Maple 2021 Questions and Posts

These are Posts and Questions associated with the product, Maple 2021

restart:
digits := 20;
unprotect(D);
G := 0.04361098108*x^2 + 0.4810001561*x*y + 1.326278064*y^2 - 0.7320831383*x - 2.656083763*y + 1 = 0
f := (x, y) -> lhs(G);
coeffs(f(x, y));
A, B, C, D, E, F := coeffs(f(x, y));
A := coeff(f(x, y), x, 2);
B := coeff(coeff(f(x, y), x), y);
C := coeff(f(x, y), y, 2);
D := coeff(coeff(f(x, y), x, 1), y, 0);
E := coeff(coeff(f(x, y), y, 1), x, 0);
F := tcoeff(f(x, y));
expand(B^2 - ((4*A) . C));
                          digits := 20

   f := proc (x, y) options operator, arrow; lhs(G) end proc

  1, -0.7320831383, 1.326278064, 0.04361098108, 0.4810001561, 

    -2.656083763


A, B, C, D, E, F := 1, -0.7320831383, 1.326278064, 0.04361098108, 

  0.4810001561, -2.656083763


                       A := 0.04361098108

                       B := 0.4810001561

                        C := 1.326278064

                       D := -0.7320831383

                       E := -2.656083763

                             F := 1

                               0.


with(geometry):
_EnvHorizontalName := 'x': _EnvVerticalName := 'y':
conic(co,f(x,y),[x,y]):
detail(co);
                 /                            
   GeometryDetail\["name of the object", co], 
   ["form of the object", ellipse2d], 
   ["center", [1.212351672 ^(10, 10), -2.198412833 ^(10, 9)]], 
   ["foci", [[2.424703344 ^(10, 10), -4.396825668 ^(10, 9)], 
   [0.1787052775, 0.9855002601]]], 
   ["length of the major axis", 2.464245740 ^(10, 10)], 
   ["length of the minor axis", 66579.62094], 
   [                                               2
   ["equation of the ellipse", 1. + 0.04361098108 x 
                                      2                 
    + 0.4810001561 x y + 1.326278064 y  - 0.7320831383 x
                       ]\ 
    - 2.656083763 y = 0]/;
   "_noterminate";

G is a parabola with B^2-4*A*C=0 or an ellipse ? A =1 or F=1 ? Thank you for youy answer. 

I have code which in module which does this

           DEtools:-kovacicsols(ode,func)

Where ode is some ode and func is y(x).  When I step in the debugger, I get exception at this. It says

       DBG> DEtools:-kovacicsols(ode,func)
       Error, `DEtools` does not evaluate to a module

Same exact code works OK from worksheet as expected.   SO for some reason, inside this module it does not see DEtools and I have no idea why.

Then I tried with :-  before DEtools, but this did not help. it gives

DBG> :-DEtools:-kovacicsols(ode,func)
Error, `table([(dperiodic_sols)=proc () `DEtools/init`() <> 0; `ODEtools/intfactor`(_passed); end etc...
` does not evaluate to a module

In a worksheet, it all works OK

ode:=diff(diff(y(x),x),x) = (-3/16/x^2-2/9/(x-1)^2+3/16/x/(x-1))*y(x);
func:=y(x);
DEtools:-kovacicsols(ode,func)

Gives the solution with no error.

Any suggestion what could be the cause and what to try next? I never seen anything like this. I am running this code using 

interface(warnlevel=4);
kernelopts('assertlevel'=2):

I am able to make a MWE. It seems this always happens in the debugger.  But if  I let it run, it works somehow. Only when I try to step into it, it gives error. Here is MWE

interface(warnlevel=4);
kernelopts('assertlevel'=2):
foo:=proc(ode,func)
   local result;
    DEBUG();   
    result:=DEtools:-kovacicsols(ode,func);
    return result;
  end proc;

And now

ode:=diff(diff(y(x),x),x) = (-3/16/x^2-2/9/(x-1)^2+3/16/x/(x-1))*y(x);
func:=y(x);
foo(ode,y(x))

Now in the debugger if I do DEtools:-kovacicsols(ode,func) or if I stepin the call, I get the error. But I hit the continue botton, I do not get the error and it gives solution. 

Why this happens?

Maple 2021.2 on windows 10

j'ai deux spheres concentriques s1 et s2  de centre O(-1,-1,-1) de rayon respectivement 3 et 2. mais maple donne que FindAngle(s1,s2)=arcos(31/12). comment expliquez ceçi et merci beaucoup.

PDETWOSTEPVARIAMETHOD.mwPDETWOSTEPVARIAMETHOD.mw

Pls i need help to correct this iteration code, I wrote but is not given the correct answer. find attached the worksheet

Hi!

I am fairly new to maple and needing to use it for my project this year. I have been advised to use it to help solve the following integral:

int(2/(1-x^p)^(1/p), x=0..1)

It will give me the answer I am looking for, however I cannot get it to explain the steps to get the answer. I have tried Student Calculus1 and ShowSolution but neither of them seem to be working.

Any help would be really appreiacted!

Hi,

I have a problem with maple. I used to work with maple until 2019. Now I installed Maple 2021 and I wanted to plot something, but it didn't worked anymore. I have problems to plot anything. When I try to plot something, maple only writes a very long list instead of a graphic. Here you can see, what I wrote in the worksheet:

restart;
with(LinearAlgebra):
with(plots):

plot(x^2,x=0..2);
INTERFACE_PLOT(CURVES(Matrix(200,2,{(2, 1) = HFloat(.105152100502512568e-1), (2
, 2) = HFloat(.110569642400905045e-3), (3, 1) = HFloat(.196644380904522631e-1),
(3, 2) = HFloat(.386690125413229849e-3), (4, 1) = HFloat(.299537019095477385e-1
), (4, 2) = HFloat(.897224258086043816e-3), (5, 1) = HFloat(.403111696482412116\
e-1), (5, 2) = HFloat(.162499039840928341e-2), (6, 1) = HFloat(.\
506194101507537672e-1), (6, 2) = HFloat(.256232468401023337e-2), (7, 1) =
HFloat(.601764686432160745e-1), (7, 2) = HFloat(.362120737836796758e-2), (8, 1)
= HFloat(.700722491457286406e-1), (8, 2) = HFloat(.491012010034106838e-2), (9,
1) = HFloat(.803064794974874402e-1), (9, 2) = HFloat(.644913064928037075e-2), (
10, 1) = HFloat(.905078885427135632e-1), (10, 2) = HFloat(.819167788846026160e-\
2), (11, 1) = HFloat(.101001291658291470), (11, 2) = HFloat(.102012609166432580\
e-1), (12, 1) = HFloat(.110243886834170857), (12, 2) = HFloat(.\
121537145843054698e-1), (13, 1) = HFloat(.120648859899497501), (13, 2) = HFloat
(.145561473950485756e-1), (14, 1) = HFloat(.131096556783919599), (14, 2) =
HFloat(.171863072005994551e-1), (15, 1) = HFloat(.141164848643216101), (15, 2)
= HFloat(.199275144924621096e-1), (16, 1) = HFloat(.150307822211055264), (16, 2
) = HFloat(.225924414178301988e-1), (17, 1) = HFloat(.161179702110552769), (17,
2) = HFloat(.259788963724465298e-1), (18, 1) = HFloat(.170389610452261309), (18
, 2) = HFloat(.290326193500733548e-1), (19, 1) = HFloat(.181102923316582926), (
19, 2) = HFloat(.327982688338121151e-1), (20, 1) = HFloat(.190586020502512554),
(20, 2) = HFloat(.363230312109841386e-1), (21, 1) = HFloat(.200990481105527641)
, (21, 2) = HFloat(.403971734950314618e-1), (22, 1) = HFloat(.21089798804020101\
8), (22, 2) = HFloat(.444779613594047732e-1), (23, 1) = HFloat(.221235432160804\
046), (23, 2) = HFloat(.489451164433777272e-1), (24, 1) = HFloat(.2307284328643\
21625), (24, 2) = HFloat(.532356097320257696e-1), (25, 1) = HFloat(.24096791658\
2914582), (25, 2) = HFloat(.580655368223104776e-1), (26, 1) = HFloat(.251603862\
412060286), (26, 2) = HFloat(.633045035806669570e-1), (27, 1) = HFloat(.2608624\
84522613070), (27, 2) = HFloat(.680492358313105478e-1), (28, 1) = HFloat(.27086\
2050050251268), (28, 2) = HFloat(.733662501574248171e-1), (29, 1) = HFloat(.281\
192579698492429), (29, 2) = HFloat(.790692668774930219e-1), (30, 1) = HFloat(.2\
91298987537688459), (30, 2) = HFloat(.848551001404823785e-1), (31, 1) = HFloat(
.301077456783919617), (31, 2) = HFloat(.906476349834729883e-1), (32, 1) =
HFloat(.311934779698492481), (32, 2) = HFloat(.973033067855470363e-1), (33, 1)
= HFloat(.321690567236180891), (33, 2) = HFloat(.103484821048735812), (34, 1) =
HFloat(.332106952763819130), (34, 2) = HFloat(.110295028074069587), (35, 1) =
HFloat(.341545746231155745), (35, 2) = HFloat(.116653496768597043), (36, 1) =
HFloat(.351864840603015094), (36, 2) = HFloat(.123808866052585217), (37, 1) =
HFloat(.361574304221105480), (37, 2) = HFloat(.130735977472976550), (38, 1) =
HFloat(.371723491356783953), (38, 2) = HFloat(.138178354026477046), (39, 1) =
HFloat(.381646176884422095), (39, 2) = HFloat(.145653804330495601), (40, 1) =
HFloat(.392034309045226126), (40, 2) = HFloat(.153690899468567871), (41, 1) =
HFloat(.402039314974874384), (41, 2) = HFloat(.161635610785466260), (42, 1) =
HFloat(.412270878592964851), (42, 2) = HFloat(.169967277335815153), (43, 1) =
HFloat(.422417719698492511), (43, 2) = HFloat(.178436729915274178), (44, 1) =
HFloat(.431741612864321611), (44, 2) = HFloat(.186400820278685764), (45, 1) =
HFloat(.442427846633165867), (45, 2) = HFloat(.195742399476460133), (46, 1) =
HFloat(.451985741507537675), (46, 2) = HFloat(.204291110526118674), (47, 1) =
HFloat(.462176450954773888), (47, 2) = HFloat(.213607071817150523), (48, 1) =
HFloat(.471930260201005036), (48, 2) = HFloat(.222718170493388323), (49, 1) =
HFloat(.482760611859296529), (49, 2) = HFloat(.233057808362762353), (50, 1) =
HFloat(.492138900603015073), (50, 2) = HFloat(.242200697486744360), (51, 1) =
HFloat(.502783342211055251), (51, 2) = HFloat(.252791089204919106), (52, 1) =
HFloat(.512484595175879409), (52, 2) = HFloat(.262640460292584976), (53, 1) =
HFloat(.523096241306532650), (53, 2) = HFloat(.273629677669022242), (54, 1) =
HFloat(.532252297286432086), (54, 2) = HFloat(.283292507966684481), (55, 1) =
HFloat(.542679976281407073), (55, 2) = HFloat(.294501556656788566), (56, 1) =
HFloat(.552752599396984956), (56, 2) = HFloat(.305535436140123740), (57, 1) =
HFloat(.562818642311557871), (57, 2) = HFloat(.316764824133425327), (58, 1) =
HFloat(.572847654070351764), (58, 2) = HFloat(.328154434773905379), (59, 1) =
HFloat(.582482394673366821), (59, 2) = HFloat(.339285740104419864), (60, 1) =
HFloat(.592897804422110597), (60, 2) = HFloat(.351527806488559302), (61, 1) =
HFloat(.602824445125628161), (61, 2) = HFloat(.363397311641021459), (62, 1) =
HFloat(.613271767035175941), (62, 2) = HFloat(.376102260242447139), (63, 1) =
HFloat(.622729109145728654), (63, 2) = HFloat(.387791543377432824), (64, 1) =
HFloat(.633181242613065298), (64, 2) = HFloat(.400918485997025453), (65, 1) =
HFloat(.643192565125628168), (65, 2) = HFloat(.413696675832885441), (66, 1) =
HFloat(.653179519798995023), (66, 2) = HFloat(.426643485084845731), (67, 1) =
HFloat(.663610932663316611), (67, 2) = HFloat(.440379469950276936), (68, 1) =
HFloat(.673218644723618143), (68, 2) = HFloat(.453223343603505191), (69, 1) =
HFloat(.683058256080402049), (69, 2) = HFloat(.466568581199600096), (70, 1) =
HFloat(.693922356180904587), (70, 2) = HFloat(.481528236407658183), (71, 1) =
HFloat(.703758908944723593), (71, 2) = HFloat(.495276601919067749), (72, 1) =
HFloat(.713818626633165865), (72, 2) = HFloat(.509537031728459100), (73, 1) =
HFloat(.724049100402010093), (73, 2) = HFloat(.524247099792960136), (74, 1) =
HFloat(.733452896582914682), (74, 2) = HFloat(.537953151505867755), (75, 1) =
HFloat(.743477038793969869), (75, 2) = HFloat(.552758107213850214), (76, 1) =
HFloat(.753424876582914571), (76, 2) = HFloat(.567649044653980028), (77, 1) =
HFloat(.764065970854271415), (77, 2) = HFloat(.583796807817480334), (78, 1) =
HFloat(.773456275577889429), (78, 2) = HFloat(.598234610230820030), (79, 1) =
HFloat(.784290737889447254), (79, 2) = HFloat(.615111961539173691), (80, 1) =
HFloat(.794068004824120544), (80, 2) = HFloat(.630543996285359509), (81, 1) =
HFloat(.803742099396984933), (81, 2) = HFloat(.646001362343072816), (82, 1) =
HFloat(.814144858894472301), (82, 2) = HFloat(.662831851264300220), (83, 1) =
HFloat(.824589699698492495), (83, 2) = HFloat(.679948172848850008), (84, 1) =
HFloat(.834092958291457243), (84, 2) = HFloat(.695711063071394631), (85, 1) =
HFloat(.844184996783919672), (85, 2) = HFloat(.712648308795066465), (86, 1) =
HFloat(.854033840000000044), (86, 2) = HFloat(.729373799865145722), (87, 1) =
HFloat(.864710089949748739), (87, 2) = HFloat(.747723539660902548), (88, 1) =
HFloat(.873948014472361812), (88, 2) = HFloat(.763785132000183498), (89, 1) =
HFloat(.884558106633165808), (89, 2) = HFloat(.782443044010451172), (90, 1) =
HFloat(.894532151055276392), (90, 2) = HFloat(.800187769271579863), (91, 1) =
HFloat(.904409857085427094), (91, 2) = HFloat(.817957189593282674), (92, 1) =
HFloat(.914295420904522649), (92, 2) = HFloat(.835936116686978203), (93, 1) =
HFloat(.924378070251256290), (93, 2) = HFloat(.854474816761436551), (94, 1) =
HFloat(.935065509648241200), (94, 2) = HFloat(.874347507333725016), (95, 1) =
HFloat(.944864845025125577), (95, 2) = HFloat(.892769575364354528), (96, 1) =
HFloat(.954538047336683348), (96, 2) = HFloat(.911142883813328308), (97, 1) =
HFloat(.964878541407035106), (97, 2) = HFloat(.930990599667767538), (98, 1) =
HFloat(.975196525125628155), (98, 2) = HFloat(.951008262617099920), (99, 1) =
HFloat(.984457528241206137), (99, 2) = HFloat(.969156624910785136), (100, 1) =
HFloat(.995427854271356827), (100, 2) = HFloat(.990876613059277656), (101, 1) =
HFloat(1.00460731437185924), (101, 2) = HFloat(1.00923585608943966), (102, 1) =
HFloat(1.01534372402010042), (102, 2) = HFloat(1.03092287790700587), (103, 1) =
HFloat(1.02559058693467331), (103, 2) = HFloat(1.05183605200900776), (104, 1) =
HFloat(1.03473981497487433), (104, 2) = HFloat(1.07068648469423722), (105, 1) =
HFloat(1.04502907879397000), (105, 2) = HFloat(1.09208577552497355), (106, 1) =
HFloat(1.05538654653266328), (106, 2) = HFloat(1.11384076260214138), (107, 1) =
HFloat(1.06569478703517584), (107, 2) = HFloat(1.13570537911394887), (108, 1) =
HFloat(1.07525184552763808), (108, 2) = HFloat(1.15616653131059177), (109, 1) =
HFloat(1.08514762603015091), (109, 2) = HFloat(1.17754537027887229), (110, 1) =
HFloat(1.09538185638190955), (110, 2) = HFloat(1.19986141129067825), (111, 1) =
HFloat(1.10558326542713559), (111, 2) = HFloat(1.22231435679252809), (112, 1) =
HFloat(1.11607666854271348), (112, 2) = HFloat(1.24562713006540182), (113, 1) =
HFloat(1.12531926371859292), (113, 2) = HFloat(1.26634344529615617), (114, 1) =
HFloat(1.13572423678391954), (114, 2) = HFloat(1.28986954201841653), (115, 1) =
HFloat(1.14617193366834180), (115, 2) = HFloat(1.31371010152902579), (116, 1) =
HFloat(1.15624022552763828), (116, 2) = HFloat(1.33689145912820373), (117, 1) =
HFloat(1.16538319909547727), (117, 2) = HFloat(1.35811800073400879), (118, 1) =
HFloat(1.17625507899497483), (118, 2) = HFloat(1.38357601086147453), (119, 1) =
HFloat(1.18546498733668337), (119, 2) = HFloat(1.40532723620116284), (120, 1) =
HFloat(1.19617830020100513), (120, 2) = HFloat(1.43084252587176586), (121, 1) =
HFloat(1.20566139738693479), (121, 2) = HFloat(1.45361940514901633), (122, 1) =
HFloat(1.21606585798994971), (122, 2) = HFloat(1.47881617096883256), (123, 1) =
HFloat(1.22597336492462317), (123, 2) = HFloat(1.50301069150460331), (124, 1) =
HFloat(1.23631080904522617), (124, 2) = HFloat(1.52846441656206178), (125, 1) =
HFloat(1.24580380974874383), (125, 2) = HFloat(1.55202713238448431), (126, 1) =
HFloat(1.25604329346733667), (126, 2) = HFloat(1.57764475506427404), (127, 1) =
HFloat(1.26667923929648252), (127, 2) = HFloat(1.60447629526471558), (128, 1) =
HFloat(1.27593786140703536), (128, 2) = HFloat(1.62801742617195888), (129, 1) =
HFloat(1.28593742693467328), (129, 2) = HFloat(1.65363506599136811), (130, 1) =
HFloat(1.29626795658291449), (130, 2) = HFloat(1.68031061526364467), (131, 1) =
HFloat(1.30637436442211063), (131, 2) = HFloat(1.70661398001927345), (132, 1) =
HFloat(1.31615283366834168), (132, 2) = HFloat(1.73225828157320549), (133, 1) =
HFloat(1.32701015658291466), (133, 2) = HFloat(1.76095595567421159), (134, 1) =
HFloat(1.33676594412060301), (134, 2) = HFloat(1.78694318936064711), (135, 1) =
HFloat(1.34718232964824125), (135, 2) = HFloat(1.81490022931646267), (136, 1) =
HFloat(1.35662112311557781), (136, 2) = HFloat(1.84042087168337165), (137, 1) =
HFloat(1.36694021748743699), (137, 2) = HFloat(1.86852555818460164), (138, 1) =
HFloat(1.37664968110552777), (138, 2) = HFloat(1.89516434448795135), (139, 1) =
HFloat(1.38679886824120602), (139, 2) = HFloat(1.92321110095508985), (140, 1) =
HFloat(1.39672155376884422), (140, 2) = HFloat(1.95083109876245442), (141, 1) =
HFloat(1.40710968592964836), (141, 2) = HFloat(1.97995766823703367), (142, 1) =
HFloat(1.41711469185929650), (142, 2) = HFloat(2.00821404988346908), (143, 1) =
HFloat(1.42734625547738680), (143, 2) = HFloat(2.03731733302531737), (144, 1) =
HFloat(1.43749309658291469), (144, 2) = HFloat(2.06638640272353680), (145, 1) =
HFloat(1.44681698974874351), (145, 2) = HFloat(2.09327940182561578), (146, 1) =
HFloat(1.45750322351758776), (146, 2) = HFloat(2.12431564656415928), (147, 1) =
HFloat(1.46706111839195996), (147, 2) = HFloat(2.15226832509746835), (148, 1) =
HFloat(1.47725182783919595), (148, 2) = HFloat(2.18227296285424543), (149, 1) =
HFloat(1.48700563708542721), (149, 2) = HFloat(2.21118576472383710), (150, 1) =
HFloat(1.49783598874371848), (150, 2) = HFloat(2.24351264917587256), (151, 1) =
HFloat(1.50721427748743708), (151, 2) = HFloat(2.27169487826197702), (152, 1) =
HFloat(1.51785871909547732), (152, 2) = HFloat(2.30389509113416313), (153, 1) =
HFloat(1.52755997206030147), (153, 2) = HFloat(2.33343946824086901), (154, 1) =
HFloat(1.53817161819095460), (154, 2) = HFloat(2.36597192700818004), (155, 1) =
HFloat(1.54732767417085437), (155, 2) = HFloat(2.39422293125498564), (156, 1) =
HFloat(1.55775535316582903), (156, 2) = HFloat(2.42660174031679654), (157, 1) =
HFloat(1.56782797628140713), (157, 2) = HFloat(2.45808456321065272), (158, 1) =
HFloat(1.57789401919598005), (158, 2) = HFloat(2.48974953581444369), (159, 1) =
HFloat(1.58792303095477383), (159, 2) = HFloat(2.52149955223659550), (160, 1) =
HFloat(1.59755777155778911), (160, 2) = HFloat(2.55219083346468922), (161, 1) =
HFloat(1.60797318130653277), (161, 2) = HFloat(2.58557775180105187), (162, 1) =
HFloat(1.61789982201005023), (162, 2) = HFloat(2.61759983406015229), (163, 1) =
HFloat(1.62834714391959801), (163, 2) = HFloat(2.65151442111111191), (164, 1) =
HFloat(1.63780448603015083), (164, 2) = HFloat(2.68240353446048641), (165, 1) =
HFloat(1.64825661949748747), (165, 2) = HFloat(2.71674988371728521), (166, 1) =
HFloat(1.65826794201005034), (166, 2) = HFloat(2.74985256749824769), (167, 1) =
HFloat(1.66825489668341720), (167, 2) = HFloat(2.78307440030819908), (168, 1) =
HFloat(1.67868630954773868), (168, 2) = HFloat(2.81798772586300617), (169, 1) =
HFloat(1.68829402160804021), (169, 2) = HFloat(2.85033670339744960), (170, 1) =
HFloat(1.69813363296482422), (170, 2) = HFloat(2.88365783540631249), (171, 1) =
HFloat(1.70899773306532654), (171, 2) = HFloat(2.92067325162242497), (172, 1) =
HFloat(1.71883428582914588), (172, 2) = HFloat(2.95439130214179002), (173, 1) =
HFloat(1.72889400351758793), (173, 2) = HFloat(2.98907447539907345), (174, 1) =
HFloat(1.73912447728643227), (174, 2) = HFloat(3.02455394749680639), (175, 1) =
HFloat(1.74852827346733686), (175, 2) = HFloat(3.05735112311466573), (176, 1) =
HFloat(1.75855241567839204), (176, 2) = HFloat(3.09250659868830802), (177, 1) =
HFloat(1.76850025346733686), (177, 2) = HFloat(3.12759314651403475), (178, 1) =
HFloat(1.77914134773869348), (178, 2) = HFloat(3.16534393523345470), (179, 1) =
HFloat(1.78853165246231161), (179, 2) = HFloat(3.19884547185956691), (180, 1) =
HFloat(1.79936611477386954), (180, 2) = HFloat(3.23771841499641022), (181, 1) =
HFloat(1.80914338170854272), (181, 2) = HFloat(3.27299977557982169), (182, 1) =
HFloat(1.81881747628140711), (182, 2) = HFloat(3.30809701202666684), (183, 1) =
HFloat(1.82922023577889470), (183, 2) = HFloat(3.34604667098299524), (184, 1) =
HFloat(1.83966507658291456), (184, 2) = HFloat(3.38436759399882092), (185, 1) =
HFloat(1.84916833517587942), (185, 2) = HFloat(3.41942353181713354), (186, 1) =
HFloat(1.85926037366834174), (186, 2) = HFloat(3.45684913709334163), (187, 1) =
HFloat(1.86910921688442211), (187, 2) = HFloat(3.49356926464229778), (188, 1) =
HFloat(1.87978546683417092), (188, 2) = HFloat(3.53359340132096200), (189, 1) =
HFloat(1.88902339135678377), (189, 2) = HFloat(3.56840937309308481), (190, 1) =
HFloat(1.89963348351758787), (190, 2) = HFloat(3.60860737170116597), (191, 1) =
HFloat(1.90960752793969868), (191, 2) = HFloat(3.64660091076396720), (192, 1) =
HFloat(1.91948523396984938), (192, 2) = HFloat(3.68442356342828736), (193, 1) =
HFloat(1.92937079778894471), (193, 2) = HFloat(3.72247167536074919), (194, 1) =
HFloat(1.93945344713567835), (194, 2) = HFloat(3.76147967360646573), (195, 1) =
HFloat(1.95014088653266326), (195, 2) = HFloat(3.80304947732640164), (196, 1) =
HFloat(1.95994022190954786), (196, 2) = HFloat(3.84136567345884794), (197, 1) =
HFloat(1.96961342422110564), (197, 2) = HFloat(3.87937704087198920), (198, 1) =
HFloat(1.97995391829145739), (198, 2) = HFloat(3.92021751855769507), (199, 1) =
HFloat(1.99027190201005011), (199, 2) = HFloat(3.96118224393070228), (200, 1) =
HFloat(2.), (200, 2) = HFloat(4.)},datatype = float[8],storage = rectangular,
order = Fortran_order,shape = []),COLOUR(RGB,.47058824,0.,.54901961e-1,
_ATTRIBUTE("source" = "mathdefault"))),AXESLABELS(x,""),VIEW(0. .. 2.,DEFAULT,
_ATTRIBUTE("source" = "mathdefault")))

I also opened an old worksheet with plots and pressed the "!!!" buttom, but maple didn't plotted anything, but 3 years ago, it worked with the old version of maple.  Does anybody knows what the problem is?

restart

with(Physics)

Setup(spacetime)

[spacetimeindices = greek]

(1)

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1142 and is the same as the version installed in this computer, created 2022, February 12, 11:16 hours Pacific Time.`

(2)

Define(t[mu])

{Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], t[mu], Physics:-LeviCivita[alpha, beta, mu, nu]}

(3)

NULL

SumOverRepeatedIndices(t[mu]*t[`~mu`])

t[1]*t[`~1`]+t[2]*t[`~2`]+t[3]*t[`~3`]+t[4]*t[`~4`]

(4)

NULL

SumOverRepeatedIndices(t[mu]*t[`~mu`])

t[1]*t[`~1`]+t[2]*t[`~2`]+t[3]*t[`~3`]+t[4]*t[`~4`]

(5)

NULL

SumOverRepeatedIndices(t[mu]*t[`~&mu;`])

t[mu]*t[`~&mu;`]

(6)

NULL

Download greek-index.mw

How to find the axis and focus of a parabola whose equation we know ? Thank you.

Why int gives this error? Is this a known problem?

Update

fyi, This is reported to Maplesoft.

Here is updated worksheet. The int() command does not generate the error the second time it used, but generates the error the very first time used. Hopefully will be fixed in 2022 Maple.
 

interface(version);

`Standard Worksheet Interface, Maple 2021.2, Windows 10, November 23 2021 Build ID 1576349`

restart;

Example 1

 

expr:=(7*x - 3 + sqrt(x^2 + (x^3*(x - 1)^2)^(1/3) - x) + sqrt(-2*((-x^2 + x + (x^3*(x - 1)^2)^(1/3)/2)*sqrt(x^2 + (x^3*(x - 1)^2)^(1/3) - x) + x^2*(x - 1))/sqrt(x^2 + (x^3*(x - 1)^2)^(1/3) - x)))/(12*x*(x - 1));

(1/12)*(7*x-3+(x^2+(x^3*(x-1)^2)^(1/3)-x)^(1/2)+(-2*((-x^2+x+(1/2)*(x^3*(x-1)^2)^(1/3))*(x^2+(x^3*(x-1)^2)^(1/3)-x)^(1/2)+x^2*(x-1))/(x^2+(x^3*(x-1)^2)^(1/3)-x)^(1/2))^(1/2))/(x*(x-1))

int(expr,x)

Error, (in IntegrationTools:-Indefinite:-AlgebraicFunction) invalid argument for sign, lcoeff or tcoeff

int(expr,x)

int((1/12)*(7*x-3+(x^2+(x^3*(x-1)^2)^(1/3)-x)^(1/2)+(-2*((-x^2+x+(1/2)*(x^3*(x-1)^2)^(1/3))*(x^2+(x^3*(x-1)^2)^(1/3)-x)^(1/2)+x^2*(x-1))/(x^2+(x^3*(x-1)^2)^(1/3)-x)^(1/2))^(1/2))/(x*(x-1)), x)


 

Download int_problem_feb_13_2022.mw

This also looks like an applyrule bug.

restart;

kernelopts(version);

`Maple 2021.2, X86 64 LINUX, Nov 23 2021, Build ID 1576349`

double_angle_rule := [
        sin(x::name/2)*cos(x::name/2) = 1/2*sin(x),
        sin(x::name/2)^2 = 1/2*(1-cos(x)),
        cos(x::name/2)^2 = 1/2*(1+cos(x))
];

[sin((1/2)*x::name)*cos((1/2)*x::name) = (1/2)*sin(x), sin((1/2)*x::name)^2 = 1/2-(1/2)*cos(x), cos((1/2)*x::name)^2 = 1/2+(1/2)*cos(x)]

C := < cos(1/2*u)*sin(1/2*u), cos(1/2*u)^2 >;

Vector(2, {(1) = cos((1/2)*u)*sin((1/2)*u), (2) = cos((1/2)*u)^2})

This application fails. Why?

applyrule~(double_angle_rule, C);

Error, dimension bounds must be the same for all container objects in an elementwise operation

Download applyrule-bug2.mw

 

This looks like a bug to me but please correct me if it is not.

restart;

kernelopts(version);

`Maple 2021.2, X86 64 LINUX, Nov 23 2021, Build ID 1576349`

half_angle_rule := [
        sin(x::name) = 2*sin(x/2)*cos(x/2),
        cos(x::name) = 1 - 2*sin(x/2)^2
];

[sin(x::name) = 2*sin((1/2)*x)*cos((1/2)*x), cos(x::name) = 1-2*sin((1/2)*x)^2]

In this example, Maple applies the rule to the first element only.
It should apply to both.

A := < sin(u), sin(u) >;
applyrule~(half_angle_rule, A);

Vector(2, {(1) = sin(u), (2) = sin(u)})

Vector[column](%id = 36893628627946684772)

In this example, Maple applies the rule to the second element only.
It should apply to both.

B := < cos(u), cos(u) >;
applyrule~(half_angle_rule, B);

Vector(2, {(1) = cos(u), (2) = cos(u)})

Vector[column](%id = 36893628627946688132)

Download applyrule-bug1.mw

 

How to trace the 2 parabolas that pass through 4 cocyclical points. Thank you

Hello all. I'm using version 2021.2 to try to make some simple energy plots for my research. The math is pretty straightforward, but for some reason I cannot get the results to plot properly. My code is below:

restart;
A := 7.17;
B := 2.56*10^(-3);
C := 0.08*10^5;
_local(D);
1;
D := 0*10^(-6);
                           A := 7.17

                      B := 0.002560000000

                          C := 8000.00

                             D := 0

T_0 := 298; 

G0 := -71.398;

S0 := 45.106;

Hf := -57.95;

 

cp := A + B*T + C/T^2 + D(T)^2;             

                           

`&Delta;H` := int(cp, T = T_0 .. T);

`&Delta;S` := int(cp/T, T = T_0 .. T);
           
G := -S0*T - T*`&Delta;S` + Hf + `&Delta;H`;

plot(G, T = T_0 .. T_max);

Which yields the following error message:

"Warning, unable to evaluate the function to numeric values in the region; see the plotting command's help page to ensure the calling sequence is correct"

I've looked through everything I can find on this issue, and I'm coming up empty. Anyone know what's happening here?

Dear colleagues.

I use gradplot for a displacement vector in x-direction only, as foolows

gradplot(u1(x), x = 0 .. a, y = 0 .. b, grid = [10, 10], arrows = SLIM, color = u1(x), T, caption = typeset("The displacement field"), fieldstrength = fixed, size = [0.3, 0.5])

I need to make color legend to show the minimum and maximum value and in between for the displacement.

Amr

We have just issued a critical fix to Maple, MapleSim, and Maple Flow running on macOS.

We have heard from some users who were experiencing serious problems with doubled characters while using Maplesoft products on macOS, including these reports on MaplePrimes. Further investigation determined that these problems appear specifically on macOS 11 and macOS 12.  I am happy to report that we have now corrected the problem, and a patch is available. 

Anyone who uses macOS 11 or macOS 12 should install this update immediately. We also strongly recommend that all macOS users install this update, to avoid problems that may be triggered by future updates to your operating system.

To obtain this update:

For those who have experienced problems, we apologize for the inconvenience and thank you for your patience while we worked to find a solution.

First 17 18 19 20 21 22 23 Last Page 19 of 40