Maple 2016 Questions and Posts

These are Posts and Questions associated with the product, Maple 2016

with(plots);
for x to 10 do Disp[x] := plot([x+cos(a), sin(a), a = 0 .. 2*Pi], colorscheme = ["Red", "Green"]) end do;

display(seq(Disp[i], i = 1 .. x-1), insequence = true, scaling = constrained);
 

What coding in the color or colorscheme parameter in the plot command above would rotate the circle's colors in conjunction with the circle's movement along the x axis to give the appearance of a rolling wheel? 

how can I get a positive output in the following example

solve((hv*hw+lv*lw)/(lv+hv)*(lv+hv) = dw*(lv+hv), hv)

instead of -lv*(dw-lw)/(dw-hw) I would like lv*(dw-lw)/(hw-dw)

How can type 

[
 

"seq('op'('S['i'])',i=1..5)"

op(S[1]), op(S[2]), op(S[3]), op(S[4]), op(S[5])

(1)

into

into

(2)

op(S[1]), op(S[2]), op(S[3]), op(S[4]), op(S[5])

``

(3)

``


 

Download op_seq.mw

seq('op'('S['i'])',i=1..5)]

export

[op(S[1]), op(S[2],op(S[3],op(S[4])]

Please help me

When I try:

X≔Statistics[RandomVariable](Normal(0,1)):
Statistics[Sample](X,10);

I get:

Error, (in Statistics:-Sample) invalid input: expected distribution or algebraic expression with random variables, but received X

What am I doing wrong?

 

in maple, i can't use print? Help me. Please.

The third execution of procedure TP returns infinity but it has a real value in the integral's plot. Why is this?

Int_Question.mw

I am brand new to Maple Cloud and Maple Player.

I have uploaded two worksheets to the cloud, and my wife has just installed Maple Player on her laptop.

In Maple Player, the second worksheet shows the shareable symbol but the first doesn't even thought I uploaded both in the same way by clicking on the upload symbol in the Maple Cloud palette. Why is the first worksheet not shareable?

When my wife displays the second worksheet she is able to move its sliders but they do not change the display as they do when I move the sliders within Maple2016. How can she change the display?

Here is a link to the second worksheet:

Cassinian_oval.mw

This application describes the motion of a pendulum attached to a moving pivot, all in 2D.

https://www.maplesoft.com/applications/view.aspx?SID=4888

 
How can this situation be generalized to a pendulum attached to a pivot which moves along a 3D spacecurve?

Hi there!

Basically I want to compare graphs in one coordinate system, however one of the graphs is set to 0 everywhere if the values of the y-coordinates differ too much from the values of the other graph. The procedure is below, how can I get around that?

I have already checked that all the values are calculated correctly and are displayed properly if the values of the other graph

are close enough.

Unfortunately I dont know how to send pictures.

Thanks, Daniel

 

PlottingVergleich:=proc(Unten2,Oben2,f2Nr1,G2Nr1,f2Nr2,G2Nr2,UntenN,ObenN)::plot;
local SpeichervektorX, #speichert die Stützstellen
SpeichervektorYAbs1, SpeichervektorYAbs2, #speichert die Stützwerte des späteren Splines aus den                                                 #absoluten Fehlern von f2Nr1 bzw. f2Nr2
SpeichervektorYRel1, SpeichervektorYRel2, #speichert die Stützwerte des späteren Splines aus den                                                 #relativen Fehlern von f2Nr1 bzw. f2Nr2
i2, #Laufvariable
InterpolationsfunktionAbs1,InterpolationsfunktionAbs2, #speichert den Spline aus den absoluten Fehlern                                                        #von f2Nr1 bzw. f2Nr2
InterpolationsfunktionRel1,InterpolationsfunktionRel2, #speichert den Spline aus den relativen Fehlern                                                        #von f2Nr1 bzw. f2Nr2
GraphAbs1,GraphAbs2, #speichert den Graphen aus dem Spline aus den absoluten Fehlern                                        #von f2Nr1 bzw. f2Nr2
GraphRel1,GraphRel2, #speichert den Graphen aus dem Spline aus den relativen Fehlern                                        #von f2Nr1 bzw. f2Nr2
PunkteAbs1,PunkteAbs2, #speichert den Punktgraphen aus den absoluten Fehlern                                                  #von f2Nr1 bzw. f2Nr2
PunkteRel1,PunkteRel2; #speichert den Punktgraphen aus den relativen Fehlern                                                  #von f2Nr1 bzw. f2Nr2
with(CurveFitting):
with(plots):
SpeichervektorX := Vector[row](ObenN-UntenN+1);
SpeichervektorYAbs1 := Vector[row](ObenN-UntenN+1);
SpeichervektorYRel1 := Vector[row](ObenN-UntenN+1);
for i2 from UntenN to ObenN do
  SpeichervektorX[i2-UntenN+1] := i2; #Stützstellen definieren
  SpeichervektorYAbs1[i2-UntenN+1] := GaußKronrodQuadraturKurz(Unten2, Oben2, f2Nr1, G2Nr1, i2)-(int     (f2Nr1*diff(G2Nr1,x), x = Unten2 .. Oben2)); # Bestimmen des absoluten Fehlers von f2Nr1 für n=i2
  if (int(f2Nr1*diff(G2Nr1,x),x= Unten2..Oben2) <> 0) and (int(f2Nr2*diff(G2Nr2,x),x= Unten2..Oben2)     <> 0) then  #Bestimmen des relativen Fehlers von f2Nr1, falls dieser für beide Funktionen definiert                #ist
    SpeichervektorYRel1[i2-UntenN+1] := abs(SpeichervektorYAbs1[i2-UntenN+1]/(int(f2Nr1*diff(G2Nr1,x),     x = Unten2 ..    Oben2)))
  end if;
end do;
InterpolationsfunktionAbs1 := Spline(SpeichervektorX, SpeichervektorYAbs1, n); #Generierung des
   #  Splines aus Stützpunkten, die sich aus den absoluten Fehlern von f2Nr1 ergeben
GraphAbs1 := plot(InterpolationsfunktionAbs1, n = UntenN .. ObenN, color = green, legend = ["f1"]);
   #  Generierung des Graphen, der sich aus dem Spline aus den absoluten Fehlern von f2Nr1 ergibt
PunkteAbs1 := plot(SpeichervektorX, SpeichervektorYAbs1, style = point, color = orange);
   #  Generierung des Punktgraphen, der sich aus den absoluten Fehlern von f2Nr1 ergibt  
if (int(f2Nr1*diff(G2Nr1,x),x= Unten2..Oben2) <> 0) and (int(f2Nr2*diff(G2Nr2,x),x= Unten2..Oben2)     <> 0) then
   # falls der relative Fehler für beide Funktionen definiert ist analoges Vorgehen für die relativen     #Fehler
  InterpolationsfunktionRel1 := Spline(SpeichervektorX, SpeichervektorYRel1, n);
  GraphRel1 := plot(InterpolationsfunktionRel1, n = UntenN .. ObenN, color = green, legend = ["f1"]);
  PunkteRel1 := plot(SpeichervektorX, SpeichervektorYRel1, style = point, color = orange);
end if;

 

SpeichervektorYAbs2:=Vector[row](ObenN-UntenN+1);
SpeichervektorYRel2:=Vector[row](ObenN-UntenN+1);
for i2 from UntenN to ObenN do
  SpeichervektorX[i2-UntenN+1]:=i2;  
  SpeichervektorYAbs2[i2-UntenN+1]:= GaußKronrodQuadraturKurz(Unten2,Oben2,f2Nr2,G2Nr2,i2)-int           (f2Nr2*diff(G2Nr2,x),x= Unten2..Oben2); # Bestimmen des absoluten Fehlers von f2Nr2 für n=i2
  if (int(f2Nr1*diff(G2Nr1,x),x= Unten2..Oben2) <> 0) and (int(f2Nr2*diff(G2Nr2,x),x= Unten2..Oben2)     <> 0) then  #Bestimmen des relativen Fehlers von f2, falls dieser für beide Funktionen definiert ist
    SpeichervektorYRel2[i2-UntenN+1]:= abs(SpeichervektorYAbs2[i2-UntenN+1]/
    int(f2Nr2*diff(G2Nr2,x),x= Unten2..Oben2));
  end if;
end do;
InterpolationsfunktionAbs2:=Spline(SpeichervektorX,SpeichervektorYAbs2,n); #Generierung des
   #  Splines aus Stützpunkten, die sich aus den absoluten Fehlern von f2Nr2 ergeben
GraphAbs2:= plot(InterpolationsfunktionAbs2, n=UntenN..ObenN, color=red, legend = ["f2"]);
   #  Generierung des Graphen, der sich aus dem Spline aus den absoluten Fehlern von f2Nr2 ergibt
PunkteAbs2:= plot(SpeichervektorX,SpeichervektorYAbs2,style = point, color=blue);
   #  Generierung des Punktgraphen, der sich aus den absoluten Fehlern von f2Nr2 ergibt  
print(display({GraphAbs1,PunkteAbs1,GraphAbs2,PunkteAbs2}, title= "Absoluter Fehler",titlefont=["ROMAN",18])); # Ausgeben des Verleichsgraphen der absoluten Fehler
if (int(f2Nr1*diff(G2Nr1,x),x= Unten2..Oben2) <> 0) and (int(f2Nr2*diff(G2Nr2,x),x= Unten2..Oben2) <> 0) then # falls der relative Fehler definiert ist analoges Vorgehen für die relativen Fehler
  InterpolationsfunktionRel2:=Spline(SpeichervektorX,SpeichervektorYRel2,n);
  GraphRel2:= plot(InterpolationsfunktionRel2, n=UntenN..ObenN, color=red, legend = ["f2"]);
  PunkteRel2:= plot(SpeichervektorX,SpeichervektorYRel2,style = point, color=blue);
  print(display({GraphRel1,GraphRel2,PunkteRel1,PunkteRel2}, title= "Relativer Fehler", titlefont=       ["ROMAN",18])) # Ausgeben des Verleichsgraphen der relativen Fehler, falls diese definiert sind
end if;
 print(SpeichervektorYAbs1,SpeichervektorYAbs2);
 print(GraphAbs1);
 print(PunkteAbs1)
end proc

 

i want to generate grid for a C_D nozzle but i dont know ho to plot it. please help me how to plot.

restart;
alpha := 0;
beta := 2;
Imax := 11;
Jmax := 11;
L := 10;
`&Delta;&zeta;` := L/(Imax-1);

`&Delta;x` := `&Delta;&zeta;`;
`&Delta;&eta;` := 1/(Jmax-1);

printlevel := 2;
for i to Imax do for j to Jmax do x[i] := `&Delta;&zeta;`*(i-1); eta[j] := `&Delta;&eta;`*(j-1); z := (eta[j]-alpha)*ln((beta+1)/(beta-1))/(1-alpha); H[i] := 3+2*tanh(x[i]-6); H1[i] := 0; H2[i] := -H[i]; y[i, j] := -H[i]*(2*beta/(exp(z)+1)-beta-2*alpha)/(2*alpha+1); Y[i, j] := (H1[i]+(-H1[i]*x[i]+H2[i])/L)*eta[j] end do end do;

 

 

Given the 2 equations below...

-T*sin(theta(t)) = m*(diff(X(t), t, t)+L*(diff(theta(t), t, t))*cos(theta(t))-L*(diff(theta(t), t))^2*sin(theta(t)))

 T*cos(theta(t))-m*g = m*(diff(Y(t), t, t)+L*(diff(theta(t), t, t))*sin(theta(t))+L*(diff(theta(t), t))^2*cos(theta(t)))

which command(s) will eliminate T and m to give the ODE below?

 L*diff(theta(t), x, x)+(diff(X(t), x, x))*cos(theta)+(diff(Y(t), x, x)+g)*sin(theta) = 0

 

 

with ref to the following post

https://www.mapleprimes.com/questions/226211-Subscript-In-Axis-Title-Get-Messed-Up

Now I am having a problem with legends that they are not properly displayed. Dashing of the legends is not displayed in exported graph. Because the legends are too short so they are unable to reflect the dashing of the curves. Is there any way to extend the length? so that the dashing is reflected properly in the legends.

mapleprime.mw

 

Hi all,

I have some difficulties to get simple real expressions for those simple integrals with assumptions.

Download integrals.mw

NB: With mathematica, I get simple real expressions results.

Thanks

with ref to the following post
https://www.mapleprimes.com/questions/210280-Exporting--Graph-

I am trying to export a plot which contains a subscript in its axis label. The label displays correctly in the maple worksheet but when I export it to a jpg file the subscript gets replaced with square brackets. Kindly guide me how can I get rid of this problem

mprime.mw

Hey there,

I've been struggling for a few days to integrate a function using rkf45.

For some context, I wish to numerically intergrate a function K * s_R (K,a,w) dK using runge kutta over a 2D grid of (a,w) values. Essentialy, performing the same sort of K-integral many different times for slightly different combinations of a and w. For one such (a,w) combination, the function looks something like this:

and rkf45 works just fine, and returns a numeric result. On the other hand, for a different combination of (a,w), the function looks like this:

and an attempt to perform rkf45 returns the following error: "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up."

Here is a simplified version of my maple document for reference MaplePrimePleaseHelp.mw.

I'm happy to clarify anything that may be confusing and any thoughts or suggestions would be greatly appreciated.

Thank you!

First 10 11 12 13 14 15 16 Last Page 12 of 60