Maple 2020 Questions and Posts

These are Posts and Questions associated with the product, Maple 2020

I am trying to solce eq (2) by integration. But maple integrate only 1st term in eq. Why not other two terms? 

 

Solve_integral.mw

The computer on which I have been executing Maple worksheets for the past six years (CPU: i7 - 5820K, 6 core, 3.3 GHz, 5th generation) is now significantly slower than new machines.

I don't know how to interpret public specifications of potential replacement machines into their actual future performance with Maple.

Please give me or direct me to any advice which would enable me to knowledgeably purchase a much faster processor of Maple code.

 

Why maple give empty solutions? See ref. (12) in the attached wokrsheet. Is there anything missing when deriving Sols?

sols_tw.mw

I want to create and modify the same worksheet at different times on two different computers in two different locations.

To avoid transferring files between the two machines, it seems most convenient to reference all objects within Maple cloud.

I am a beginner at this and have several questions:

1) I have downloaded the DirectSearch package as directed in help text but the only result from issuing the command kernelopts(toolboxdir) is " ".

How can I establish a path which enables my worksheet to execute commands within this package?

2) How can my worksheet invoke procedures within my .mla file referencing only objects in Maple cloud?

 How can I update (save and delete procedures) within my .mla file? 

Hello my friends
Please help me solve the integration problem in the attached Maple code below (why was the integration not done in u[4]?) ... Thank you very much

``

u[1] :=  1/3*t^3*x + 2*t*x + (-1)*0.7522527780*t^(3/2)*x + (-1)*0.1719434922*t^(7/2)*x + (-1)*0.01587301587*t^7*x + (-1)*0.1333333333*t^5*x

(1/3)*t^3*x+2*t*x-.7522527780*t^(3/2)*x-.1719434922*t^(7/2)*x-0.1587301587e-1*t^7*x-.1333333333*t^5*x

(1)

u[2] := subs(t=Tau,u[1]);

(1/3)*Tau^3*x+2*Tau*x-.7522527780*Tau^(3/2)*x-.1719434922*Tau^(7/2)*x-0.1587301587e-1*Tau^7*x-.1333333333*Tau^5*x

(2)

u[3]:= int(u[2],Tau = 0 .. t);

t^2*x+0.8333333333e-1*t^4*x-0.2222222222e-1*t^6*x-0.1984126984e-2*t^8*x-.3009011112*t^(5/2)*x-0.3820966493e-1*x*t^(9/2)

(3)

u[4]:= int((t-Tau)^(-0.5)*u[2],Tau = 0 .. t);

int(((1/3)*Tau^3*x+2*Tau*x-.7522527780*Tau^(3/2)*x-.1719434922*Tau^(7/2)*x-0.1587301587e-1*Tau^7*x-.1333333333*Tau^5*x)/(t-Tau)^.5, Tau = 0 .. t)

(4)

``

Download help.mw

 

  

Download 111.mwFractional_محلوله.pdf

Hello my friends
How can I write the results inside the Maple code as in the picture? That is, writing the results in terms of gamma and alpha

Hello,

Is it possible to have a common legend for different figures? I can plot them as Array of Plots (below) but then they each have a legend. 

Is it possible to have the two figures side by side and a common legend in the middle?

Thank you!

restart:
with(plots):
A := Array(1 .. 2):
A[1] := plot([2*sin(x), 3*sin(x)], x = -Pi .. Pi, labels = [x, b*sin(x)], color = [blue, red], legend = ["Case of b=2", "Case of b=3"]):
A[2] := plot([2*cos(x), 3*cos(x)], x = -Pi .. Pi, labels = [x, b*cos(x)], color = [blue, red], legend = ["Case of b=2", "Case of b=3"]):
display(A);

Hey, guys! My Maple 2020 program does not build a plot. that is, it cuts it off. everything is correct in maple 2015.

plot(140^t*exp(-140)/t!, t = 0 .. 300)

Maple 2015

plot(140^t*exp(-140)/t!, t = 0 .. 300)

 

My maple 2020 creates

 

 

Why???????????

 

I use Maple 2020 on a Windows 10 PC.

The command ssystem("CMD") enables to launch any Windows command accessible from the shell.
But how to launch a PowerShell command?

For instance ssystem("get-process") returns -1 (not surprising in fact for get-process is not a shell process).
How can I tell Maple that this command is to be found in the PowerShell ?

And even, I this possible for, in the ssystem help page, it's said that not all the command can be launched by ssystem

TIA

Two of the three Watt's curves plotted in this worksheet display with gaps.

Why is this and how can these curves be displayed without gaps?

WattsCurve.mw

Hi

Keep getting "Error, null" on every calculation i make. It indicates hidden spaces or something weird????.

Screenshot of it is included. 

https://imgur.com/a/wSdUeqe

Would be great with a fix or some help because this is driving me mad....

The uploaded worksheet is a failed attempt at this proof.

Please either refer me to or show me a valid proof.

  *** I have tried to upload my worksheet using the green arrow but the insert link operation of the upload failed ***

cc

loading

Error occurred during PDF generation. Please refresh the page and try again

I want to plot the solutions of the equation (x-y)^2+(1-z)^2=0.

However, implicitplot3d is not able to plot them, at least using the default arguments. Any recommendations?

I know a priori that it is going to be a curve contained in a plane in case that makes this task easier.

Can anyone tell me what this means? (workfile maple.file.mw)

 

how I can convert this maple code to Matlab ones?

1.mw
 

restart; t1 := time(); with(LinearAlgebra); J := readstat("Please enter integer number J: "); N1 := proc (x) options operator, arrow; piecewise(0 <= x and x <= 1, 1) end proc; N2 := proc (x) options operator, arrow; piecewise(0 <= x and x <= 1, x, 1 < x and x <= 2, 2-x) end proc; N := proc (J, k) options operator, arrow; unapply(N2(2^J*x-k), x) end proc; Phi := proc (J, k) options operator, arrow; evalf((N(J, k))(x))*N1(x) end proc; PhiJ := Vector[column](2^J+1); for k from -1 to 2^J-1 do PhiJ[k+2] := Phi(J, k) end do; P := Matrix(2^J+1, 2^J+1); Map2[proc (i, j) options operator, arrow; evalb(i-j = 1) end proc](proc (x, a) options operator, arrow; x end proc, 1/6, P, inplace); Map2[proc (i, j) options operator, arrow; evalb(j-i = 1) end proc](proc (x, a) options operator, arrow; x end proc, 1/6, P, inplace); Map2[proc (i, j) options operator, arrow; evalb(i = j) end proc](proc (x, a) options operator, arrow; x end proc, 2/3, P, inplace); P[1, 1] := 1/3; P[2^J+1, 2^J+1] := 1/3; P := 2^(-J)*P; E := Matrix(2^J+1, 2^J+1); Map2[proc (i, j) options operator, arrow; evalb(i-j = 1) end proc](proc (x, a) options operator, arrow; x end proc, 1/2, E, inplace); Map2[proc (i, j) options operator, arrow; evalb(j-i = 1) end proc](proc (x, a) options operator, arrow; x end proc, -1/2, E, inplace); E[1, 1] := -1/2; E[2^J+1, 2^J+1] := 1/2; DPhi := E.(1/P); X1 := Vector[column](2^J+1, symbol = x1); X2 := Vector[column](2^J+1, symbol = x2); U := Vector[column](2^J+1, symbol = u); JJ := (1/2)*U^%T.P.U; x1t := X1^%T.PhiJ; x2t := X2^%T.PhiJ; ut := U^%T.PhiJ; for i from 0 to 2^J do PhiJxJ[i+1] := apply(unapply(PhiJ, x), i/2^J) end do; for i to 2^J+1 do eq1[i] := (X1^%T.DPhi-X2^%T).PhiJxJ[i] = 0; eq2[i] := (X2^%T.DPhi-U^%T).PhiJxJ[i] = 0 end do; for i to 2^J+1 do eq3[i] := X1^%T.PhiJxJ[i]-.1, 0 end do; eq1[0] := eval(x1t, x = 0) = 0; eq2[0] := eval(x2t, x = 0)-1 = 0; eq1[2^J+2] := eval(x1t, x = 1) = 0; eq2[2^J+2] := eval(x2t, x = 1) = -1; eqq1 := {seq(eq1[i], i = 0*.2^J+2)}; eqq2 := {seq(eq2[i], i = 0.2^J+2)}; eqq3 := {seq(eq3[i], i = 1.2^J+1)}; eq := `union`(`union`(eqq1, eqq2), eqq3); with(Optimization); S := NLPSolve(JJ, eq); assign(S[2]); uexact := piecewise(0 <= x and x <= .3, (200/9)*x-20/3, .3 <= x and x <= .7, 0, .7 <= x and x <= 1, -(200/9)*x+140/9); x2exact := piecewise(0 <= x and x <= .3, (100/9)*x^2-(20/3)*x+1, .3 <= x and x <= .7, 0, .7 <= x and x <= 1, -(100/9)*x^2+(140/9)*x-49/9); x1exact := piecewise(0 <= x and x <= .3, (100/27)*x^3-(10/3)*x^2+x, .3 <= x and x <= .7, 1/10, .7 <= x and x <= 1, -(100/27)*x^3+(70/9)*x^2-(49/9)*x+37/27); plot([x1exact, x1t], x = 0 .. 1, style = [line, point], legend = ["Exact", "Approximate"], axis = [gridlines = [colour = green, majorlines = 2]], labels = ["t", x[1](t)], labeldirections = ["horizontal", "vertical"])

t1 := 38.500

 

[`&x`, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, BidiagonalForm, BilinearForm, CARE, CharacteristicMatrix, CharacteristicPolynomial, Column, ColumnDimension, ColumnOperation, ColumnSpace, CompanionMatrix, CompressedSparseForm, ConditionNumber, ConstantMatrix, ConstantVector, Copy, CreatePermutation, CrossProduct, DARE, DeleteColumn, DeleteRow, Determinant, Diagonal, DiagonalMatrix, Dimension, Dimensions, DotProduct, EigenConditionNumbers, Eigenvalues, Eigenvectors, Equal, ForwardSubstitute, FrobeniusForm, FromCompressedSparseForm, FromSplitForm, GaussianElimination, GenerateEquations, GenerateMatrix, Generic, GetResultDataType, GetResultShape, GivensRotationMatrix, GramSchmidt, HankelMatrix, HermiteForm, HermitianTranspose, HessenbergForm, HilbertMatrix, HouseholderMatrix, IdentityMatrix, IntersectionBasis, IsDefinite, IsOrthogonal, IsSimilar, IsUnitary, JordanBlockMatrix, JordanForm, KroneckerProduct, LA_Main, LUDecomposition, LeastSquares, LinearSolve, LyapunovSolve, Map, Map2, MatrixAdd, MatrixExponential, MatrixFunction, MatrixInverse, MatrixMatrixMultiply, MatrixNorm, MatrixPower, MatrixScalarMultiply, MatrixVectorMultiply, MinimalPolynomial, Minor, Modular, Multiply, NoUserValue, Norm, Normalize, NullSpace, OuterProductMatrix, Permanent, Pivot, PopovForm, ProjectionMatrix, QRDecomposition, RandomMatrix, RandomVector, Rank, RationalCanonicalForm, ReducedRowEchelonForm, Row, RowDimension, RowOperation, RowSpace, ScalarMatrix, ScalarMultiply, ScalarVector, SchurForm, SingularValues, SmithForm, SplitForm, StronglyConnectedBlocks, SubMatrix, SubVector, SumBasis, SylvesterMatrix, SylvesterSolve, ToeplitzMatrix, Trace, Transpose, TridiagonalForm, UnitVector, VandermondeMatrix, VectorAdd, VectorAngle, VectorMatrixMultiply, VectorNorm, VectorScalarMultiply, ZeroMatrix, ZeroVector, Zip]

 

J := 4

 

N1 := proc (x) options operator, arrow; piecewise(0 <= x and x <= 1, 1) end proc

 

N2 := proc (x) options operator, arrow; piecewise(0 <= x and x <= 1, x, 1 < x and x <= 2, 2-x) end proc

 

N := proc (J, k) options operator, arrow; unapply(N2(2^J*x-k), x) end proc

 

Phi := proc (J, k) options operator, arrow; evalf((N(J, k))(x))*N1(x) end proc

 

_rtable[36893490566539206892]

 

PhiJ[1] := piecewise(16.*x <= 0. and 0. <= 16.*x+1., 16.*x+1., 0. < 16.*x and 16.*x <= 1., 1.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[2] := piecewise(0. <= 16.*x and 16.*x <= 1., 16.*x, 1. < 16.*x and 16.*x <= 2., 2.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[3] := piecewise(`and`(0. <= 16.*x-1., 16.*x <= 2.), 16.*x-1., `and`(0. < 16.*x-2., 16.*x <= 3.), 3.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[4] := piecewise(`and`(0. <= 16.*x-2., 16.*x <= 3.), 16.*x-2., `and`(0. < 16.*x-3., 16.*x <= 4.), 4.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[5] := piecewise(`and`(0. <= 16.*x-3., 16.*x <= 4.), 16.*x-3., `and`(0. < 16.*x-4., 16.*x <= 5.), 5.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[6] := piecewise(`and`(0. <= 16.*x-4., 16.*x <= 5.), 16.*x-4., `and`(0. < 16.*x-5., 16.*x <= 6.), 6.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[7] := piecewise(`and`(0. <= 16.*x-5., 16.*x <= 6.), 16.*x-5., `and`(0. < 16.*x-6., 16.*x <= 7.), 7.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[8] := piecewise(`and`(0. <= 16.*x-6., 16.*x <= 7.), 16.*x-6., `and`(0. < 16.*x-7., 16.*x <= 8.), 8.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[9] := piecewise(`and`(0. <= 16.*x-7., 16.*x <= 8.), 16.*x-7., `and`(0. < 16.*x-8., 16.*x <= 9.), 9.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[10] := piecewise(`and`(0. <= 16.*x-8., 16.*x <= 9.), 16.*x-8., `and`(0. < 16.*x-9., 16.*x <= 10.), 10.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[11] := piecewise(`and`(0. <= 16.*x-9., 16.*x <= 10.), 16.*x-9., `and`(0. < 16.*x-10., 16.*x <= 11.), 11.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[12] := piecewise(`and`(0. <= 16.*x-10., 16.*x <= 11.), 16.*x-10., `and`(0. < 16.*x-11., 16.*x <= 12.), 12.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[13] := piecewise(`and`(0. <= 16.*x-11., 16.*x <= 12.), 16.*x-11., `and`(0. < 16.*x-12., 16.*x <= 13.), 13.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[14] := piecewise(`and`(0. <= 16.*x-12., 16.*x <= 13.), 16.*x-12., `and`(0. < 16.*x-13., 16.*x <= 14.), 14.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[15] := piecewise(`and`(0. <= 16.*x-13., 16.*x <= 14.), 16.*x-13., `and`(0. < 16.*x-14., 16.*x <= 15.), 15.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[16] := piecewise(`and`(0. <= 16.*x-14., 16.*x <= 15.), 16.*x-14., `and`(0. < 16.*x-15., 16.*x <= 16.), 16.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

PhiJ[17] := piecewise(`and`(0. <= 16.*x-15., 16.*x <= 16.), 16.*x-15., `and`(0. < 16.*x-16., 16.*x <= 17.), 17.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

_rtable[36893490566536466172]

 

_rtable[36893490566536466172]

 

_rtable[36893490566536466172]

 

_rtable[36893490566536466172]

 

P[1, 1] := 1/3

 

P[17, 17] := 1/3

 

_rtable[36893490566563670004]

 

_rtable[36893490566563682652]

 

_rtable[36893490566563682652]

 

_rtable[36893490566563682652]

 

E[1, 1] := -1/2

 

E[17, 17] := 1/2

 

_rtable[36893490566592433196]

 

_rtable[36893490566592446084]

 

_rtable[36893490566592458492]

 

_rtable[36893490566592462708]

 

JJ := ((1/96)*u[1]+(1/192)*u[2])*u[1]+((1/192)*u[1]+(1/48)*u[2]+(1/192)*u[3])*u[2]+((1/192)*u[2]+(1/48)*u[3]+(1/192)*u[4])*u[3]+((1/192)*u[3]+(1/48)*u[4]+(1/192)*u[5])*u[4]+((1/192)*u[4]+(1/48)*u[5]+(1/192)*u[6])*u[5]+((1/192)*u[5]+(1/48)*u[6]+(1/192)*u[7])*u[6]+((1/192)*u[6]+(1/48)*u[7]+(1/192)*u[8])*u[7]+((1/192)*u[7]+(1/48)*u[8]+(1/192)*u[9])*u[8]+((1/192)*u[8]+(1/48)*u[9]+(1/192)*u[10])*u[9]+((1/192)*u[9]+(1/48)*u[10]+(1/192)*u[11])*u[10]+((1/192)*u[10]+(1/48)*u[11]+(1/192)*u[12])*u[11]+((1/192)*u[11]+(1/48)*u[12]+(1/192)*u[13])*u[12]+((1/192)*u[12]+(1/48)*u[13]+(1/192)*u[14])*u[13]+((1/192)*u[13]+(1/48)*u[14]+(1/192)*u[15])*u[14]+((1/192)*u[14]+(1/48)*u[15]+(1/192)*u[16])*u[15]+((1/192)*u[15]+(1/48)*u[16]+(1/192)*u[17])*u[16]+((1/192)*u[16]+(1/96)*u[17])*u[17]

 

x1t := x1[1]*piecewise(16.*x <= 0. and 0. <= 16.*x+1., 16.*x+1., 0. < 16.*x and 16.*x <= 1., 1.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[2]*piecewise(0. <= 16.*x and 16.*x <= 1., 16.*x, 1. < 16.*x and 16.*x <= 2., 2.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[3]*piecewise(`and`(0. <= 16.*x-1., 16.*x <= 2.), 16.*x-1., `and`(0. < 16.*x-2., 16.*x <= 3.), 3.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[4]*piecewise(`and`(0. <= 16.*x-2., 16.*x <= 3.), 16.*x-2., `and`(0. < 16.*x-3., 16.*x <= 4.), 4.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[5]*piecewise(`and`(0. <= 16.*x-3., 16.*x <= 4.), 16.*x-3., `and`(0. < 16.*x-4., 16.*x <= 5.), 5.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[6]*piecewise(`and`(0. <= 16.*x-4., 16.*x <= 5.), 16.*x-4., `and`(0. < 16.*x-5., 16.*x <= 6.), 6.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[7]*piecewise(`and`(0. <= 16.*x-5., 16.*x <= 6.), 16.*x-5., `and`(0. < 16.*x-6., 16.*x <= 7.), 7.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[8]*piecewise(`and`(0. <= 16.*x-6., 16.*x <= 7.), 16.*x-6., `and`(0. < 16.*x-7., 16.*x <= 8.), 8.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[9]*piecewise(`and`(0. <= 16.*x-7., 16.*x <= 8.), 16.*x-7., `and`(0. < 16.*x-8., 16.*x <= 9.), 9.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[10]*piecewise(`and`(0. <= 16.*x-8., 16.*x <= 9.), 16.*x-8., `and`(0. < 16.*x-9., 16.*x <= 10.), 10.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[11]*piecewise(`and`(0. <= 16.*x-9., 16.*x <= 10.), 16.*x-9., `and`(0. < 16.*x-10., 16.*x <= 11.), 11.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[12]*piecewise(`and`(0. <= 16.*x-10., 16.*x <= 11.), 16.*x-10., `and`(0. < 16.*x-11., 16.*x <= 12.), 12.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[13]*piecewise(`and`(0. <= 16.*x-11., 16.*x <= 12.), 16.*x-11., `and`(0. < 16.*x-12., 16.*x <= 13.), 13.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[14]*piecewise(`and`(0. <= 16.*x-12., 16.*x <= 13.), 16.*x-12., `and`(0. < 16.*x-13., 16.*x <= 14.), 14.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[15]*piecewise(`and`(0. <= 16.*x-13., 16.*x <= 14.), 16.*x-13., `and`(0. < 16.*x-14., 16.*x <= 15.), 15.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[16]*piecewise(`and`(0. <= 16.*x-14., 16.*x <= 15.), 16.*x-14., `and`(0. < 16.*x-15., 16.*x <= 16.), 16.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x1[17]*piecewise(`and`(0. <= 16.*x-15., 16.*x <= 16.), 16.*x-15., `and`(0. < 16.*x-16., 16.*x <= 17.), 17.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

x2t := x2[1]*piecewise(16.*x <= 0. and 0. <= 16.*x+1., 16.*x+1., 0. < 16.*x and 16.*x <= 1., 1.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[2]*piecewise(0. <= 16.*x and 16.*x <= 1., 16.*x, 1. < 16.*x and 16.*x <= 2., 2.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[3]*piecewise(`and`(0. <= 16.*x-1., 16.*x <= 2.), 16.*x-1., `and`(0. < 16.*x-2., 16.*x <= 3.), 3.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[4]*piecewise(`and`(0. <= 16.*x-2., 16.*x <= 3.), 16.*x-2., `and`(0. < 16.*x-3., 16.*x <= 4.), 4.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[5]*piecewise(`and`(0. <= 16.*x-3., 16.*x <= 4.), 16.*x-3., `and`(0. < 16.*x-4., 16.*x <= 5.), 5.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[6]*piecewise(`and`(0. <= 16.*x-4., 16.*x <= 5.), 16.*x-4., `and`(0. < 16.*x-5., 16.*x <= 6.), 6.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[7]*piecewise(`and`(0. <= 16.*x-5., 16.*x <= 6.), 16.*x-5., `and`(0. < 16.*x-6., 16.*x <= 7.), 7.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[8]*piecewise(`and`(0. <= 16.*x-6., 16.*x <= 7.), 16.*x-6., `and`(0. < 16.*x-7., 16.*x <= 8.), 8.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[9]*piecewise(`and`(0. <= 16.*x-7., 16.*x <= 8.), 16.*x-7., `and`(0. < 16.*x-8., 16.*x <= 9.), 9.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[10]*piecewise(`and`(0. <= 16.*x-8., 16.*x <= 9.), 16.*x-8., `and`(0. < 16.*x-9., 16.*x <= 10.), 10.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[11]*piecewise(`and`(0. <= 16.*x-9., 16.*x <= 10.), 16.*x-9., `and`(0. < 16.*x-10., 16.*x <= 11.), 11.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[12]*piecewise(`and`(0. <= 16.*x-10., 16.*x <= 11.), 16.*x-10., `and`(0. < 16.*x-11., 16.*x <= 12.), 12.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[13]*piecewise(`and`(0. <= 16.*x-11., 16.*x <= 12.), 16.*x-11., `and`(0. < 16.*x-12., 16.*x <= 13.), 13.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[14]*piecewise(`and`(0. <= 16.*x-12., 16.*x <= 13.), 16.*x-12., `and`(0. < 16.*x-13., 16.*x <= 14.), 14.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[15]*piecewise(`and`(0. <= 16.*x-13., 16.*x <= 14.), 16.*x-13., `and`(0. < 16.*x-14., 16.*x <= 15.), 15.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[16]*piecewise(`and`(0. <= 16.*x-14., 16.*x <= 15.), 16.*x-14., `and`(0. < 16.*x-15., 16.*x <= 16.), 16.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+x2[17]*piecewise(`and`(0. <= 16.*x-15., 16.*x <= 16.), 16.*x-15., `and`(0. < 16.*x-16., 16.*x <= 17.), 17.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

ut := u[1]*piecewise(16.*x <= 0. and 0. <= 16.*x+1., 16.*x+1., 0. < 16.*x and 16.*x <= 1., 1.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[2]*piecewise(0. <= 16.*x and 16.*x <= 1., 16.*x, 1. < 16.*x and 16.*x <= 2., 2.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[3]*piecewise(`and`(0. <= 16.*x-1., 16.*x <= 2.), 16.*x-1., `and`(0. < 16.*x-2., 16.*x <= 3.), 3.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[4]*piecewise(`and`(0. <= 16.*x-2., 16.*x <= 3.), 16.*x-2., `and`(0. < 16.*x-3., 16.*x <= 4.), 4.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[5]*piecewise(`and`(0. <= 16.*x-3., 16.*x <= 4.), 16.*x-3., `and`(0. < 16.*x-4., 16.*x <= 5.), 5.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[6]*piecewise(`and`(0. <= 16.*x-4., 16.*x <= 5.), 16.*x-4., `and`(0. < 16.*x-5., 16.*x <= 6.), 6.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[7]*piecewise(`and`(0. <= 16.*x-5., 16.*x <= 6.), 16.*x-5., `and`(0. < 16.*x-6., 16.*x <= 7.), 7.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[8]*piecewise(`and`(0. <= 16.*x-6., 16.*x <= 7.), 16.*x-6., `and`(0. < 16.*x-7., 16.*x <= 8.), 8.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[9]*piecewise(`and`(0. <= 16.*x-7., 16.*x <= 8.), 16.*x-7., `and`(0. < 16.*x-8., 16.*x <= 9.), 9.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[10]*piecewise(`and`(0. <= 16.*x-8., 16.*x <= 9.), 16.*x-8., `and`(0. < 16.*x-9., 16.*x <= 10.), 10.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[11]*piecewise(`and`(0. <= 16.*x-9., 16.*x <= 10.), 16.*x-9., `and`(0. < 16.*x-10., 16.*x <= 11.), 11.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[12]*piecewise(`and`(0. <= 16.*x-10., 16.*x <= 11.), 16.*x-10., `and`(0. < 16.*x-11., 16.*x <= 12.), 12.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[13]*piecewise(`and`(0. <= 16.*x-11., 16.*x <= 12.), 16.*x-11., `and`(0. < 16.*x-12., 16.*x <= 13.), 13.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[14]*piecewise(`and`(0. <= 16.*x-12., 16.*x <= 13.), 16.*x-12., `and`(0. < 16.*x-13., 16.*x <= 14.), 14.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[15]*piecewise(`and`(0. <= 16.*x-13., 16.*x <= 14.), 16.*x-13., `and`(0. < 16.*x-14., 16.*x <= 15.), 15.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[16]*piecewise(`and`(0. <= 16.*x-14., 16.*x <= 15.), 16.*x-14., `and`(0. < 16.*x-15., 16.*x <= 16.), 16.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)+u[17]*piecewise(`and`(0. <= 16.*x-15., 16.*x <= 16.), 16.*x-15., `and`(0. < 16.*x-16., 16.*x <= 17.), 17.-16.*x)*piecewise(0 <= x and x <= 1, 1, 0)

 

_rtable[36893490566593511164]

 

_rtable[36893490566474385156]

 

_rtable[36893490566474387196]

 

_rtable[36893490566474274564]

 

_rtable[36893490566474276604]

 

_rtable[36893490566471927556]

 

_rtable[36893490566471929596]

 

_rtable[36893490566439466756]

 

_rtable[36893490566439468796]

 

_rtable[36893490566581483268]

 

_rtable[36893490566581485308]

 

_rtable[36893490566581487364]

 

_rtable[36893490566581489404]

 

_rtable[36893490566581491460]

 

_rtable[36893490566581493500]

 

_rtable[36893490566581561092]

 

_rtable[36893490566581563132]

 

eq1[1] := -20.28718708*x1[1]+25.72312247*x1[2]-6.892489894*x1[3]+1.846837101*x1[4]-.4948585097*x1[5]+.1325969380*x1[6]-0.3552924247e-1*x1[7]+0.9520031827e-2*x1[8]-0.2550884838e-2*x1[9]+0.6835075261e-3*x1[10]-0.1831452664e-3*x1[11]+0.4907353932e-4*x1[12]-0.1314889092e-4*x1[13]+3.522024353*10^(-6)*x1[14]-9.392064942*10^(-7)*x1[15]+2.348016235*10^(-7)*x1[16]-3.913360392*10^(-8)*x1[17]-1.*x2[1] = 0

 

eq2[1] := -20.28718708*x2[1]+25.72312247*x2[2]-6.892489894*x2[3]+1.846837101*x2[4]-.4948585097*x2[5]+.1325969380*x2[6]-0.3552924247e-1*x2[7]+0.9520031827e-2*x2[8]-0.2550884838e-2*x2[9]+0.6835075261e-3*x2[10]-0.1831452664e-3*x2[11]+0.4907353932e-4*x2[12]-0.1314889092e-4*x2[13]+3.522024353*10^(-6)*x2[14]-9.392064942*10^(-7)*x2[15]+2.348016235*10^(-7)*x2[16]-3.913360392*10^(-8)*x2[17]-1.*u[1] = 0

 

eq1[2] := -7.425625842*x1[1]-3.446244947*x1[2]+13.78497979*x1[3]-3.693674202*x1[4]+.9897170194*x1[5]-.2651938761*x1[6]+0.7105848494e-1*x1[7]-0.1904006365e-1*x1[8]+0.5101769676e-2*x1[9]-0.1367015052e-2*x1[10]+0.3662905327e-3*x1[11]-0.9814707864e-4*x1[12]+0.2629778184e-4*x1[13]-7.044048706*10^(-6)*x1[14]+1.878412988*10^(-6)*x1[15]-4.696032471*10^(-7)*x1[16]+7.826720785*10^(-8)*x1[17]-1.000000000*x2[2] = 0

 

eq2[2] := -7.425625842*x2[1]-3.446244947*x2[2]+13.78497979*x2[3]-3.693674202*x2[4]+.9897170194*x2[5]-.2651938761*x2[6]+0.7105848494e-1*x2[7]-0.1904006365e-1*x2[8]+0.5101769676e-2*x2[9]-0.1367015052e-2*x2[10]+0.3662905327e-3*x2[11]-0.9814707864e-4*x2[12]+0.2629778184e-4*x2[13]-7.044048706*10^(-6)*x2[14]+1.878412988*10^(-6)*x2[15]-4.696032471*10^(-7)*x2[16]+7.826720785*10^(-8)*x2[17]-1.000000000*u[2] = 0

 

eq1[3] := 1.989690448*x1[1]-11.93814269*x1[2]-.2474292549*x1[3]+12.92785971*x1[4]-3.464009568*x1[5]+.9281785663*x1[6]-.2487046973*x1[7]+0.6664022279e-1*x1[8]-0.1785619387e-1*x1[9]+0.4784552683e-2*x1[10]-0.1282016864e-2*x1[11]+0.3435147752e-3*x1[12]-0.9204223643e-4*x1[13]+0.2465417047e-4*x1[14]-6.574445459*10^(-6)*x1[15]+1.643611365*10^(-6)*x1[16]-2.739352275*10^(-7)*x1[17]-1.000000000*x2[3] = 0

 

eq2[3] := 1.989690448*x2[1]-11.93814269*x2[2]-.2474292549*x2[3]+12.92785971*x2[4]-3.464009568*x2[5]+.9281785663*x2[6]-.2487046973*x2[7]+0.6664022279e-1*x2[8]-0.1785619387e-1*x2[9]+0.4784552683e-2*x2[10]-0.1282016864e-2*x2[11]+0.3435147752e-3*x2[12]-0.9204223643e-4*x2[13]+0.2465417047e-4*x2[14]-6.574445459*10^(-6)*x2[15]+1.643611365*10^(-6)*x2[16]-2.739352275*10^(-7)*x2[17]-1.000000000*u[3] = 0

 

eq1[4] := -.5331359486*x1[1]+3.198815692*x1[2]-12.79526277*x1[3]-0.1776462123e-1*x1[4]+12.86632125*x1[5]-3.447520389*x1[6]+.9237603042*x1[7]-.2475208275*x1[8]+0.6632300579e-1*x1[9]-0.1777119568e-1*x1[10]+0.4761776926e-2*x1[11]-0.1275912022e-2*x1[12]+0.3418711639e-3*x1[13]-0.9157263318e-4*x1[14]+0.2441936885e-4*x1[15]-6.104842212*10^(-6)*x1[16]+1.017473702*10^(-6)*x1[17]-1.000000000*x2[4] = 0

 

eq2[4] := -.5331359486*x2[1]+3.198815692*x2[2]-12.79526277*x2[3]-0.1776462123e-1*x2[4]+12.86632125*x2[5]-3.447520389*x2[6]+.9237603042*x2[7]-.2475208275*x2[8]+0.6632300579e-1*x2[9]-0.1777119568e-1*x2[10]+0.4761776926e-2*x2[11]-0.1275912022e-2*x2[12]+0.3418711639e-3*x2[13]-0.9157263318e-4*x2[14]+0.2441936885e-4*x2[15]-6.104842212*10^(-6)*x2[16]+1.017473702*10^(-6)*x2[17]-1.000000000*u[4] = 0

 

eq1[5] := .1428533469*x1[1]-.8571200814*x1[2]+3.428480326*x1[3]-12.85680122*x1[4]-0.1275442419e-2*x1[5]+12.86190299*x1[6]-3.446336519*x1[7]+.9234430872*x1[8]-.2474358293*x1[9]+0.6630023004e-1*x1[10]-0.1776509084e-1*x1[11]+0.4760133314e-2*x1[12]-0.1275442419e-2*x1[13]+0.3416363623e-3*x1[14]-0.9110302994e-4*x1[15]+0.2277575748e-4*x1[16]-3.795959581*10^(-6)*x1[17]-1.000000000*x2[5] = 0

 

eq2[5] := .1428533469*x2[1]-.8571200814*x2[2]+3.428480326*x2[3]-12.85680122*x2[4]-0.1275442419e-2*x2[5]+12.86190299*x2[6]-3.446336519*x2[7]+.9234430872*x2[8]-.2474358293*x2[9]+0.6630023004e-1*x2[10]-0.1776509084e-1*x2[11]+0.4760133314e-2*x2[12]-0.1275442419e-2*x2[13]+0.3416363623e-3*x2[14]-0.9110302994e-4*x2[15]+0.2277575748e-4*x2[16]-3.795959581*10^(-6)*x2[17]-1.000000000*u[5] = 0

 

eq1[6] := -0.3827743894e-1*x1[1]+.2296646336*x1[2]-.9186585345*x1[3]+3.444969504*x1[4]-12.86121948*x1[5]-0.9157263318e-4*x1[6]+12.86158577*x1[7]-3.446251521*x1[8]+.9234203114*x1[9]-.2474297245*x1[10]+0.6629858642e-1*x1[11]-0.1776462123e-1*x1[12]+0.4759898512e-2*x1[13]-0.1274972816e-2*x1[14]+0.3399927509e-3*x1[15]-0.8499818772e-4*x1[16]+0.1416636462e-4*x1[17]-1.000000000*x2[6] = 0

 

eq2[6] := -0.3827743894e-1*x2[1]+.2296646336*x2[2]-.9186585345*x2[3]+3.444969504*x2[4]-12.86121948*x2[5]-0.9157263318e-4*x2[6]+12.86158577*x2[7]-3.446251521*x2[8]+.9234203114*x2[9]-.2474297245*x2[10]+0.6629858642e-1*x2[11]-0.1776462123e-1*x2[12]+0.4759898512e-2*x2[13]-0.1274972816e-2*x2[14]+0.3399927509e-3*x2[15]-0.8499818772e-4*x2[16]+0.1416636462e-4*x2[17]-1.000000000*u[6] = 0

 

eq1[7] := 0.1025640885e-1*x1[1]-0.6153845311e-1*x1[2]+.2461538124*x1[3]-.9230767966*x1[4]+3.446153374*x1[5]-12.86153670*x1[6]-6.574445459*10^(-6)*x1[7]+12.86156300*x1[8]-3.446245416*x1[9]+.9234186678*x1[10]-.2474292549*x1[11]+0.6629835162e-1*x1[12]-0.1776415163e-1*x1[13]+0.4758254901e-2*x1[14]-0.1268867974e-2*x1[15]+0.3172169934e-3*x1[16]-0.5286949890e-4*x1[17]-1.000000000*x2[7] = 0

 

eq2[7] := 0.1025640885e-1*x2[1]-0.6153845311e-1*x2[2]+.2461538124*x2[3]-.9230767966*x2[4]+3.446153374*x2[5]-12.86153670*x2[6]-6.574445459*10^(-6)*x2[7]+12.86156300*x2[8]-3.446245416*x2[9]+.9234186678*x2[10]-.2474292549*x2[11]+0.6629835162e-1*x2[12]-0.1776415163e-1*x2[13]+0.4758254901e-2*x2[14]-0.1268867974e-2*x2[15]+0.3172169934e-3*x2[16]-0.5286949890e-4*x2[17]-1.000000000*u[7] = 0

 

eq1[8] := -0.2748196469e-2*x1[1]+0.1648917882e-1*x1[2]-0.6595671526e-1*x1[3]+.2473376822*x1[4]-.9233940136*x1[5]+3.446238372*x1[6]-12.86155948*x1[7]-4.696032471*10^(-7)*x1[8]+12.86156135*x1[9]-3.446244947*x1[10]+.9234184330*x1[11]-.2474287852*x1[12]+0.6629670801e-1*x1[13]-0.1775804679e-1*x1[14]+0.4735479144e-2*x1[15]-0.1183869786e-2*x1[16]+0.1973116310e-3*x1[17]-1.000000000*x2[8] = 0

 

eq2[8] := -0.2748196469e-2*x2[1]+0.1648917882e-1*x2[2]-0.6595671526e-1*x2[3]+.2473376822*x2[4]-.9233940136*x2[5]+3.446238372*x2[6]-12.86155948*x2[7]-4.696032471*10^(-7)*x2[8]+12.86156135*x2[9]-3.446244947*x2[10]+.9234184330*x2[11]-.2474287852*x2[12]+0.6629670801e-1*x2[13]-0.1775804679e-1*x2[14]+0.4735479144e-2*x2[15]-0.1183869786e-2*x2[16]+0.1973116310e-3*x2[17]-1.000000000*u[8] = 0

 

eq1[9] := 0.7363770250e-3*x1[1]-0.4418262150e-2*x1[2]+0.1767304860e-1*x1[3]-0.6627393225e-1*x1[4]+.2474226804*x1[5]-.9234167894*x1[6]+3.446244477*x1[7]-12.86156112*x1[8]+12.86156112*x1[10]-3.446244477*x1[11]+.9234167894*x1[12]-.2474226804*x1[13]+0.6627393225e-1*x1[14]-0.1767304860e-1*x1[15]+0.4418262150e-2*x1[16]-0.7363770250e-3*x1[17]-1.000000000*x2[9] = 0

 

eq2[9] := 0.7363770250e-3*x2[1]-0.4418262150e-2*x2[2]+0.1767304860e-1*x2[3]-0.6627393225e-1*x2[4]+.2474226804*x2[5]-.9234167894*x2[6]+3.446244477*x2[7]-12.86156112*x2[8]+12.86156112*x2[10]-3.446244477*x2[11]+.9234167894*x2[12]-.2474226804*x2[13]+0.6627393225e-1*x2[14]-0.1767304860e-1*x2[15]+0.4418262150e-2*x2[16]-0.7363770250e-3*x2[17]-1.000000000*u[9] = 0

 

eq1[10] := -0.1973116310e-3*x1[1]+0.1183869786e-2*x1[2]-0.4735479144e-2*x1[3]+0.1775804679e-1*x1[4]-0.6629670801e-1*x1[5]+.2474287852*x1[6]-.9234184330*x1[7]+3.446244947*x1[8]-12.86156135*x1[9]+4.696032471*10^(-7)*x1[10]+12.86155948*x1[11]-3.446238372*x1[12]+.9233940136*x1[13]-.2473376822*x1[14]+0.6595671526e-1*x1[15]-0.1648917882e-1*x1[16]+0.2748196469e-2*x1[17]-1.000000000*x2[10] = 0

 

eq2[10] := -0.1973116310e-3*x2[1]+0.1183869786e-2*x2[2]-0.4735479144e-2*x2[3]+0.1775804679e-1*x2[4]-0.6629670801e-1*x2[5]+.2474287852*x2[6]-.9234184330*x2[7]+3.446244947*x2[8]-12.86156135*x2[9]+4.696032471*10^(-7)*x2[10]+12.86155948*x2[11]-3.446238372*x2[12]+.9233940136*x2[13]-.2473376822*x2[14]+0.6595671526e-1*x2[15]-0.1648917882e-1*x2[16]+0.2748196469e-2*x2[17]-1.000000000*u[10] = 0

 

eq1[11] := 0.5286949890e-4*x1[1]-0.3172169934e-3*x1[2]+0.1268867974e-2*x1[3]-0.4758254901e-2*x1[4]+0.1776415163e-1*x1[5]-0.6629835162e-1*x1[6]+.2474292549*x1[7]-.9234186678*x1[8]+3.446245416*x1[9]-12.86156300*x1[10]+6.574445459*10^(-6)*x1[11]+12.86153670*x1[12]-3.446153374*x1[13]+.9230767966*x1[14]-.2461538124*x1[15]+0.6153845311e-1*x1[16]-0.1025640885e-1*x1[17]-1.00000000*x2[11] = 0

 

eq2[11] := 0.5286949890e-4*x2[1]-0.3172169934e-3*x2[2]+0.1268867974e-2*x2[3]-0.4758254901e-2*x2[4]+0.1776415163e-1*x2[5]-0.6629835162e-1*x2[6]+.2474292549*x2[7]-.9234186678*x2[8]+3.446245416*x2[9]-12.86156300*x2[10]+6.574445459*10^(-6)*x2[11]+12.86153670*x2[12]-3.446153374*x2[13]+.9230767966*x2[14]-.2461538124*x2[15]+0.6153845311e-1*x2[16]-0.1025640885e-1*x2[17]-1.00000000*u[11] = 0

 

eq1[12] := -0.1416636462e-4*x1[1]+0.8499818772e-4*x1[2]-0.3399927509e-3*x1[3]+0.1274972816e-2*x1[4]-0.4759898512e-2*x1[5]+0.1776462123e-1*x1[6]-0.6629858642e-1*x1[7]+.2474297245*x1[8]-.9234203114*x1[9]+3.446251521*x1[10]-12.86158577*x1[11]+0.9157263318e-4*x1[12]+12.86121948*x1[13]-3.444969504*x1[14]+.9186585345*x1[15]-.2296646336*x1[16]+0.3827743894e-1*x1[17]-1.00000000*x2[12] = 0

 

eq2[12] := -0.1416636462e-4*x2[1]+0.8499818772e-4*x2[2]-0.3399927509e-3*x2[3]+0.1274972816e-2*x2[4]-0.4759898512e-2*x2[5]+0.1776462123e-1*x2[6]-0.6629858642e-1*x2[7]+.2474297245*x2[8]-.9234203114*x2[9]+3.446251521*x2[10]-12.86158577*x2[11]+0.9157263318e-4*x2[12]+12.86121948*x2[13]-3.444969504*x2[14]+.9186585345*x2[15]-.2296646336*x2[16]+0.3827743894e-1*x2[17]-1.00000000*u[12] = 0

 

eq1[13] := 3.795959581*10^(-6)*x1[1]-0.2277575748e-4*x1[2]+0.9110302994e-4*x1[3]-0.3416363623e-3*x1[4]+0.1275442419e-2*x1[5]-0.4760133314e-2*x1[6]+0.1776509084e-1*x1[7]-0.6630023004e-1*x1[8]+.2474358293*x1[9]-.9234430872*x1[10]+3.446336519*x1[11]-12.86190299*x1[12]+0.1275442419e-2*x1[13]+12.85680122*x1[14]-3.428480326*x1[15]+.8571200814*x1[16]-.1428533469*x1[17]-1.00000000*x2[13] = 0

 

eq2[13] := 3.795959581*10^(-6)*x2[1]-0.2277575748e-4*x2[2]+0.9110302994e-4*x2[3]-0.3416363623e-3*x2[4]+0.1275442419e-2*x2[5]-0.4760133314e-2*x2[6]+0.1776509084e-1*x2[7]-0.6630023004e-1*x2[8]+.2474358293*x2[9]-.9234430872*x2[10]+3.446336519*x2[11]-12.86190299*x2[12]+0.1275442419e-2*x2[13]+12.85680122*x2[14]-3.428480326*x2[15]+.8571200814*x2[16]-.1428533469*x2[17]-1.00000000*u[13] = 0

 

eq1[14] := -1.017473702*10^(-6)*x1[1]+6.104842212*10^(-6)*x1[2]-0.2441936885e-4*x1[3]+0.9157263318e-4*x1[4]-0.3418711639e-3*x1[5]+0.1275912022e-2*x1[6]-0.4761776926e-2*x1[7]+0.1777119568e-1*x1[8]-0.6632300579e-1*x1[9]+.2475208275*x1[10]-.9237603042*x1[11]+3.447520389*x1[12]-12.86632125*x1[13]+0.1776462123e-1*x1[14]+12.79526277*x1[15]-3.198815692*x1[16]+.5331359486*x1[17]-1.00000000*x2[14] = 0

 

eq2[14] := -1.017473702*10^(-6)*x2[1]+6.104842212*10^(-6)*x2[2]-0.2441936885e-4*x2[3]+0.9157263318e-4*x2[4]-0.3418711639e-3*x2[5]+0.1275912022e-2*x2[6]-0.4761776926e-2*x2[7]+0.1777119568e-1*x2[8]-0.6632300579e-1*x2[9]+.2475208275*x2[10]-.9237603042*x2[11]+3.447520389*x2[12]-12.86632125*x2[13]+0.1776462123e-1*x2[14]+12.79526277*x2[15]-3.198815692*x2[16]+.5331359486*x2[17]-1.00000000*u[14] = 0

 

eq1[15] := 2.739352275*10^(-7)*x1[1]-1.643611365*10^(-6)*x1[2]+6.574445459*10^(-6)*x1[3]-0.2465417047e-4*x1[4]+0.9204223643e-4*x1[5]-0.3435147752e-3*x1[6]+0.1282016864e-2*x1[7]-0.4784552683e-2*x1[8]+0.1785619387e-1*x1[9]-0.6664022279e-1*x1[10]+.2487046973*x1[11]-.9281785663*x1[12]+3.464009568*x1[13]-12.92785971*x1[14]+.2474292549*x1[15]+11.93814269*x1[16]-1.989690448*x1[17]-1.00000000*x2[15] = 0

 

eq2[15] := 2.739352275*10^(-7)*x2[1]-1.643611365*10^(-6)*x2[2]+6.574445459*10^(-6)*x2[3]-0.2465417047e-4*x2[4]+0.9204223643e-4*x2[5]-0.3435147752e-3*x2[6]+0.1282016864e-2*x2[7]-0.4784552683e-2*x2[8]+0.1785619387e-1*x2[9]-0.6664022279e-1*x2[10]+.2487046973*x2[11]-.9281785663*x2[12]+3.464009568*x2[13]-12.92785971*x2[14]+.2474292549*x2[15]+11.93814269*x2[16]-1.989690448*x2[17]-1.00000000*u[15] = 0

 

eq1[16] := -7.826720785*10^(-8)*x1[1]+4.696032471*10^(-7)*x1[2]-1.878412988*10^(-6)*x1[3]+7.044048706*10^(-6)*x1[4]-0.2629778184e-4*x1[5]+0.9814707864e-4*x1[6]-0.3662905327e-3*x1[7]+0.1367015052e-2*x1[8]-0.5101769676e-2*x1[9]+0.1904006365e-1*x1[10]-0.7105848494e-1*x1[11]+.2651938761*x1[12]-.9897170194*x1[13]+3.693674202*x1[14]-13.78497979*x1[15]+3.446244947*x1[16]+7.425625842*x1[17]-1.00000000*x2[16] = 0

 

eq2[16] := -7.826720785*10^(-8)*x2[1]+4.696032471*10^(-7)*x2[2]-1.878412988*10^(-6)*x2[3]+7.044048706*10^(-6)*x2[4]-0.2629778184e-4*x2[5]+0.9814707864e-4*x2[6]-0.3662905327e-3*x2[7]+0.1367015052e-2*x2[8]-0.5101769676e-2*x2[9]+0.1904006365e-1*x2[10]-0.7105848494e-1*x2[11]+.2651938761*x2[12]-.9897170194*x2[13]+3.693674202*x2[14]-13.78497979*x2[15]+3.446244947*x2[16]+7.425625842*x2[17]-1.00000000*u[16] = 0

 

eq1[17] := 3.913360392*10^(-8)*x1[1]-2.348016235*10^(-7)*x1[2]+9.392064942*10^(-7)*x1[3]-3.522024353*10^(-6)*x1[4]+0.1314889092e-4*x1[5]-0.4907353932e-4*x1[6]+0.1831452664e-3*x1[7]-0.6835075261e-3*x1[8]+0.2550884838e-2*x1[9]-0.9520031827e-2*x1[10]+0.3552924247e-1*x1[11]-.1325969380*x1[12]+.4948585097*x1[13]-1.846837101*x1[14]+6.892489894*x1[15]-25.72312247*x1[16]+20.28718708*x1[17]-1.*x2[17] = 0

 

eq2[17] := 3.913360392*10^(-8)*x2[1]-2.348016235*10^(-7)*x2[2]+9.392064942*10^(-7)*x2[3]-3.522024353*10^(-6)*x2[4]+0.1314889092e-4*x2[5]-0.4907353932e-4*x2[6]+0.1831452664e-3*x2[7]-0.6835075261e-3*x2[8]+0.2550884838e-2*x2[9]-0.9520031827e-2*x2[10]+0.3552924247e-1*x2[11]-.1325969380*x2[12]+.4948585097*x2[13]-1.846837101*x2[14]+6.892489894*x2[15]-25.72312247*x2[16]+20.28718708*x2[17]-1.*u[17] = 0

 

eq3[1] := 1.*x1[1]-.1, 0

 

eq3[2] := 1.000000000*x1[2]-.1, 0

 

eq3[3] := 1.000000000*x1[3]-.1, 0

 

eq3[4] := 1.000000000*x1[4]-.1, 0

 

eq3[5] := 1.000000000*x1[5]-.1, 0

 

eq3[6] := 1.000000000*x1[6]-.1, 0

 

eq3[7] := 1.000000000*x1[7]-.1, 0

 

eq3[8] := 1.000000000*x1[8]-.1, 0

 

eq3[9] := 1.000000000*x1[9]-.1, 0

 

eq3[10] := 1.000000000*x1[10]-.1, 0

 

eq3[11] := 1.00000000*x1[11]-.1, 0

 

eq3[12] := 1.00000000*x1[12]-.1, 0

 

eq3[13] := 1.00000000*x1[13]-.1, 0

 

eq3[14] := 1.00000000*x1[14]-.1, 0

 

eq3[15] := 1.00000000*x1[15]-.1, 0

 

eq3[16] := 1.00000000*x1[16]-.1, 0

 

eq3[17] := 1.*x1[17]-.1, 0

 

eq1[0] := 1.*x1[1] = 0

 

eq2[0] := 1.*x2[1]-1 = 0

 

eq1[18] := 1.*x1[17] = 0

 

eq2[18] := 1.*x2[17] = -1

 

eqq1 := {-7.425625842*x1[1]-3.446244947*x1[2]+13.78497979*x1[3]-3.693674202*x1[4]+.9897170194*x1[5]-.2651938761*x1[6]+0.7105848494e-1*x1[7]-0.1904006365e-1*x1[8]+0.5101769676e-2*x1[9]-0.1367015052e-2*x1[10]+0.3662905327e-3*x1[11]-0.9814707864e-4*x1[12]+0.2629778184e-4*x1[13]-7.044048706*10^(-6)*x1[14]+1.878412988*10^(-6)*x1[15]-4.696032471*10^(-7)*x1[16]+7.826720785*10^(-8)*x1[17]-1.000000000*x2[2] = 0}

 

eqq2 := {-7.425625842*x2[1]-3.446244947*x2[2]+13.78497979*x2[3]-3.693674202*x2[4]+.9897170194*x2[5]-.2651938761*x2[6]+0.7105848494e-1*x2[7]-0.1904006365e-1*x2[8]+0.5101769676e-2*x2[9]-0.1367015052e-2*x2[10]+0.3662905327e-3*x2[11]-0.9814707864e-4*x2[12]+0.2629778184e-4*x2[13]-7.044048706*10^(-6)*x2[14]+1.878412988*10^(-6)*x2[15]-4.696032471*10^(-7)*x2[16]+7.826720785*10^(-8)*x2[17]-1.000000000*u[2] = 0}

 

eqq3 := {0, 1.*x1[17]-.1}

 

eq := {0, 1.*x1[17]-.1, -7.425625842*x1[1]-3.446244947*x1[2]+13.78497979*x1[3]-3.693674202*x1[4]+.9897170194*x1[5]-.2651938761*x1[6]+0.7105848494e-1*x1[7]-0.1904006365e-1*x1[8]+0.5101769676e-2*x1[9]-0.1367015052e-2*x1[10]+0.3662905327e-3*x1[11]-0.9814707864e-4*x1[12]+0.2629778184e-4*x1[13]-7.044048706*10^(-6)*x1[14]+1.878412988*10^(-6)*x1[15]-4.696032471*10^(-7)*x1[16]+7.826720785*10^(-8)*x1[17]-1.000000000*x2[2] = 0, -7.425625842*x2[1]-3.446244947*x2[2]+13.78497979*x2[3]-3.693674202*x2[4]+.9897170194*x2[5]-.2651938761*x2[6]+0.7105848494e-1*x2[7]-0.1904006365e-1*x2[8]+0.5101769676e-2*x2[9]-0.1367015052e-2*x2[10]+0.3662905327e-3*x2[11]-0.9814707864e-4*x2[12]+0.2629778184e-4*x2[13]-7.044048706*10^(-6)*x2[14]+1.878412988*10^(-6)*x2[15]-4.696032471*10^(-7)*x2[16]+7.826720785*10^(-8)*x2[17]-1.000000000*u[2] = 0}

 

[ImportMPS, Interactive, LPSolve, LSSolve, Maximize, Minimize, NLPSolve, QPSolve]

 

Error, (in Optimization:-NLPSolve) constraints must be specified as a set or list of equalities and inequalities

 

uexact := piecewise(0 <= x and x <= .3, 200*x*(1/9)-20/3, .3 <= x and x <= .7, 0, .7 <= x and x <= 1, -200*x*(1/9)+140/9)

 

x2exact := piecewise(0 <= x and x <= .3, (100/9)*x^2-(20/3)*x+1, .3 <= x and x <= .7, 0, .7 <= x and x <= 1, -(100/9)*x^2+(140/9)*x-49/9)

 

piecewise(0 <= x and x <= .3, (100/27)*x^3-(10/3)*x^2+x, .3 <= x and x <= .7, 1/10, .7 <= x and x <= 1, -(100/27)*x^3+(70/9)*x^2-(49/9)*x+37/27)

 

Warning, expecting only range variable x in expression x1[1]*piecewise(0. <= 16.*x+1. and 16.*x <= 0.,16.*x+1.,0. < 16.*x and 16.*x <= 1.,1.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[2]*piecewise(0. <= 16.*x and 16.*x <= 1.,16.*x,1. < 16.*x and 16.*x <= 2.,2.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[3]*piecewise(0. <= 16.*x-1. and 16.*x <= 2.,16.*x-1.,0. < 16.*x-2. and 16.*x <= 3.,3.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[4]*piecewise(0. <= 16.*x-2. and 16.*x <= 3.,16.*x-2.,0. < 16.*x-3. and 16.*x <= 4.,4.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[5]*piecewise(0. <= 16.*x-3. and 16.*x <= 4.,16.*x-3.,0. < 16.*x-4. and 16.*x <= 5.,5.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[6]*piecewise(0. <= 16.*x-4. and 16.*x <= 5.,16.*x-4.,0. < 16.*x-5. and 16.*x <= 6.,6.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[7]*piecewise(0. <= 16.*x-5. and 16.*x <= 6.,16.*x-5.,0. < 16.*x-6. and 16.*x <= 7.,7.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[8]*piecewise(0. <= 16.*x-6. and 16.*x <= 7.,16.*x-6.,0. < 16.*x-7. and 16.*x <= 8.,8.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[9]*piecewise(0. <= 16.*x-7. and 16.*x <= 8.,16.*x-7.,0. < 16.*x-8. and 16.*x <= 9.,9.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[10]*piecewise(0. <= 16.*x-8. and 16.*x <= 9.,16.*x-8.,0. < 16.*x-9. and 16.*x <= 10.,10.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[11]*piecewise(0. <= 16.*x-9. and 16.*x <= 10.,16.*x-9.,0. < 16.*x-10. and 16.*x <= 11.,11.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[12]*piecewise(0. <= 16.*x-10. and 16.*x <= 11.,16.*x-10.,0. < 16.*x-11. and 16.*x <= 12.,12.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[13]*piecewise(0. <= 16.*x-11. and 16.*x <= 12.,16.*x-11.,0. < 16.*x-12. and 16.*x <= 13.,13.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[14]*piecewise(0. <= 16.*x-12. and 16.*x <= 13.,16.*x-12.,0. < 16.*x-13. and 16.*x <= 14.,14.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[15]*piecewise(0. <= 16.*x-13. and 16.*x <= 14.,16.*x-13.,0. < 16.*x-14. and 16.*x <= 15.,15.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[16]*piecewise(0. <= 16.*x-14. and 16.*x <= 15.,16.*x-14.,0. < 16.*x-15. and 16.*x <= 16.,16.-16.*x)*piecewise(0 <= x and x <= 1,1)+x1[17]*piecewise(0. <= 16.*x-15. and 16.*x <= 16.,16.*x-15.,0. < 16.*x-16. and 16.*x <= 17.,17.-16.*x)*piecewise(0 <= x and x <= 1,1) to be plotted but found names [x1[1], x1[2], x1[3], x1[4], x1[5], x1[6], x1[7], x1[8], x1[9], x1[10], x1[11], x1[12], x1[13], x1[14], x1[15], x1[16], x1[17]]

 

 

``


 

Download 1.mw

 

4 5 6 7 8 9 10 Last Page 6 of 55