## Error, equation is non-algebraic...

Hi, am trying to differentiate the following eq w.r.t t2 and N. But in t2 I am getting zero and in wrt N, an Error (non-algebraic expressions cannot be differentiated). But according to the article, I am following expression should come.

I am differentiating following

TCS := proc (N, T, m, n) options operator, arrow; piecewise(M <= t__3 and N <= t__4, TCS__1, M <= t__3 and t__4 < N, TCS__2, t__3 <= M and N <= t__4, TCS__3, `t__3 ` <= M and t__4 < N, TCS__4) end proc

ode5 := diff(proc (N, T, m, n) options operator, arrow; piecewise(M <= t__3 and N <= t__4, TCS__1, M <= t__3 and t__4 < N, TCS__2, t__3 <= M and N <= t__4, TCS__3, `t__3 ` <= M and t__4 < N, TCS__4) end proc, t__2) = 0

ode6 := diff(proc (N, T, m, n) options operator, arrow; piecewise(M <= t__3 and N <= t__4, TCS__1, M <= t__3 and t__4 < N, TCS__2, t__3 <= M and N <= t__4, TCS__3, `t__3 ` <= M and t__4 < N, TCS__4) end proc, N) = 0

Error, non-algebraic expressions cannot be differentiated

following are the pre-requisite to use above (also in the attachment doubt_2.mw)

i__m1(t) = ((-c*t^2*theta__m^2+b*t*theta__m^2+2*c*t*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t)*a*N^alpha*(lambda-1)/theta__m^3-(-b*theta__m+theta__m^2-2*c)*a*N^alpha*(lambda-1)/theta__m^3)*exp(-theta__m*t)

i__m2(t) = (-(-c*t^2*theta__m^2+b*t*theta__m^2+2*c*t*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t)*a*N^alpha/theta__m^3+(-c*t__2^2*theta__m^2+b*t__2*theta__m^2+2*c*t__2*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__2)*a*N^alpha/theta__m^3)*exp(-theta__m*t)

TC__m := A__m/(t__1+t__2)+(int(h__m*(i__m*t+1)*i__m1(t), t = 0 .. t__1))*(int(h__m*(i__m*t+1)*i__m2(t), t = 0 .. t__2))+P__m*I__om*m*(-(1/3)*a*c*N^alpha*M^3+(1/2)*a*b*N^alpha*M^2+a*N^alpha*M)/(t__1+t__2)+C__m*theta__m*(int(i__m1(t), t = 0 .. t__1)+int(i__m2(t), t = 0 .. t__2))/(t__1+t__2)

i__d(t) = (-(-c*t^2*theta__d^2+b*t*theta__d^2+2*c*t*theta__d-b*theta__d+theta__d^2-2*c)*a*N^alpha*exp(theta__d*t)/theta__d^3+(-c*t__3^2*theta__d^2+b*t__3*theta__d^2+2*c*t__3*theta__d-b*theta__d+theta__d^2-2*c)*a*N^alpha*exp(theta__d*t__3)/theta__d^3)*exp(-theta__d*t)

TC__d1 := A__d*m/(t__1+t__2)+m*(int(h__d*(i__d*t+1)*i__d(t), t = 0 .. t__3))/(t__1+t__2)+P__d*I__OD*m*n*(-(1/3)*a*c*N^alpha*N^3+(1/2)*a*b*N^alpha*N^2+a*N^alpha*N)/(t__1+t__2)+P__m*theta__m*m*(int(i__d(t), t = 0 .. t__3))/(t__1+t__2)+P__m*I__c*m*(int(i__d(t), t = M .. t__3))/(t__1+t__2)-P__d*I__e*m*(-(1/3)*a*c*N^alpha*M^3+(1/2)*a*b*N^alpha*M^2+a*N^alpha*M)/(t__1+t__2)

TC__d2 := A__d*m/(t__1+t__2)+m*(int(h__d*(i__d*t+1)*i__d(t), t = 0 .. t__3))/(t__1+t__2)+P__d*I__OD*m*n*(-(1/3)*a*c*N^alpha*N^3+(1/2)*a*b*N^alpha*N^2+a*N^alpha*N)/(t__1+t__2)+P__m*theta__m*m*(int(i__d(t), t = 0 .. t__3))/(t__1+t__2)-P__d*I__e*m*(-(1/4)*a*c*N^alpha*t__3^4+(1/3)*a*b*N^alpha*t__3^3+(1/2)*a*N^alpha*t__3^2+M-t__3-(1/3)*a*c*N^alpha*t__3^3+(1/2)*a*b*N^alpha*t__3^2+a*N^alpha*t__3)/(t__1+t__2)

i__r(t) = (-(-c*t^2*theta__r^2+b*t*theta__r^2+2*c*t*theta__r-b*theta__r+theta__r^2-2*c)*a*N^alpha*exp(theta__r*t)/theta__r^3+(-c*t__4^2*theta__r^2+b*t__4*theta__r^2+2*c*t__4*theta__r-b*theta__r+theta__r^2-2*c)*a*N^alpha*exp(theta__r*t__4)/theta__r^3)*exp(-theta__r*t)

TC__r1 := A__r*m*n/(t__1+t__2)+m*n*(int(h__r*(i__r*t+1)*i__r(t), t = 0 .. t__4))/(t__1+t__2)+P__d*theta__r*m*n*(int(i__r(t), t = 0 .. t__4))/(t__1+t__2)+P__d*I__c*m*n*(int(i__r(t), t = N .. t__4))/(t__1+t__2)-P__r*I__e*m*n*(-(1/4)*a*c*N^alpha*N^4+(1/3)*a*b*N^alpha*N^3+(1/2)*a*N^alpha*N^2)/(t__1+t__2)

TC__r2 := A__r*m*n/(t__1+t__2)+m*n*(int(h__r*(i__r*t+1)*i__r(t), t = 0 .. t__4))/(t__1+t__2)+P__d*theta__r*m*n*(int(i__r(t), t = 0 .. t__4))/(t__1+t__2)-P__r*I__e*m*n*(-(1/4)*a*c*N^alpha*t__4^4+(1/3)*a*b*N^alpha*t__4^3+(1/2)*a*N^alpha*t__4^2+N-t__4-(1/3)*a*c*N^alpha*t__4^3+(1/2)*a*b*N^alpha*t__4^2+a*N^alpha*t__4)/(t__1+t__2)

TCS__1 := TC__m+TC__d1+TC__r1

TCS__2 := TC__m+TC__d1+TC__r2

TCS__3 := TC__m+TC__d2+TC__r1

TCS__4 := TC__m+TC__d2+TC__r2

## How to resolve: Warning, solutions may have been l...

Hi, I am trying to solve two simultaneous equations (for t1) they are as follows-

eq 1

i__m2(0) = (-(-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*exp(0)*a*N^alpha/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3+(-c*t__2^2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+b*t__2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+2*c*t__2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*exp(`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`*t__2)*a*N^alpha/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3)*exp(0)

eq 2

i__m1(t__1) = ((-c*t__1^2*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+b*t__1*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2+2*c*t__1*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*exp(`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`*t__1)*a*N^alpha*(lambda-1)/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3-(-b*`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`+`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^2-2*c)*a*N^alpha*(lambda-1)/`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`^3)*exp(-`#msub(mi("&theta;",fontstyle = "normal"),mi("m"))`*t__1)

rhs(i__m2(0) = (-(-b*theta__m+theta__m^2-2*c)*exp(0)*a*N^alpha/theta__m^3+(-c*t__2^2*theta__m^2+b*t__2*theta__m^2+2*c*t__2*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__2)*a*N^alpha/theta__m^3)*exp(0)) = rhs(i__m1(t__1) = ((-c*t__1^2*theta__m^2+b*t__1*theta__m^2+2*c*t__1*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__1)*a*N^alpha*(lambda-1)/theta__m^3-(-b*theta__m+theta__m^2-2*c)*a*N^alpha*(lambda-1)/theta__m^3)*exp(-theta__m*t__1))

solve({-(-b*theta__m+theta__m^2-2*c)*a*N^alpha/theta__m^3+(-c*t__2^2*theta__m^2+b*t__2*theta__m^2+2*c*t__2*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__2)*a*N^alpha/theta__m^3 = ((-c*t__1^2*theta__m^2+b*t__1*theta__m^2+2*c*t__1*theta__m-b*theta__m+theta__m^2-2*c)*exp(theta__m*t__1)*a*N^alpha*(lambda-1)/theta__m^3-(-b*theta__m+theta__m^2-2*c)*a*N^alpha*(lambda-1)/theta__m^3)*exp(-theta__m*t__1)}, [t__1]);
Warning, solutions may have been lost

## How do I solved PDE using non classical numerical ...

Dear All.

I hope we are all staying safe.

Please I want to solve Sine Gordon Equation using a numerical method I constructed (non-classical), I need to compare the result of the method with the exact solution to generate the errors. However, since the exact solution has two variables, x, and t, I really don't know how to accommodate the two in my coding.

Can someone be of help in this regard?

Thank you and kind regards

## Error that should not really occur ...

I am a little confused by why this error occurs in the second line and not the first, as well as the weird details specified in it. I don't know if the commands that are being called are inbuilt or not, but it is a safe bet that they will be. thankyou.

 >
 >
 >

## Installation question please...

Please, l need assistance on maplesoft activation code

## Subprocedure spits out the answer of the first use...

This is my code:

NEUZMinus:= proc(Unten, Oben, f,G,Liste,n)::real;
#Unten:= Untere Intervallgrenze; Oben:= Obere Intervallgrenze; f:= zu integrierende Funktion;
#G:= Gewicht; n:= Hinzuzufügende Knoten;
local i;
with(LinearAlgebra);
with(ListTools);
Basenwechsel:=proc(Dividend, m);

print(Anfang,Dividend,p[m]);
Koeffizient:=quo(Dividend, p[m],x);

Rest:=rem(Dividend, p[m],x);

if m=0 then
Basenwechsel:=[Koeffizient];
else

Basenwechsel:=[Koeffizient,op(Basenwechsel(Rest,m-1))];

end if;

end proc;
p[-1]:=0;
p[0]:=1;
for i from 1 to (numelems(Liste)+n)*2 do
print(p[i]);
c[i-1]:=coeff(p[i],x,i)/coeff(p[i-1],x,i-1);
d[i-1]:=(coeff(p[i],x,(i-1))-coeff(p[i-1],x,(i-2)))/coeff(p[i-1],x,(i-1));
if i <> 1 then
e[i-1]:=coeff(p[i]-(c[i-1]*x+d[i-1])*p[i-1],x,i-2)/coeff(p[i-2],x,i-2);
else
e[i-1]:=0;
end if;
end do;
print(Liste[1],numelems(Liste));
Hn:=mul(x-Liste[i],i=1..numelems(Liste));
print(Hn);
Koeffizienten:=Reverse(Basenwechsel(Hn,n)); #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
print(Koeffizienten,HIER);

print(c,d,e);
a[0][0]:=1;
a[1][0]:=x;
a[1][1]:=-e[1]*c[0]/c[1]+(d[0]-d[1]*c[0]/c[1])*x+c[0]/c[1]*x^2;
for s from 2 to numelems(Liste)+n do
a[s][0]:=x^s;
a[s][1]:=-e[s]*c[0]/c[s]*x^(s-1)+(d[0]-d[s]*c[0]/c[s])*x^s+c[0]/c[s]*x^(s+1);
print (coeff(a[s][1],x,s),as1s);
end do;
for s from 2 to numelems(Liste)+n do
for j from 2 to s do

print(c[j-1]*sum(coeff(a[s][j-1],x,k-1)/c[k-1]*x^k,k=abs(s-j)+2..s+j));  print(sum((d[j-1]-c[j-1]*d[k]/c[k])*coeff(a[s][j-1],x,k)*x^k,k=abs(s-j)+1..s+j-1));  print(c[j-1]*sum(e[k+1]*coeff(a[s][j-1],x,k+1)/c[k+1]*x^k,k=abs(s-j)..s+j-2));print(e[j-1]*sum(coeff(a[s][j-2],x,k)*x^k,k=s-j+2..s+j-2));

a[s][j]:=c[j-1]*sum(coeff(a[s][j-1],x,k-1)/c[k-1]*x^k,k=abs(s-j)+2..s+j)+sum((d[j-1]-c[j-1]*d[k]/c[k])*coeff(a[s][j-1],x,k)*x^k,k=abs(s-j)+1..s+j-1)-c[j-1]*sum(e[k+1]*coeff(a[s][j-1],x,k+1)/c[k+1]*x^k,k=abs(s-j)..s+j-2)+e[j-1]*sum(coeff(a[s][j-2],x,k)*x^k,k=abs(s-j)+2..s+j-2);

end do;
end do;
for s from 0 to numelems(Liste)-1 do
for j from 0 to s do
print(a[s][j], Polynom[s][j]);
end do;
end do;
M:=Matrix(n,n);
V:=Vector(n);

for s from 0 to n-1 do
for j from 0 to s do
M(s+1,j+1):=sum(coeff(a[s][j],x,k)*Koeffizienten[k+1],k=0..n);
if s<>j then
M(j+1,s+1):=M(s+1,j+1);
end if;
print(M,1);
end do;
print(testb1);print(coeff(a[n][s],x,2));print(Koeffizienten[3]);print(testb2);
V(s+1):=-sum(coeff(a[n][s],x,k)*Koeffizienten[k+1],k=0..n);

print(M,V);
end do;
print(M,V);
K:=LinearSolve(M,V);
K(n+1):=1;
print(K);

print(test2,coeff(a[max(3,2)][min(1,2)],x,2));
print(Koeffizienten[3]);
for l from 0 to n do
for m from 0 to numelems(Liste)do
print(Koeffizienten[m+1]*coeff(a[7][l],x,m),a[7][l],m,Koeff,Koeffizienten[m+1])
end do;
end do;
for l from 0 to n do
end do;
fsolve(nNeu);
Hnm:=Hn*Em;
KnotenHnm:=fsolve(Hnm);
print(Hn,alt,Em,neu,Hnm);
print(Testergebnis,nNeu);
print(fsolve(Hnm),fsolve(nNeu));
KoeffizientenHnm:=Reverse(Basenwechsel(Hnm,n+numelems(Liste)));  #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
print(KoeffizientenHnm);
h0:=int(diff(G,x),x=Unten..Oben);
b[n+numelems(Liste)+2]:=0;
b[n+numelems(Liste)+1]:=0;
for i from 1 to n+numelems(Liste) do
for j from n+numelems(Liste) by -1 to 1 do
print(test21);
b[j]:=KoeffizientenHnm[j]+(d[j]+KnotenHnm[i]*c[j])*b[j+1]+e[j+1]*b[j+2];
print(test22);
end do;
print(test23);
gxi:=quo(Hnm,x-KnotenHnm[i],x);
print(test24);
Gewichte[i]:=c[1]*b[2]*h0/gxi(i);

Delta[i]:=c[1]*b[2];
end do;
print(KnotenHnm);
print(Gewichte);
sum(Knoten[k]*Gewichte[k],k=1..n+numelems(Liste));
end proc

With the first use of the subprocedure Basenwechsel, everything works fine. With the input

NEUZMinus(-1,1,x,x,[-sqrt(3/5),0,sqrt(3/5)],4)

I get the result [0,0,0,1,0] correctly.

The following time I use it, the polynomial is different, and m is 7 in that case, so the list should have 8 entries, it just returns the same [0,0,0,1,0] again, however. Changing the polynomial in the first application to say 5*Hn results in [0,0,0,5,0] in both cases again. The procedure seems to have saved the old values and never overwrites them. How can I fix this? I have highlighted the use of the procedure with exclamation marks.

Thank you in advance!

P.S.: The lengthy result is this:

NEUZMinus(-1,1,x,x,[-sqrt(3/5),0,sqrt(3/5)],4)

x
2   1
x  - -
3
3   3
x  - - x
5
4   3    6  2
x  + -- - - x
35   7
5   5      10  3
x  + -- x - -- x
21     9
6    5    5   2   15  4
x  - --- + -- x  - -- x
231   11      11
7   35      105  3   21  5
x  - --- x + --- x  - -- x
429     143      13
8    7     28   2   14  4   28  6
x  + ---- - --- x  + -- x  - -- x
1287   143      13      15
9    63      84   3   126  5   36  7
x  + ---- x - --- x  + --- x  - -- x
2431     221      85       17
10    63     315   2   210  4   630  6   45  8
x   - ----- + ---- x  - --- x  + --- x  - -- x
46189   4199      323      323      19
11    33      55   3   330  5   330  7   55  9
x   - ---- x + --- x  - --- x  + --- x  - -- x
4199     323      323      133      21
12    33     198   2   2475  4   660  6   495  8   66  10
x   + ----- - ---- x  + ---- x  - --- x  + --- x  - -- x
96577   7429      7429      437      161      23
13    429       2574   3   1287  5   1716  7   429  9   78  11
x   + ------ x - ----- x  + ---- x  - ---- x  + --- x  - -- x
185725     37145      2185      805       115      25
14     143      1001   2   1001  4   1001  6   1001  8
x   - ------- + ------ x  - ---- x  + ---- x  - ---- x
1671525   111435      6555      1035      345

1001  10   91  12
+ ---- x   - -- x
225        27
1   (1/2)
- - 15     , 3
5
/    1   (1/2)\   /    1   (1/2)\
|x + - 15     | x |x - - 15     |
\    5        /   \    5        /
/    1   (1/2)\   /    1   (1/2)\   4   3    6  2
Anfang, |x + - 15     | x |x - - 15     |, x  + -- - - x
\    5        /   \    5        /       35   7
3   3     3   3
Anfang, x  - - x, x  - - x
5         5
2   1
Anfang, 0, x  - -
3
Anfang, 0, x
Anfang, 0, 1
[0, 0, 0, 1, 0], HIER #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
c, d, e
0, as1s
0, as1s
0, as1s
0, as1s
0, as1s
0, as1s
4   2    4
-- x  + x
15
0
4    9   2
- -- - -- x
45   35
1  2
- - x
3
9   3    5
-- x  + x
35
0
12      16  3
- --- x - -- x
175     63
1  3
- - x
3
12   2   8   4    6
--- x  + -- x  + x
175      45
0
4     8   2   25  4
- --- - --- x  - -- x
175   175      99
12   2   4   4
- --- x  - -- x
175      15
16  4    6
-- x  + x
63
0
16   2   25  4
- --- x  - -- x
245      99
1  4
- - x
3
16   3   40   5    7
--- x  + --- x  + x
245      231
0
64       640   3   36   5
- ---- x - ----- x  - --- x
3675     14553      143
64   3   4   5
- --- x  - -- x
945      15
64   2   16   4   72   6    8
---- x  + --- x  + --- x  + x
3675      385      455
0
64      144   2    40   4   49   6
- ----- - ----- x  - ---- x  - --- x
11025   13475      1001      195
24   4   9   6   144   2
- --- x  - -- x  - ---- x
539      35      8575
25  5    7
-- x  + x
99
0
400   3   36   5
- ---- x  - --- x
6237      143
1  5
- - x
3
400   4   20   6    8
---- x  + --- x  + x
6237      117
0
80   2    500   4   49   6
- ---- x  - ----- x  - --- x
4851      11583      195
20   4   4   6
- --- x  - -- x
297      15
80   3    40   5   7   7    9
---- x  + ---- x  + -- x  + x
4851      1001      45
0
64        640   3   28   5   64   7
- ----- x - ----- x  - --- x  - --- x
14553     63063      715      255
4   5   9   7    80   3
- -- x  - -- x  - ---- x
91      35      4851
64    2    640   4   16   6   160   8    10
----- x  + ----- x  + --- x  + ---- x  + x
14553      63063      455      1071
0
64      128   2    80   4   224   6   81   8
- ----- - ----- x  - ---- x  - ---- x  - --- x
43659   49049      9009      5967      323
640   4   16   6   16  8    1280   2
- ----- x  - --- x  - -- x  - ------ x
63063      405      63      305613
36   6    8
--- x  + x
143
0
100   4   49   6
- ---- x  - --- x
1573      195
1  6
- - x
3
100   5   28   7    9
---- x  + --- x  + x
1573      165
0
1600   3   336   5   64   7
- ----- x  - ---- x  - --- x
99099      7865      255
48   5   4   7
- --- x  - -- x
715      15
1600   4   28   6   144  8    10
----- x  + --- x  + --- x  + x
99099      715      935
0
320   2    140   4   2352   6   81   8
- ----- x  - ----- x  - ----- x  - --- x
77077      14157      60775      323
12   6   9   8    180   4
- --- x  - -- x  - ----- x
275      35      11011
320   3    320   5   32   7   216   9    11
----- x  + ----- x  + --- x  + ---- x  + x
77077      33033      935      1463
0
256        5120    3    1152   5    4608   7   100  9
- ------ x - ------- x  - ------ x  - ------ x  - --- x
231231     2081079      133705      124355      399
64   5   256   7   16  9    25600   3
- ---- x  - ---- x  - -- x  - ------- x
6435      6545      63      6243237
256    2    320    4    1280   6    800   8   100  10    12
------ x  + ------ x  + ------ x  + ----- x  + --- x   + x
231231      127413      153153      24871      693
0
256      64    2    32000    4    1120   6    900   8   121  10
- ------ - ----- x  - -------- x  - ------ x  - ----- x  - --- x
693693   99099      15162147      138567      24871      483
8000    4    160   6    600   8   25  10    8000    2
- ------- x  - ----- x  - ----- x  - -- x   - ------- x
3270267      18513      16093      99       7630623
49   7    9
--- x  + x
195
0
588   5   64   7
- ---- x  - --- x
9295      255
1  7
- - x
3
588   6   112  8    10
---- x  + --- x  + x
9295      663
0
980   4    5488   6   81   8
- ----- x  - ------ x  - --- x
61347      129285      323
196   6   4   8
- ---- x  - -- x
2925      15
980   5   2352   7   189   9    11
----- x  + ----- x  + ---- x  + x
61347      60775      1235
0
2240   3    84672   5    4032   7   100  9
- ------ x  - ------- x  - ------ x  - --- x
552123      8690825      104975      399
48   7   9   9    756   5
- ---- x  - -- x  - ----- x
1105      35      46475
2240   4    896   6    7776   8   40   10    12
------ x  + ----- x  + ------ x  + --- x   + x
552123      94809      230945      273
0
64    2    22400   4    127008   6   1080   8   121  10
- ----- x  - ------- x  - -------- x  - ----- x  - --- x
61347      9386091      15011425      29393      483
1792   6    48   8   16  10    2240   4
- ------ x  - ---- x  - -- x   - ------ x
182325      1235      63       552123
64    3    22400   5    1120   7    600   9   385   11    13
----- x  + ------- x  + ------ x  + ----- x  + ---- x   + x
61347      9386091      138567      19019      2691
0
256        51200    3    13440   5    2560   7    5500   9
- ------ x - -------- x  - ------- x  - ------ x  - ------ x
920205     84474819      6605027      323323      153387

144  11
- --- x
575
22400   5    4320   7   1000   9   25  11    56000    3
- ------- x  - ------ x  - ----- x  - -- x   - -------- x
9386091      508079      27027      99       54660177
256    2     7168    4    13440   6    80000    8   100   10
------ x  + -------- x  + ------- x  + -------- x  + ---- x
920205      11471889      6605027      10669659      3289

504   12    14
+ ---- x   + x
3575
0
256       3072    2    112000    4    112000   6    8100    8
- ------- - -------- x  - --------- x  - -------- x  - ------- x
2760615   19119815      217965891      59445243      1062347

264   10   169  12
- ---- x   - --- x
7475       675
89600    4    13440   6    21600   8   140   10   36   12
- --------- x  - ------- x  - ------- x  - ---- x   - --- x
149134557      6605027      2719717      3887       143

768    2
- ------- x
2924207
1, Polynom[0][0]
x, Polynom[1][0]
1    2
- + x , Polynom[1][1]
3
2
x , Polynom[2][0]
4       3
-- x + x , Polynom[2][1]
15
4   2    4   4
-- x  + x  + --, Polynom[2][2]
21           45
Matrix(%id = 18446745693991291350), 1
testb1
0
0
testb2
Matrix(%id = 18446745693991291350),

Vector[column](%id = 18446745693991291470)
Matrix(%id = 18446745693991291350), 1
Matrix(%id = 18446745693991291350), 1
testb1
0
0
testb2
Matrix(%id = 18446745693991291350),

Vector[column](%id = 18446745693991291470)
Matrix(%id = 18446745693991291350), 1
Matrix(%id = 18446745693991291350), 1
Matrix(%id = 18446745693991291350), 1
testb1
16
---
245
0
testb2
Matrix(%id = 18446745693991291350),

Vector[column](%id = 18446745693991291470)
Matrix(%id = 18446745693991291350), 1
Matrix(%id = 18446745693991291350), 1
Matrix(%id = 18446745693991291350), 1
Matrix(%id = 18446745693991291350), 1
testb1
0
0
testb2
Matrix(%id = 18446745693991291350),

Vector[column](%id = 18446745693991291470)
Matrix(%id = 18446745693991291350),

Vector[column](%id = 18446745693991291470)
Vector[column](%id = 18446745693991291830)
9
test2, --
35
0
7
0, x , 0, Koeff, 0
7
0, x , 1, Koeff, 0
7
0, x , 2, Koeff, 0
7
0, x , 3, Koeff, 1
49   6    8
0, --- x  + x , 0, Koeff, 0
195
49   6    8
0, --- x  + x , 1, Koeff, 0
195
49   6    8
0, --- x  + x , 2, Koeff, 0
195
49   6    8
0, --- x  + x , 3, Koeff, 1
195
112  7    9   588   5
0, --- x  + x  + ---- x , 0, Koeff, 0
663           9295
112  7    9   588   5
0, --- x  + x  + ---- x , 1, Koeff, 0
663           9295
112  7    9   588   5
0, --- x  + x  + ---- x , 2, Koeff, 0
663           9295
112  7    9   588   5
0, --- x  + x  + ---- x , 3, Koeff, 1
663           9295
2352   6   189   8    10    980   4
0, ----- x  + ---- x  + x   + ----- x , 0, Koeff, 0
60775      1235            61347
2352   6   189   8    10    980   4
0, ----- x  + ---- x  + x   + ----- x , 1, Koeff, 0
60775      1235            61347
2352   6   189   8    10    980   4
0, ----- x  + ---- x  + x   + ----- x , 2, Koeff, 0
60775      1235            61347
2352   6   189   8    10    980   4
0, ----- x  + ---- x  + x   + ----- x , 3, Koeff, 1
60775      1235            61347
896   5    7776   7   40   9    11    2240   3
0, ----- x  + ------ x  + --- x  + x   + ------ x , 0, Koeff, 0
94809      230945      273            552123
896   5    7776   7   40   9    11    2240   3
0, ----- x  + ------ x  + --- x  + x   + ------ x , 1, Koeff, 0
94809      230945      273            552123
896   5    7776   7   40   9    11    2240   3
0, ----- x  + ------ x  + --- x  + x   + ------ x , 2, Koeff, 0
94809      230945      273            552123
2240    896   5    7776   7   40   9    11    2240   3
------, ----- x  + ------ x  + --- x  + x   + ------ x , 3,
552123  94809      230945      273            552123

Koeff, 1
0
0
0
0
0
/    1   (1/2)\   /    1   (1/2)\       155   10  2    4
|x + - 15     | x |x - - 15     |, alt, --- - -- x  + x , neu,
\    5        /   \    5        /       891   9

/    1   (1/2)\   /    1   (1/2)\ /155   10  2    4\
|x + - 15     | x |x - - 15     | |--- - -- x  + x |
\    5        /   \    5        / \891   9         /
Testergebnis,

2459840   5    80254400        188027200   3    2240   7
- --------- x  - ----------- x + ----------- x  + ------ x
193795173      44766684963     19185722127      552123
-0.9604912687, -0.7745966692, -0.4342437493, 0., 0.4342437493,

0.7745966692, 0.9604912687, -1.435338337, -0.8946894490,

-0.5176357564, 0., 0.5176357564, 0.8946894490, 1.435338337
[0, 0, 0, 1, 0] #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
test21
Error, (in NEUZMinus) invalid subscript selector

## Routine Simplification Error...

Doing a routine simplification but got an error...Dont know where the mistake comes from.

simplification_error.mw

## How do I discretise the 4th order PDE?...

Dear All.

Please kindly help to correct the attached code on discretization of fourth order PDE using method of line.
Thank you and kind regards.

 Discretization of parabolic equation with method of line Convert the BC to finite difference Convert the governing equation to finite difference form

## How to prevent debug values displaying in the work...

When executing DEBUG within inline code (not within a procedure) the values displayed in successive debug windows (on clicking continue) are added to the end of my worksheet. How can the latter display be prevented?

## How do I differentiate this in Maple?...

Dear Experts,

Please how do I carry out the differentiation of

`y[1](t)*y[2](t)*(y[1](t)+y[2](t))^3`

with respect to y[1] using maple? I know how to use maple if the derivative is with respect to t.
Thank you in anticipation

## Boolean variable not working...

I don't understand why maple is ignoring my predicate in this worksheet

Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/Task_List_Win10.mw .

## Win10 high contrast mode...

I'm using Win10, maple 2016.

I'm using high contrast mode (dark mode, white on black). Maple looks broken, the text is black on black, and in the side panel, some of the buttons are shiney white.

How do I set maple to support high contrast?

## How to solve system of equation without Rootof...

solve({sigma*E-(mu+alpha+gamma)*I = 0, gamma*E+Lambda*N*P-(mu+alpha)*R = 0, Beta__1*S*E+Beta__2*S*I/(I*M+1)-(mu+sigma)*E = 0, Lambda(1-p)*N-mu*S-Beta__1*S*E-Beta__2*S*I/(I*M+1) = 0}, {E, I, R, S}, explicit)

## How can type limit as mathtype?...

How can type limit proc() and use print to export expression as mathtype?

 (1)