Maple 2021 Questions and Posts

These are Posts and Questions associated with the product, Maple 2021

Hi
my odetest must give me zero everything is true but still not simplify the function with power include 1/n  not do cancelation even

test_sol_for_PDE.mw

Hello,

How can I reduce time calculations for the integral process?

Determining H[1] and HH[1] is very boring!!

 

time_consuming_calculations.mw

i have ODE equation i want a list of function solution when the parameter change then the solution is change too,so i wan the out come function and also show the parameter too i have idea but i can't write a generator function for it

restart

K := diff(F(xi), xi) = A+B*F(xi)+C*F(xi)^2

diff(F(xi), xi) = A+B*F(xi)+C*F(xi)^2

(1)

dsolve(K, F(xi))

F(xi) = -(1/2)*(-tan((1/2)*_C1*(4*A*C-B^2)^(1/2)+(1/2)*xi*(4*A*C-B^2)^(1/2))*(4*A*C-B^2)^(1/2)+B)/C

(2)

NULL

i want something like this table

Download find_generator_ode_function_.mw

please someone help for writing this program is importan

restart

``

B := (sum(a__n*exp(n*x), n = -c .. p))/(sum(b__m*exp(m*x), m = -d .. q))

(exp((p+1)*x)/(exp(x)-1)-exp(-c*x)/(exp(x)-1))*a__n/((exp((q+1)*x)/(exp(x)-1)-exp(-d*x)/(exp(x)-1))*b__m)

(1)

 

NULL

Download open_series_and_take_derivative.mw

restart;
_local(D, O);
with(Student:-MultivariateCalculus);
A := [0, 0, 0];
B := [a, 0, 0];
C := [a, b, 0];
D := [0, b, 0];
S := [0, 0, h];
O := [x, y, z];
lineSC := Line(S, C);
lineSD := Line(S, D);
H := Projection(A, lineSC);
K := Projection(A, lineSD);
OH := H - O;
OK := K - O;
OC := C - O;
M := Matrix([OH, OK, OC]);
O := eval(O, %);
simplify(Distance(O, H));
                               O

Error, invalid input: eval received Matrix(3, 3, {(1, 1) = -x+h^2*a/(a^2+b^2+h^2), (1, 2) = -y+h^2*b/(a^2+b^2+h^2), (1, 3) = -z+h*(a^2+b^2)/(a^2+b^2+h^2), (2, 1) = -x, (2, 2) = -y+h^2*b/(b^2+h^2), (2, 3) = -z+h*b^2/(b^2+h^2), (3, 1) = -x+a, (3, 2) = -y+b, (3, 3) = -z}), which is not valid for its 2nd argument, eqns
How to correct this error ? Thank you.

restart;

local gamma;

gamma

(1)

with(Plot)

 

params := {alpha = 2.5, k = 3, w = 2, beta[3] = 3, beta[4] = 1.7,theta=0,gamma=1};

{alpha = 2.5, gamma = 1, k = 3, theta = 0, w = 2, beta[3] = 3, beta[4] = 1.7}

(2)

xi := sqrt(-1/(72*alpha*beta[4]+72*gamma*beta[4]))*(2*alpha*k*t+x)

(-1/(72*alpha*beta[4]+72*gamma*beta[4]))^(1/2)*(2*alpha*k*t+x)

(3)

 

sol1 := [U(xi), -k*x -(9*alpha*k^2*beta[4] + 2*beta[3]^2)/(9*beta[4])*t + theta];

[U((-1/(72*alpha*beta[4]+72*gamma*beta[4]))^(1/2)*(2*alpha*k*t+x)), -k*x-(1/9)*(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/beta[4]+theta]

(4)

 

sol2 := eval(sol1, U(xi) = -beta[3]/(3*beta[4]) + beta[3]*sinh(xi)/(6*beta[4]*cosh(xi)) + beta[3]*cosh(xi)/(6*beta[4]*sinh(xi)));

[-(1/3)*beta[3]/beta[4]+(1/6)*beta[3]*sinh((-1/(72*alpha*beta[4]+72*gamma*beta[4]))^(1/2)*(2*alpha*k*t+x))/(beta[4]*cosh((-1/(72*alpha*beta[4]+72*gamma*beta[4]))^(1/2)*(2*alpha*k*t+x)))+(1/6)*beta[3]*cosh((-1/(72*alpha*beta[4]+72*gamma*beta[4]))^(1/2)*(2*alpha*k*t+x))/(beta[4]*sinh((-1/(72*alpha*beta[4]+72*gamma*beta[4]))^(1/2)*(2*alpha*k*t+x))), -k*x-(1/9)*(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/beta[4]+theta]

(5)

 

solnum :=eval(sol2, params);

[-.5882352940+(.2941176471*I)*sin(.7247137946*t+0.4831425297e-1*x)/cos(.7247137946*t+0.4831425297e-1*x)-(.2941176471*I)*cos(.7247137946*t+0.4831425297e-1*x)/sin(.7247137946*t+0.4831425297e-1*x), -3*x-23.67647059*t]

(6)

plots:-complexplot3d(solnum, x = -50.. 50, t = -50..50);

Warning, unable to evaluate the function to numeric values in the region; complex values were detected

 

 

NULL


if there is any other way for graph please share with me

Download complexplot3d.mw

restart;
with(Plot);
params := {alpha = 2.5, k = 3, w = 2, beta[3] = 3, beta[4] = 1.7};
xi := beta[3]*(2*alpha*k*t + x)*sqrt(1/(36*alpha*beta[4] + 36*gamma*beta[4]));
params := {alpha = 2.5, k = 3, w = 2, beta[3] = 3, beta[4] = 1.7}

          xi := beta[3] (2 alpha k t + x) 

                                                 (1/2)
            /                 1                 \     
            |-----------------------------------|     
            \36 alpha beta[4] + 36 gamma beta[4]/     


sol1n := u(x, t) = U(xi)*exp((-sqrt(1/(36*alpha*beta[4] + 36*gamma*beta[4]))*x + w*t + theta)*I);
                     /                          
                     |                          
 sol1n := u(x, t) = U|beta[3] (2 alpha k t + x) 
                     \                          

                                        (1/2)\    /  /
   /                 1                 \     |    |  |
   |-----------------------------------|     | exp|I |
   \36 alpha beta[4] + 36 gamma beta[4]/     /    \  \
                                       (1/2)                \\
  /                 1                 \                     ||
 -|-----------------------------------|      x + w t + theta||
  \36 alpha beta[4] + 36 gamma beta[4]/                     //



plot3d(rhs(sol1n), x = 0 .. 250, t = 0 .. 4);

how plot the the solution of PDE of this kind of function?

Download plot.mw

before run file remove all (:) i want calculate equation but with a condition for example: when a=4 then find other parameter in my equation with respect to a=4 find other

usesol.mw

when i finding parameter i want just choose a case for example a_1=a_1  and any other case a_2=0,and remove other case how i can do in maple

restart

with(PDEtools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

with(DEtools)

with(DifferentialAlgebra)

"with(Student[ODEs][Solve]): "

with(IntegrationTools)

with(inttrans)

with(PDEtools)

with(Physics)

with(PolynomialTools)

with(RootFinding)

with(SolveTools)

with(LinearAlgebra)

with(sumtools)

``

ode := F(xi)^5*a[4]+F(xi)^4*a[3]+F(xi)^3*a[2]+(-k^2*a[1]+(diff(diff(F(xi), xi), xi))*a[5]-w)*F(xi)^2+(1/2)*F(xi)*(diff(diff(F(xi), xi), xi))*a[1]-(1/4)*(diff(F(xi), xi))^2*a[1] = 0

NULL

L := convert((cosh(xi)+sinh(xi))/(cosh(xi)-sinh(xi)), trig)

"Q(xi):=L:"

S := sum(A[i]*Q(xi)^i, i = 0 .. 1)+sum(B[i]*Q(xi)^(-i), i = 1 .. 1)

``

(2)

S

K := F(xi) = S

F1 := eval(ode, K)

simplify(%)

P := numer(lhs())*denom(rhs()) = numer(rhs())*denom(lhs())

Warning,  computation interrupted

 

NULL

solve(identity(P, xi), {k, w, A[0], A[1], B[1], a[1], a[2], a[3], a[4], a[5]})

Warning, solutions may have been lost

 

{k = k, w = w, A[0] = 0, A[1] = A[1], B[1] = 0, a[1] = a[1], a[2] = a[2], a[3] = a[3], a[4] = a[4], a[5] = a[5]}, {k = k, w = -4*A[0]*a[5], A[0] = A[0], A[1] = A[1], B[1] = B[1], a[1] = 0, a[2] = -4*a[5], a[3] = 0, a[4] = 0, a[5] = a[5]}, {k = k, w = (1/2)*A[0]*(3*k^2*A[0]^2*a[4]+2*k^2*A[0]*a[3]+k^2*a[2]+4*k^2*a[5]+2*A[0]^2*a[4]+2*A[0]*a[3]+2*a[2]), A[0] = A[0], A[1] = 0, B[1] = 0, a[1] = -(1/2)*A[0]*(3*A[0]^2*a[4]+2*A[0]*a[3]+a[2]+4*a[5]), a[2] = a[2], a[3] = a[3], a[4] = a[4], a[5] = a[5]}, {k = k, w = w, A[0] = A[0], A[1] = 0, B[1] = 0, a[1] = a[1], a[2] = (-A[0]^3*a[4]+k^2*a[1]-A[0]^2*a[3]+w)/A[0], a[3] = a[3], a[4] = a[4], a[5] = a[5]}, {k = k, w = 4*A[1]*a[5]+4*B[1]*a[5], A[0] = -A[1]-B[1], A[1] = A[1], B[1] = B[1], a[1] = 0, a[2] = -4*a[5], a[3] = 0, a[4] = 0, a[5] = a[5]}, {k = k, w = -k^2*a[1]-4*A[0]*a[5]+a[1], A[0] = A[0], A[1] = (1/4)*A[0]^2/B[1], B[1] = B[1], a[1] = a[1], a[2] = -4*a[5], a[3] = 0, a[4] = 0, a[5] = a[5]}, {k = k, w = w, A[0] = 2*B[1], A[1] = B[1], B[1] = B[1], a[1] = a[1], a[2] = (1/2)*(k^2*a[1]+w-a[1])/B[1], a[3] = 0, a[4] = 0, a[5] = -(1/8)*(k^2*a[1]+w-a[1])/B[1]}, {k = k, w = w, A[0] = A[0], A[1] = B[1], B[1] = B[1], a[1] = 0, a[2] = w/A[0], a[3] = 0, a[4] = 0, a[5] = -(1/4)*w/A[0]}, {k = k, w = 0, A[0] = 0, A[1] = B[1], B[1] = B[1], a[1] = 0, a[2] = a[2], a[3] = 0, a[4] = 0, a[5] = -(1/4)*a[2]}

(3)

Download choose_case.mw

i am looking for simplify this type of simplifying assume beta is Real and there is any stuf package for working with complex and conjugate automaticaly

NULL

restart

with(inttrans)

with(PDEtools)

with(DEtools)

with(DifferentialAlgebra)

"with(Student[ODEs][Solve]): "

with(IntegrationTools)

with(inttrans)

with(PDEtools)

with(Physics)

with(PolynomialTools)

with(RootFinding)

with(SolveTools)

with(LinearAlgebra)

with(sumtools)

declare(u(x, t), conjugate(u(x, t)))

u(x, t)*`will now be displayed as`*u

(1)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(2)

B__0 := I*G(x)^3*conjugate(G(x))^2+(2*I)*G(x)^2*(diff(G(x), x))+(2*I)*(diff(G(x), x))*G(x)*conjugate(G(x))

I*G(x)^3*conjugate(G(x))^2+(2*I)*G(x)^2*(diff(G(x), x))+(2*I)*(diff(G(x), x))*G(x)*conjugate(G(x))

(3)

"G(x):=beta*exp(I*x) "

proc (x) options operator, arrow, function_assign; Physics:-`*`(beta, exp(Physics:-`*`(I, x))) end proc

(4)

R__0 := diff(G(x), `$`(x, 2))

-beta*exp(I*x)

(5)

B__0

I*beta^3*(exp(I*x))^3*conjugate(beta*exp(I*x))^2-2*beta^3*(exp(I*x))^3-2*beta^2*(exp(I*x))^2*conjugate(beta*exp(I*x))

(6)

"#`B__0 `must equal to (I*beta^(5)*exp(I*x)) after simplify betwen expresion  what code need i don't know"?""

B1 := laplace(B__0, t, s)

(-2*beta^2*exp((2*I)*x)*conjugate(beta*exp(I*x))+(I*conjugate(beta*exp(I*x))+1+I)*(conjugate(beta*exp(I*x))+(-1+I))*exp((3*I)*x)*beta^3)/s

(7)

R1 := laplace(R__0, t, s)

-beta*exp(I*x)/s

(8)

B2 := invlaplace(B1/s, s, t)

(-2*beta^2*exp((2*I)*x)*conjugate(beta*exp(I*x))+(I*conjugate(beta*exp(I*x))+1+I)*(conjugate(beta*exp(I*x))+(-1+I))*exp((3*I)*x)*beta^3)*t

(9)

R2 := invlaplace(R1/s, s, t)

-beta*exp(I*x)*t

(10)

Sol := B2+R2

(-2*beta^2*exp((2*I)*x)*conjugate(beta*exp(I*x))+(I*conjugate(beta*exp(I*x))+1+I)*(conjugate(beta*exp(I*x))+(-1+I))*exp((3*I)*x)*beta^3)*t-beta*exp(I*x)*t

(11)

simplify((-2*beta^2*exp((2*I)*x)*conjugate(beta*exp(I*x))+(I*conjugate(beta*exp(I*x))+1+I)*(conjugate(beta*exp(I*x))+(-1+I))*exp((3*I)*x)*beta^3)*t-beta*exp(I*x)*t)

(I*exp((3*I)*x)*conjugate(beta*exp(I*x))^2*beta^2-2*exp((2*I)*x)*conjugate(beta*exp(I*x))*beta-2*exp((3*I)*x)*beta^2-exp(I*x))*beta*t

(12)

expand((I*exp((3*I)*x)*conjugate(beta*exp(I*x))^2*beta^2-2*exp((2*I)*x)*conjugate(beta*exp(I*x))*beta-2*exp((3*I)*x)*beta^2-exp(I*x))*beta*t)

I*beta^3*t*(exp(I*x))^3*conjugate(beta)^2*(exp(-I*conjugate(x)))^2-2*t*beta^2*(exp(I*x))^2*conjugate(beta)*exp(-I*conjugate(x))-2*t*(exp(I*x))^3*beta^3-beta*exp(I*x)*t

(13)
 

NULL

Download simplify.mw

Hi
i write my code for calculate this type of function but the result is so different from mine i  will post here i hope someone tell me where is problem

i have this

i want this

Download EX1.mw

Hi
i did calculation part by part of adomian laplace method but if we can make a loop for it is gonna be so great and take back a lot of time

restart

with(inttrans)

pde := diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x)) = t^2*x+x

diff(u(x, t), t)+u(x, t)*(diff(u(x, t), x)) = t^2*x+x

(1)

eq := laplace(pde, t, s)

s*laplace(u(x, t), t, s)-u(x, 0)+laplace(u(x, t)*(diff(u(x, t), x)), t, s) = x*(s^2+2)/s^3

(2)

eq2 := subs({u(x, 0) = 0}, eq)

s*laplace(u(x, t), t, s)+laplace(u(x, t)*(diff(u(x, t), x)), t, s) = x*(s^2+2)/s^3

(3)

NULL

lap := s^alpha*laplace(u(x, t), t, s) = x*(s^2+2)/s^3-laplace(u(x, t)*(diff(u(x, t), x)), t, s)

s^alpha*laplace(u(x, t), t, s) = x*(s^2+2)/s^3-laplace(u(x, t)*(diff(u(x, t), x)), t, s)

(4)

lap1 := lap/s^alpha

laplace(u(x, t), t, s) = (x*(s^2+2)/s^3-laplace(u(x, t)*(diff(u(x, t), x)), t, s))/s^alpha

(5)

NULL

lap2 := invlaplace(lap1, s, t)

u(x, t) = -invlaplace(s^(-alpha)*laplace(u(x, t)*(diff(u(x, t), x)), t, s), s, t)+x*(invlaplace(s^(-1-alpha), s, t)+2*invlaplace(s^(-3-alpha), s, t))

(6)

NULL

lap3 := u(x, t) = t^alpha*x/GAMMA(alpha+1)+2*x*t^(alpha+2)/GAMMA(alpha+3)-invlaplace(laplace(u(x, t)*(diff(u(x, t), x)), t, s)/s^alpha, s, t)

u(x, t) = t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha)-invlaplace(laplace(u(x, t)*(diff(u(x, t), x)), t, s)/s^alpha, s, t)

(7)

NULL

NULL

NULL

NULL

``

(8)

u[1](x, t) = -invlaplace(laplace(u[0](x, t)*(diff(u[0](x, t), x)), t, s)/s^alpha, s, t)

u[1](x, t) = -invlaplace(laplace(u[0](x, t)*(diff(u[0](x, t), x)), t, s)/s^alpha, s, t)

(9)

"u[0](x,t):=(t^alpha x)/(GAMMA(1+alpha))+(2 x t^(alpha+2))/(GAMMA(3+alpha))"

proc (x, t) options operator, arrow, function_assign; t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha) end proc

(10)

n := N

N

(11)

k := K

K

(12)

f := proc (u) options operator, arrow; u*(diff(u, x)) end proc

proc (u) options operator, arrow; u*(diff(u, x)) end proc

(13)

for j from 0 to 3 do A[j] := subs(lambda = 0, (diff(f(seq(sum(lambda^i*u[i](x, t), i = 0 .. 20), m = 1 .. 2)), [`$`(lambda, j)]))/factorial(j)) end do

(t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))

 

u[1](x, t)*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))+(t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(diff(u[1](x, t), x))

 

u[2](x, t)*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))+u[1](x, t)*(diff(u[1](x, t), x))+(t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(diff(u[2](x, t), x))

 

u[3](x, t)*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))+u[2](x, t)*(diff(u[1](x, t), x))+u[1](x, t)*(diff(u[2](x, t), x))+(t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(diff(u[3](x, t), x))

(14)

S1 := u[1](x, t) = -invlaplace((t^alpha*x/GAMMA(1+alpha)+2*x*t^(alpha+2)/GAMMA(3+alpha))*(t^alpha/GAMMA(1+alpha)+2*t^(alpha+2)/GAMMA(3+alpha))/s^alpha, s, t)

u[1](x, t) = -x*(t^alpha)^2*invlaplace(s^(-alpha), s, t)*(1/GAMMA(1+alpha)^2+4*t^2/(GAMMA(3+alpha)*GAMMA(1+alpha))+4*t^4/GAMMA(3+alpha)^2)

(15)

NULL

NULL

u[1](x, t) = x*GAMMA(2*alpha+1)*t^(3*alpha)/(GAMMA(1+alpha)^2*GAMMA(3*alpha+1))-4*x*GAMMA(2*alpha+3)*t^(3*alpha+2)/(GAMMA(1+alpha)*GAMMA(3+alpha)*GAMMA(3*alpha+3))-4*`xΓ`(2*alpha+5)/(GAMMA(3+alpha)^2*GAMMA(3*alpha+3))

u[1](x, t) = x*GAMMA(2*alpha+1)*t^(3*alpha)/(GAMMA(1+alpha)^2*GAMMA(3*alpha+1))-4*x*GAMMA(2*alpha+3)*t^(3*alpha+2)/(GAMMA(1+alpha)*GAMMA(3+alpha)*GAMMA(3*alpha+3))-4*`xΓ`(2*alpha+5)/(GAMMA(3+alpha)^2*GAMMA(3*alpha+3))

(16)

NULL

u[2](x, t) = -invlaplace(laplace(u[1](x, t)*(diff(u(x, t), x)), t, s)/s^alpha, s, t)

NULL

NULL


for get definition use this pdf for fractional derivation

[Copyrighted material removed by moderator - see https://doi.org/10.4236/am.2018.94032]

Download solving_example_1.mw

Hi

i use other code for equation too when i use allvalues(Root(...)) it is more near but question is this why not satisfy the ode equation this is my equation this parameter are find for this ODe why not satisfy otherwise my equestions must be wrong!

restart

with(PDEtools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

with(DEtools)

``

with(LinearAlgebra)

with(sumtools)

eq0 := 2*beta*g[1]^3*r[0]^3+2*p^2*sigma*g[1]*r[0]^3 = 0

eq1 := 6*beta*g[1]^3*r[0]^2*r[1]+3*p^2*sigma*g[1]*r[0]^2*r[1]+6*beta*f[0]*g[1]^2*r[0]^2 = 0

eq2 := 6*beta*g[1]^3*r[0]^2*r[2]+6*beta*g[1]^3*r[0]*r[1]^2+2*p^2*sigma*g[1]*r[0]^2*r[2]+p^2*sigma*g[1]*r[0]*r[1]^2+12*beta*f[0]*g[1]^2*r[0]*r[1]+6*beta*f[1]*g[1]^2*r[0]^2+6*beta*f[0]^2*g[1]*r[0]-k^2*sigma*g[1]*r[0]-2*w*g[1]*r[0] = 0

eq3 := 12*beta*g[1]^3*r[0]*r[1]*r[2]+2*beta*g[1]^3*r[1]^3+2*p^2*sigma*g[1]*r[0]*r[1]*r[2]+12*beta*f[0]*g[1]^2*r[0]*r[2]+6*beta*f[0]*g[1]^2*r[1]^2+12*beta*f[1]*g[1]^2*r[0]*r[1]+p^2*sigma*f[1]*r[0]*r[1]+6*beta*f[0]^2*g[1]*r[1]+12*beta*f[0]*f[1]*g[1]*r[0]-k^2*sigma*g[1]*r[1]+2*beta*f[0]^3-k^2*sigma*f[0]-2*w*g[1]*r[1]-2*w*f[0] = 0

eq4 := 6*beta*g[1]^3*r[0]*r[2]^2+6*beta*g[1]^3*r[1]^2*r[2]+2*p^2*sigma*g[1]*r[0]*r[2]^2+p^2*sigma*g[1]*r[1]^2*r[2]+12*beta*f[0]*g[1]^2*r[1]*r[2]+12*beta*f[1]*g[1]^2*r[0]*r[2]+6*beta*f[1]*g[1]^2*r[1]^2+2*p^2*sigma*f[1]*r[0]*r[2]+p^2*sigma*f[1]*r[1]^2+6*beta*f[0]^2*g[1]*r[2]+12*beta*f[0]*f[1]*g[1]*r[1]+6*beta*f[1]^2*g[1]*r[0]-k^2*sigma*g[1]*r[2]+6*beta*f[0]^2*f[1]-k^2*sigma*f[1]-2*w*g[1]*r[2]-2*w*f[1] = 0

eq5 := 6*beta*g[1]^3*r[1]*r[2]^2+3*p^2*sigma*g[1]*r[1]*r[2]^2+6*beta*f[0]*g[1]^2*r[2]^2+12*beta*f[1]*g[1]^2*r[1]*r[2]+3*p^2*sigma*f[1]*r[1]*r[2]+12*beta*f[0]*f[1]*g[1]*r[2]+6*beta*f[1]^2*g[1]*r[1]+6*beta*f[0]*f[1]^2 = 0

eq6 := 2*beta*g[1]^3*r[2]^3+2*p^2*sigma*g[1]*r[2]^3+6*beta*f[1]*g[1]^2*r[2]^2+2*p^2*sigma*f[1]*r[2]^2+6*beta*f[1]^2*g[1]*r[2]+2*beta*f[1]^3 = 0

NULL

NULL

COEFFS := solve({eq0, eq1, eq2, eq3, eq4, eq5, eq6}, {p, f[0], f[1], g[1]}, explicit)

NULL

ode := 2*beta*U(xi)^3+(-k^2*sigma-2*w)*U(xi)+(diff(diff(U(xi), xi), xi))*p^2*sigma = 0

2*beta*U(xi)^3+(-k^2*sigma-2*w)*U(xi)+(diff(diff(U(xi), xi), xi))*p^2*sigma = 0

(2)

P := f[0]+sum(f[i]*R(xi)^i, i = 1 .. 1)+sum(g[i]*((diff(R(xi), xi))/R(xi))^i, i = 1 .. 1)

f[0]+f[1]*R(xi)+g[1]*(diff(R(xi), xi))/R(xi)

(3)

case1 := {p = -sqrt(2)*sqrt(sigma*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))/(sigma*(4*r[0]*r[2]-r[1]^2)), f[0] = -(k^2*sigma+2*w)*r[1]/sqrt(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w)), f[1] = -(2*(k^2*sigma+2*w))*r[2]/sqrt(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w)), g[1] = -sqrt(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))/(beta*(4*r[0]*r[2]-r[1]^2))}

{p = -2^(1/2)*(sigma*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)/(sigma*(4*r[0]*r[2]-r[1]^2)), f[0] = -(k^2*sigma+2*w)*r[1]/(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2), f[1] = -2*(k^2*sigma+2*w)*r[2]/(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2), g[1] = -(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)/(beta*(4*r[0]*r[2]-r[1]^2))}

(4)

NULL

``

(5)

K := diff(R(xi), xi) = r[0]+r[1]*R(xi)+r[2]*R(xi)^2

diff(R(xi), xi) = r[0]+r[1]*R(xi)+r[2]*R(xi)^2

(6)

S1 := subs(K, P)

f[0]+f[1]*R(xi)+g[1]*(r[0]+r[1]*R(xi)+r[2]*R(xi)^2)/R(xi)

(7)

NULL

C1 := subs(case1, S1)

-(k^2*sigma+2*w)*r[1]/(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)-2*(k^2*sigma+2*w)*r[2]*R(xi)/(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)-(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)*(r[0]+r[1]*R(xi)+r[2]*R(xi)^2)/(beta*(4*r[0]*r[2]-r[1]^2)*R(xi))

(8)

f := U(xi) = C1

U(xi) = -(k^2*sigma+2*w)*r[1]/(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)-2*(k^2*sigma+2*w)*r[2]*R(xi)/(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)-(-2*beta*(4*r[0]*r[2]-r[1]^2)*(k^2*sigma+2*w))^(1/2)*(r[0]+r[1]*R(xi)+r[2]*R(xi)^2)/(beta*(4*r[0]*r[2]-r[1]^2)*R(xi))

(9)

NULL

SO := subs(case1, ode)

2*beta*U(xi)^3+(-k^2*sigma-2*w)*U(xi)+2*(diff(diff(U(xi), xi), xi))*(k^2*sigma+2*w)/(4*r[0]*r[2]-r[1]^2) = 0

(10)

NULL

odetest(f, SO)


same_equation_different_parameter.mw

display([plottools[arc]([op(coordinates(Omega))], r, t .. t + Pi/2, color = red, t4), plottools[arc]([op(coordinates(Omega))], r, t + Pi .. t + (3*Pi)/2, color = coral, t4), plottools[arc]([op(coordinates(Omega))], r, t - Pi/2 .. t, color = cyan, t4), plottools[arc]([op(coordinates(Omega))], r, t + Pi/2 .. t + Pi, color = green, t4)],
draw([Cir(color = blue, t4), cir(color = grey, t4), sT(color = black, t4), XXp(color = black, l3), YYp(color = black, l3), L1(color = black, l3), L2(color = black, l3), N1(color = blue, symbol = solidcircle, symbolsize = 15), N2(color = blue, symbol = solidcircle, symbolsize = 15), N3(color = blue, symbol = solidcircle, symbolsize = 15), M1(color = blue, symbol = solidcircle, symbolsize = 15)]), axes = none, view = [-30 .. 10, -10 .. 10], size = [800, 800])::
plots:-animate(Proc, [t], t = 0 .. 2*Pi, frames = 30).;

why the instruction concerning the arcs is not resected ? Thank you.

restart

with(PDEtools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

with(DEtools)

NULL

with(DifferentialAlgebra)

"with(Student[ODEs][Solve]): "

with(IntegrationTools)

with(inttrans)

with(PDEtools)

with(Physics)

with(PolynomialTools)

with(RootFinding)

with(SolveTools)

with(LinearAlgebra)

with(sumtools)

pde := I*(diff(psi(x, t), t))+alpha*(diff(psi(x, t), `$`(x, 2)))+(beta[3]*abs(psi(x, t))+beta[4]*abs(psi(x, t))^2)*psi(x, t)+gamma*(diff(abs(psi(x, t))^2, `$`(x, 2)))*psi(x, t)/abs(psi(x, t)) = 0

case1 := {k = k, lambda = sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3], w = -(9*alpha*k^2*beta[4]+2*beta[3]^2)/(9*beta[4]), A[0] = -beta[3]/(3*beta[4]), A[1] = beta[3]/(3*beta[4]), B[1] = 0}

" psi(x,t):=U(xi)*exp(I*(-k*x+w*t+theta))"

proc (x, t) options operator, arrow, function_assign; U(xi)*exp(I*(-k*x+w*t+theta)) end proc

(2)

" U(xi):=-(beta[3] (cosh(xi)-sinh(xi)))/(3 beta[4] cosh(xi))"

proc (xi) options operator, arrow, function_assign; -(1/3)*beta[3]*(cosh(xi)-sinh(xi))/(beta[4]*cosh(xi)) end proc

(3)

convert(U(xi), trig)

-(1/3)*beta[3]*(cosh(xi)-sinh(xi))/(beta[4]*cosh(xi))

(4)

xi := sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3]*(2*alpha*kt+x)

(-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)

(5)

S := psi(x, t)

-(1/3)*beta[3]*(cosh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x))-sinh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)))*exp(I*(-k*x+t*w+theta))/(beta[4]*cosh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)))

(6)

solution := subs(case1, S)

-(1/3)*beta[3]*(cosh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x))-sinh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)))*exp(I*(-k*x-(1/9)*(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/beta[4]+theta))/(beta[4]*cosh((-1/(18*alpha*beta[4]+18*gamma*beta[4]))^(1/2)*beta[3]*(2*alpha*kt+x)))

(7)

pdetest(psi(x, t) = -beta[3]*(cosh(sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3]*(2*alpha*k+x))-sinh(sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3]*(2*alpha*k+x)))*exp(I*(-k*x-(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/(9*beta[4])+theta))/(3*beta[4]*cosh(sqrt(-1/(18*alpha*beta[4]+18*gamma*beta[4]))*beta[3]*(2*alpha*k+x)))*exp(I*(-k*x-(9*alpha*k^2*beta[4]+2*beta[3]^2)*t/(9*beta[4])+theta)), pde)

Error, (in pdetest) unable to determine the indeterminate function

 

NULL

 

 

 

 

Download pde-solve.mw

1 2 3 4 5 6 7 Last Page 3 of 40