.128037344212226672551029214969e-29, (13, 8) = 0.262885403001488132812902903311e-28, (13, 9) = 0, (13, 10) = 0.265935771149055989939695350174e-29, (13, 11) = -0.349411324204567081081722661297e-28, (13, 12) = 31.9999999950000000007812499995, (13, 13) = -0.384112032636680017653087644907e-29, (13, 14) = 0.119403167752948354510697994999e-28, (13, 15) = -0.452504513537780686847551220204e-27, (13, 16) = 0.149999999976562500006592455374e-6, (14, 1) = 0, (14, 2) = 0, (14, 3) = 0, (14, 4) = -0.506951972202161632959380608780e-29, (14, 5) = 0, (14, 6) = 0, (14, 7) = -0.278532487328297250365487744273e-30, (14, 8) = 0.100313589069551339782957918087e-28, (14, 9) = 0, (14, 10) = -0.168983990734053877653126869593e-29, (14, 11) = 0.876003797684675659527198447426e-29, (14, 12) = 0.309396538522635365039103628797e-27, (14, 13) = -0.835597461984891751096463232820e-30, (14, 14) = -0.169500948608311509445295032991e-28, (14, 15) = 0.104005614175784513152332127959e-27, (14, 16) = 95.9999999999999999999999999996, (15, 1) = 0, (15, 2) = 0, (15, 3) = 0, (15, 4) = 0.114879148750778899237620653952e-29, (15, 5) = 0, (15, 6) = 0, (15, 7) = 0.218180745498654813213727928025e-30, (15, 8) = -0.867251219227502985269662069579e-29, (15, 9) = 0, (15, 10) = 0.382930495835929664125402179841e-30, (15, 11) = -0.267864188359583543656192185112e-29, (15, 12) = -0.387791753042961333529856694716e-28, (15, 13) = 0.654542236495964439641183784074e-30, (15, 14) = -0.523627245808308931882255033583e-29, (15, 15) = 0.369199231034048272468531636165e-28, (15, 16) = -0.123439611085554953594747603640e-26, (16, 1) = 0, (16, 2) = 0, (16, 3) = 0, (16, 4) = -0.515746730509193430144544493936e-31, (16, 5) = 0, (16, 6) = 0, (16, 7) = -0.171915576836397810048181497977e-31, (16, 8) = 0.857347676859656256220355661580e-30, (16, 9) = 0, (16, 10) = -0.171915576836397810048181497979e-31, (16, 11) = 0.182597096197097886514765184582e-30, (16, 12) = -0.370616214664321329971866697584e-29, (16, 13) = -0.515746730509193430144544493932e-31, (16, 14) = 0.865925397235117524875431212196e-30, (16, 15) = -0.750058451906403875595888288641e-29, (16, 16) = 0.183460376006651920829411996611e-27}), Vector(16, {(1) = diff(A[0, 0](t), t), (2) = diff(A[0, 1](t), t), (3) = diff(A[0, 2](t), t), (4) = diff(A[0, 3](t), t), (5) = diff(A[1, 0](t), t), (6) = diff(A[1, 1](t), t), (7) = diff(A[1, 2](t), t), (8) = diff(A[1, 3](t), t), (9) = diff(A[2, 0](t), t), (10) = diff(A[2, 1](t), t), (11) = diff(A[2, 2](t), t), (12) = diff(A[2, 3](t), t), (13) = diff(A[3, 0](t), t), (14) = diff(A[3, 1](t), t), (15) = diff(A[3, 2](t), t), (16) = diff(A[3, 3](t), t)})

(3)

``

npts := Ntt:

``

``

``

``


 

Download Question1.mw

 

Hello Everyone;

Hope you are fine. Solve comand is solving Equation saperately but samultanously. Kindly guide me about this. I have uploaded and pasted the code as well. The last comand (in red color) is not working. I am waiting for the kind response.

Thanks

QuestionNo1.mw

 

 

 

Hello Everyone;

Hope you are fine. I am applying rk-4 and Runge-Kutta-Fehlberg method for system of odes but there is no difference in the result of these method. Can anybody guide about that for my problem. I have uploaded the code. Thanks in advance.

Question#3.mw

 

Hello;

Hope you are fine. Can i apply numerical scheme on maple for the following problem. This in integro-differential equation i think. Waiting for kind response.

Thanks

 

Hello; 

Hope you are fine. I am devolping code for rk-2 at N=8 and further comparing my results with bultin comands on rk-2 on maple. My results is not matching with maple buliton commands. I am confused and tried a lot but not able to find the mistake. I have attached code. May be i have mistake in the calculation of K_1 and K_2. Kindly guide me please. Thanks a lot in advance.

Question_(1)_Posted.mw


 

 

3 4 5 6 7 8 9 Last Page 5 of 72