Maple 2023 Questions and Posts

These are Posts and Questions associated with the product, Maple 2023

The standard way of writing quotes and double quotes in LaTeX is with `` and ''

So a string should be translated to Latex using ``the_string' '  and not ``the_string"  which is what Maple does.

see for example this  

 

For example, Maple translates  "regular" to

                "\text{``regular\"}"

It should be

                "\text{``regular' '}"

i.e. instead of closing it on the RIGHT with string quote  \"  it should close it with two upticks, like this ' '

Hard to see the differene here, so here is screen shot

s:="regular";
latex(s,output=string);
lprint(%)

The difference will show up depending on what font one is using. Here is an example below where when using different font, the effect is now visible. 

\documentclass[12pt]{book}
\usepackage{amsmath} 

\usepackage[T1]{fontenc}
\usepackage{mlmodern}

\begin{document}

\text{``regular"}

\text{``regular''}

\end{document}

The first one above is what Maple generates, the second one is what it should have been. Compiling with luatex gives this pdf, You can see clearly the difference now

It is important to note that this behavior shows depending on font used. For example, this code

\documentclass[12pt]{book}
\usepackage{amsmath} 
\begin{document}

\text{``regular"}

\text{``regular''}

\end{document}

When compiled gives

So to be safe, it is better to always use the standard  `` ....' '   and not `` .... \" because it then works the same for different fonts being used.

So, would it be possible to make Maple generate quoted string using the standard latex by closing it with ' ' instead of \"  ?  

 

 

the command singular can return results with _Z or _N as it says in help

The singular function may return expressions prefixed by _Z or _N, representing the integers and positive integers, respectively.
 

But it changes these letters by adding different number at the end for each call., Yet they all mean the same thing, which is an integer:

singular(1/sin(x),x)
                         {x = Pi*_Z1}

singular(x/sin(x),x)
                         {x = Pi*_Z2}

singular(x^2/sin(x),x)
                        {x = Pi*_Z3}

 

This makes it little hard when I try to make union of these results to only keep the unique singular points, since they are different symbols, yet they are really the same: integer times Pi.

Is there an option to tell Maple to use _Z for everything? And not keep adding new numbers each time it is called?

May be clear some internal memory table after each call?  Otherwise, I have to add more code to parse all these results and convert all _Znnn to just _Z  if it is there in each result, after each call is made.

Same issue for _N

Update

Additional example to try/test against

expr:=1/(sin(x)*cos(x)*tan(x));
s := singular(expr, x);

expr:=1/((x-1)*sin(x));
s := singular(expr, x);

expr:=1/(sin(x)*cos(x-Pi/3)*tan(x));
s := singular(expr, x);

In all the outputs above, I'd like to have same _Z show up. This will make it easier for postprocessing later on. Best solution will be to tell Maple itself not to change _Z if possible, otherwise one will need to add code to do this afterwords for all possible cases.

 

ODE for electrical circuit (right click on Documentblock, unselect show command does not work. Command still visble)u(t) = T*(diff(`ϕ`(t), t))+L*(diff(i(t), t))+i(t)*R

u(t) = T*(diff(varphi(t), t))+L*(diff(i(t), t))+i(t)*R

(1)

 

ODE for motor (toggle Documentblock, unselect show command is only effective on equations  3 and 4)i(t)*T = J*(diff(`ϕ`(t), t, t))

i(t)*T = J*(diff(diff(varphi(t), t), t))

(2)

Isolate i(t) and taking the derivative

i(t) = J*(diff(diff(varphi(t), t), t))/T

(3)

``

diff(i(t), t) = J*(diff(diff(diff(varphi(t), t), t), t))/T

(4)

``

Download Document_Block_hide_command.mw

in Maple 2023 one can do File->Open and select an .mpl file and that will automatically open in new window using code editor.  see Maple2023-CodingTools.pdf

One problem I saw right away on windows 10, is that the diagonstic window has funny character at the end of the messages. Here is screen shot

 

To see if you reproduce this, here is the code I used. Simply save this in foo.mpl file and then use Maple file->open to open it (must use 2023 only for this to work)

A_class :=module()
    option object;

    #my variable
    export c::integer;

    export a::integer;

end module;

 

That is not all. If I simply shift the code up so the starting line in the file is not empty as above, the funny characters change to something else

 

 

Yet, it is the same exact code.  Can any one confirm this problem, and how to fix it so one can read the variable name?

 

I think I will stick to using notepad++ for my .mpl files for now.

 

Hi MaplePrimes,

I've updated to the 2023 version of Maple. After the update I chose to remove older version folders in Windows.

Since then I cant't use my tasks any longer. I've re created the tasks and the are also shown in the Task Palette, but clicking on a task results in nothing. I can though create a new Task and after the creation all my tasks can then be used again.

Its like Maple doesn't recognize the correct Help Database from the beginning. I've reinstalled Maple 2023 two or three times to try to reset the whole installation to something from scratch. Nothing that I do seems to produce the desired result. Does anybody out there have a solution or suggestion to a probable solution?

I don't know of any file that I could attach to exemplify my problem. It's not a math/maple problem relating directly to the maple code language. My tasks themselves work fine once inserted in a document. It's the insertion itself that's the problem.

Thanks.

I always run with the option "create a new engine for each document". which is a very nice feature in Maple.

The problem is that, when I have say 5 worksheets open and running, and one of them them hangs, I need to kill mserver.,exe from the task manager which is running this worksheet. 

most of the times I end up killing the wrong mserver.exe. I can sometimes guess by the CPU it is using. But if I have two running with high CPU it is not possible guess.

There is no ID or anything associated with the name. It will be nice if each process has in its name an ID which is also displayed in the worksheet bottom bar so one knows. This ID could be simply some random number. So the display will show  mserver-13847,exe ,   mserver-82739,exe and so on. And this name will be automtically displayed at the bottom bar of the worksheet where all time used, cpu used and memory used and so on is now displayed.  This will be a nice feature to add to Maple.  

If this is not possible, how about just displaying the PID (process ID)  of the mserver.exe connected to the worksheet in the bottom bar? This will also work, as task manager/details lists a processes with the PID there, so it will make it easy to find.

Meanwhile, while waiting for Maple 2033 to hopefully implement this feature, does anyone know of a method to help find which mserver.,exe is connected to which specific worksheet?

Windows 10.

Do others see this problem? I do not understand what is going on. I am seeing this problem on many integrals

restart;
int(integrand)
   #Large output displayed
   #echo the input
int(...)
    #Large output displayed
    #echo the input 
int(...)
    #echo the input only. Large output gone
int(...)
   #echo the input only. Large output gone

restart;
int(...)
   #Large output displayed
   #echo the input 
int(...)
   #echo the input only. Large output gone
int(...)
   #echo the input only. Large output gone

In all the above, it is the same command used.

i.e. first time (sometimes needs two times), Maple displays large out. But looking at the end of this output, the very last line, we see the same integral/command is returned.

But second time and any attempt after that, it no longer gives that large output, but returns back/echos the command on the screen only.

Attached is worksheet showing this. This is new behaviour in Maple 2023 and I am baffled by it. Do others see it? Why does it happen. I will report it if others confirm it. I just wanted to make sure first it is not just me seeing this. 

Is it possible the large output is side effect and is being printed by error to the screen by internal Maple code? But why does it stop the second/third time?
 

interface(version);

`Standard Worksheet Interface, Maple 2023.0, Windows 10, March 6 2023 Build ID 1689885`

restart;

int((b*g*x+a*g)^2/(A+B*ln(e*(b*x+a)/(d*x+c))),x)

(a*d-b*c)*e*d*g^2*(a^2*d^2-2*a*b*c*d+b^2*c^2)*((1/6)*(2*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2-6*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)+6*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)^2+4*A*B*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)-12*A*B*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)+12*A*B*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2-3*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)+7*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)-4*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2+2*A^2*b^2*e^2-6*A^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+6*A^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2-3*A*B*b^2*e^2+7*A*B*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)-4*A*B*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2+2*B^2*b^2*e^2-4*B^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+2*B^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2)/((-((a*d-b*c)*e*_z/d+b*e/d)*d+e*b)^3*(A+B*ln((a*d-b*c)*e*_z/d+b*e/d))^3*d^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln((a*d-b*c)*e*_z/d+b*e/d)))

e*(a*d-b*c)^3*d^3*((1/6)*(2*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2-6*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)+6*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)^2+4*A*B*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)-12*A*B*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)+12*A*B*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2-3*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)+7*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)-4*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2+2*A^2*b^2*e^2-6*A^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+6*A^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2-3*A*B*b^2*e^2+7*A*B*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)-4*A*B*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2+2*B^2*b^2*e^2-4*B^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+2*B^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2)/((-((a*d-b*c)*e*_z/d+b*e/d)*d+e*b)^3*(A+B*ln((a*d-b*c)*e*_z/d+b*e/d))^3*d^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln((a*d-b*c)*e*_z/d+b*e/d)))

-g^2*((1/6)*(2*B^2*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2-6*B^2*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+6*B^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+4*A*B*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)-12*A*B*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+12*A*B*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2-3*B^2*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)+7*B^2*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)-4*B^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+2*A^2*b^2*e^2-6*A^2*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+6*A^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2-3*A*B*b^2*e^2+7*A*B*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)-4*A*B*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+2*B^2*b^2*e^2-4*B^2*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+2*B^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2)*e*(a*d-b*c)^3/((e*b-e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b))^3*(A+B*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d))^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d))*d^3*e*(a*d-b*c)^3)/d^3

e*(a*d-b*c)*d*(a^2*d^2-2*a*b*c*d+b^2*c^2)*((1/6)*(2*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2-6*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)+6*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)^2*((a*d-b*c)*e*_z/d+b*e/d)^2+4*A*B*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)-12*A*B*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)+12*A*B*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2-3*B^2*b^2*e^2*ln((a*d-b*c)*e*_z/d+b*e/d)+7*B^2*b*d*e*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)-4*B^2*d^2*ln((a*d-b*c)*e*_z/d+b*e/d)*((a*d-b*c)*e*_z/d+b*e/d)^2+2*A^2*b^2*e^2-6*A^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+6*A^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2-3*A*B*b^2*e^2+7*A*B*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)-4*A*B*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2+2*B^2*b^2*e^2-4*B^2*b*d*e*((a*d-b*c)*e*_z/d+b*e/d)+2*B^2*d^2*((a*d-b*c)*e*_z/d+b*e/d)^2)/((-((a*d-b*c)*e*_z/d+b*e/d)*d+e*b)^3*(A+B*ln((a*d-b*c)*e*_z/d+b*e/d))^3*d^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln((a*d-b*c)*e*_z/d+b*e/d)))

-((1/6)*(2*B^2*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2-6*B^2*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+6*B^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+4*A*B*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)-12*A*B*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+12*A*B*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2-3*B^2*b^2*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)+7*B^2*b*e^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)-4*B^2*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d)*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+2*A^2*b^2*e^2-6*A^2*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+6*A^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2-3*A*B*b^2*e^2+7*A*B*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)-4*A*B*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2+2*B^2*b^2*e^2-4*B^2*b*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)+2*B^2*e^2*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)^2)*e*(a*d-b*c)^3/((e*b-e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b))^3*(A+B*ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d))^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a-3*B^2*_a+A^2-3*A*B+3*B^2)/((B*_a+A)^4*d^3*(e*b-exp(_a)*d)), _a = ln(e*(a*d/(_z*d+c)-b*c/(_z*d+c)+b)/d))*d^3*e*(a*d-b*c)^3)/d^3

int((b*g*x+a*g)^2/(A+B*ln(e*(b*x+a)/(d*x+c))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-(a*d-b*c)*e^3*b*g^2*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(-(1/6)*(2*B^2*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)+2*B^2*b^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)*(-(a*d-b*c)*e*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(-(a*d-b*c)*e*_z/b+d*e/b)*(-(a*d-b*c)*e*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(-(a*d-b*c)*e*_z/b+d*e/b)^2-5*A*B*b*d*e*(-(a*d-b*c)*e*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(-(a*d-b*c)*e*_z/b+d*e/b)^2-4*B^2*b*d*e*(-(a*d-b*c)*e*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(-(a*d-b*c)*e*_z/b+d*e/b))^3*b*((-(a*d-b*c)*e*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(-(a*d-b*c)*e*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

(-a*d+b*c)^3*e^3*b*(-(1/6)*(2*B^2*d^2*e^2*ln((-a*d+b*c)*e*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln((-a*d+b*c)*e*_z/b+d*e/b)+2*B^2*b^2*ln((-a*d+b*c)*e*_z/b+d*e/b)*((-a*d+b*c)*e*_z/b+d*e/b)^2-5*B^2*b*d*e*ln((-a*d+b*c)*e*_z/b+d*e/b)*((-a*d+b*c)*e*_z/b+d*e/b)+3*B^2*d^2*e^2*ln((-a*d+b*c)*e*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*((-a*d+b*c)*e*_z/b+d*e/b)^2-5*A*B*b*d*e*((-a*d+b*c)*e*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*((-a*d+b*c)*e*_z/b+d*e/b)^2-4*B^2*b*d*e*((-a*d+b*c)*e*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln((-a*d+b*c)*e*_z/b+d*e/b))^3*b*(((-a*d+b*c)*e*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln((-a*d+b*c)*e*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-g^2*((1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)+2*B^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-5*B^2*d*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+3*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)+2*A^2*d^2*e^2+2*A*B*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-5*A*B*d*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+3*A*B*d^2*e^2+2*B^2*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-4*B^2*d*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+2*B^2*d^2*e^2)*e*(a*d-b*c)^3/(d^2*(A+B*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b))^3*(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)-d*e)^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b))*b*(a*d-b*c)^3*e^3)/b

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-(a*d-b*c)*e^3*b*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(-(1/6)*(2*B^2*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)+2*B^2*b^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)*(-(a*d-b*c)*e*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(-(a*d-b*c)*e*_z/b+d*e/b)*(-(a*d-b*c)*e*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(-(a*d-b*c)*e*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(-(a*d-b*c)*e*_z/b+d*e/b)^2-5*A*B*b*d*e*(-(a*d-b*c)*e*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(-(a*d-b*c)*e*_z/b+d*e/b)^2-4*B^2*b*d*e*(-(a*d-b*c)*e*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(-(a*d-b*c)*e*_z/b+d*e/b))^3*b*((-(a*d-b*c)*e*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(-(a*d-b*c)*e*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-((1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)+2*B^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-5*B^2*d*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+3*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b)+2*A^2*d^2*e^2+2*A*B*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-5*A*B*d*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+3*A*B*d^2*e^2+2*B^2*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)^2-4*B^2*d*e^2*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)+2*B^2*d^2*e^2)*e*(a*d-b*c)^3/(d^2*(A+B*ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b))^3*(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)-d*e)^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d/(_z*b+a)+b*c/(_z*b+a)+d)/b))*b*(a*d-b*c)^3*e^3)/b

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

restart;

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-e^3*(a*d-b*c)*b*g^2*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(-(1/6)*(2*B^2*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)+2*B^2*b^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)*(-e*(a*d-b*c)*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(-e*(a*d-b*c)*_z/b+d*e/b)*(-e*(a*d-b*c)*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(-e*(a*d-b*c)*_z/b+d*e/b)^2-5*A*B*b*d*e*(-e*(a*d-b*c)*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(-e*(a*d-b*c)*_z/b+d*e/b)^2-4*B^2*b*d*e*(-e*(a*d-b*c)*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(-e*(a*d-b*c)*_z/b+d*e/b))^3*b*((-e*(a*d-b*c)*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(-e*(a*d-b*c)*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

e^3*(-a*d+b*c)^3*b*(-(1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d+b*c)*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d+b*c)*_z/b+d*e/b)+2*B^2*b^2*ln(e*(-a*d+b*c)*_z/b+d*e/b)*(e*(-a*d+b*c)*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(e*(-a*d+b*c)*_z/b+d*e/b)*(e*(-a*d+b*c)*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(e*(-a*d+b*c)*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(e*(-a*d+b*c)*_z/b+d*e/b)^2-5*A*B*b*d*e*(e*(-a*d+b*c)*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(e*(-a*d+b*c)*_z/b+d*e/b)^2-4*B^2*b*d*e*(e*(-a*d+b*c)*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(e*(-a*d+b*c)*_z/b+d*e/b))^3*b*((e*(-a*d+b*c)*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d+b*c)*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-g^2*((1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)+2*B^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-5*B^2*d*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+3*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)+2*A^2*d^2*e^2+2*A*B*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-5*A*B*d*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+3*A*B*d^2*e^2+2*B^2*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-4*B^2*d*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+2*B^2*d^2*e^2)*e*(a*d-b*c)^3/(d^2*(A+B*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b))^3*(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)-d*e)^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b))*b*(a*d-b*c)^3*e^3)/b

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-e^3*(a*d-b*c)*b*(a^2*d^2-2*a*b*c*d+b^2*c^2)*(-(1/6)*(2*B^2*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)^2+4*A*B*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)+2*B^2*b^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)*(-e*(a*d-b*c)*_z/b+d*e/b)^2-5*B^2*b*d*e*ln(-e*(a*d-b*c)*_z/b+d*e/b)*(-e*(a*d-b*c)*_z/b+d*e/b)+3*B^2*d^2*e^2*ln(-e*(a*d-b*c)*_z/b+d*e/b)+2*A^2*d^2*e^2+2*A*B*b^2*(-e*(a*d-b*c)*_z/b+d*e/b)^2-5*A*B*b*d*e*(-e*(a*d-b*c)*_z/b+d*e/b)+3*A*B*d^2*e^2+2*B^2*b^2*(-e*(a*d-b*c)*_z/b+d*e/b)^2-4*B^2*b*d*e*(-e*(a*d-b*c)*_z/b+d*e/b)+2*B^2*d^2*e^2)/(d^2*e^2*(A+B*ln(-e*(a*d-b*c)*_z/b+d*e/b))^3*b*((-e*(a*d-b*c)*_z/b+d*e/b)*b-d*e)^3)-(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(-e*(a*d-b*c)*_z/b+d*e/b)))

Warning, if e is meant to be the exponential e, use command/symbol completion or palettes to enter this special symbol, or use the exp function

-((1/6)*(2*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)^2+4*A*B*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)+2*B^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-5*B^2*d*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+3*B^2*d^2*e^2*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b)+2*A^2*d^2*e^2+2*A*B*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-5*A*B*d*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+3*A*B*d^2*e^2+2*B^2*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)^2-4*B^2*d*e^2*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)+2*B^2*d^2*e^2)*e*(a*d-b*c)^3/(d^2*(A+B*ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b))^3*(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)-d*e)^3)+(1/3)*intat(B*(B^2*_a^2+2*A*B*_a+3*B^2*_a+A^2+3*A*B+3*B^2)/(d^2*e^2*(B*_a+A)^4*b*(exp(_a)*b-d*e)), _a = ln(e*(-a*d/(_z*b+a)+c*b/(_z*b+a)+d)/b))*b*(a*d-b*c)^3*e^3)/b

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))),x)

int((b*g*x+a*g)^2/(A+B*ln(e*(d*x+c)/(b*x+a))), x)

 

 


 

Download int_stops_working_march_11_2023.mw

 

Update

Do you want to see something more bizzar? Try this command on same integral

restart;
res:=int((b*g*x+a*g)^2/(A+B*ln(e*(b*x+a)/(d*x+c))),x,method=_RETURNVERBOSE)

It prints to the screen results with ~ all over. But this seems to be internal leaked output and not part of the actual output returned.

By issuing the command as follows instead

restart;
res:=int((b*g*x+a*g)^2/(A+B*ln(e*(b*x+a)/(d*x+c))),x,method=_RETURNVERBOSE):

notice the at the end!  I still see the same output as above printed displayed.

This tells me this is a leaked printout from an internal integration function.

Could others confirm this?

First issue I see in Maple 2023 integrate

Example 1

restart;
int( (e*x+d)^(3/2)*(c*x^2+a)^(3/2),x)

Example 2

restart;
int((1+x)^(3/2)*(x^2-x+1)^(3/2),x);

Example 3

restart;
int((c*x^4+b*x^2)^(3/2)/x^(3/2),x)

 

Worksheet below for 2023 and also for 2022.2 showing this did not have this problem in 2022.2. Internally for me, this cause other problem when post-processing this, that is why I found it. Any one knows what caused it?  Maple 2022.2 result is much longer, but it does have this "undefined" issue in the result.


 

interface(version);

`Standard Worksheet Interface, Maple 2023.0, Windows 10, March 6 2023 Build ID 1689885`

restart;

int( (e*x+d)^(3/2)*(c*x^2+a)^(3/2),x)

(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*undefined*x*(3*c*e*x^3+4*c*d*x^2+6*a*e*x+12*a*d)/(c*e*x^3+c*d*x^2+a*e*x+a*d)^(1/2)

restart;

int((1+x)^(3/2)*(x^2-x+1)^(3/2),x);

(1+x)^(1/2)*(x^2-x+1)^(1/2)*undefined*x*(x^3+4)/(x^3+1)^(1/2)

restart;

int((c*x^4+b*x^2)^(3/2)/x^(3/2),x)

undefined*(c*x^2+2*b)*(c*x^4+b*x^2)^(3/2)/(x^(1/2)*(c*x^2+b)*(x*(c*x^2+b))^(1/2))

 


 

Download bug_3_maple_2023_int_march_10_2023.mw

 

interface(version);

`Standard Worksheet Interface, Maple 2022.2, Windows 10, October 23 2022 Build ID 1657361`

restart;

int( (e*x+d)^(3/2)*(c*x^2+a)^(3/2),x)

(2/1155)*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*(372*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c*a^3*d*e^6+245*x^6*c^4*d*e^6+300*x^5*a*c^3*e^7+145*x^5*c^4*d^2*e^5-x^4*c^4*d^3*e^4+255*x^3*a^2*c^2*e^7+2*x^3*c^4*d^4*e^3+8*x^2*c^4*d^5*e^2+60*x*a^3*c*e^7+360*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^2*a^2*d^3*e^4-12*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^3*a*d^5*e^2-16*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*c^3*d^6*e-432*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c*a^3*d*e^6-336*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^2*a^2*d^3*e^4+112*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^3*a*d^5*e^2+766*x^4*a*c^3*d*e^6+16*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticE((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*c^4*d^7+60*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*a^3*e^7+518*x^3*a*c^3*d^2*e^5+581*x^2*a^2*c^2*d*e^6+46*x^2*a*c^3*d^3*e^4+373*x*a^2*c^2*d^2*e^5+2*x*a*c^3*d^4*e^3+60*a^3*c*d*e^6+47*a^2*c^2*d^3*e^4+8*a*c^3*d^5*e^2+105*x^7*c^4*e^7-24*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*a^2*c*d^2*e^5-100*(-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2)*((-x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e+d*c))^(1/2)*((x*c+(-c*a)^(1/2))*e/((-c*a)^(1/2)*e-d*c))^(1/2)*EllipticF((-(e*x+d)*c/((-c*a)^(1/2)*e-d*c))^(1/2), (-((-c*a)^(1/2)*e-d*c)/((-c*a)^(1/2)*e+d*c))^(1/2))*(-c*a)^(1/2)*a*c^2*d^4*e^3)/(c^2*e^5*(c*e*x^3+c*d*x^2+a*e*x+a*d))

restart;

int((1+x)^(3/2)*(x^2-x+1)^(3/2),x);

-(1/55)*(1+x)^(1/2)*(x^2-x+1)^(1/2)*(-10*x^7+(27*I)*3^(1/2)*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2), (-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))-81*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2), (-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))-38*x^4-28*x)/(x^3+1)

 


 

Download maple_2022_int_march_10_2023.mw

When will the PDF Maple User Manual be released for Maple 2023. Also I hope the Programming guide is updated too as it is still at 2020.

I know that this is not really a question regarding core Maple package, but I am running into problems during the installation process.

After having upgraded Maple networktools as mentioned, I am unable to run the activation program due to an error.

"Java Virtual Machine Launcher: Error: Could not create the Java Virtual Machine."

I've never had that problem before in previous versions. There was no Java installed on the (virtual) server, so I installed the latest OpenJDK to check if that solved the problem.

Unfortunately it didn't.

Any hints would be appreciated.

Windows Server 2012R2

My main question is: How to change the font used in worksheet by Maple for 1D input from Courier to another font say times new roman? Is there a setting for this so it applies all the time?

ps. I found Can-I-Change-the-Default-Fonts-or-Style-for-Maple-Worksheets-and-Documents?language=en_US  (very hard to follow and confusing, but it seems that is only way to fix this problem now is to change the default font).

-----------------------------------------------------------------------------------------------------------------

I noticed strange font problem using Maple 2023 on windows 10. This problem does not show on Maple 2022.2 (at least I do not think I've seen it or noticed it before). 

Variables with _ between the names, will have the underscore not display sometimes as I move the cursor around (movie at end).

When scrolling back up, the underscores no longer become visible. 

But as I move the cursor over the variable name which containes the underscore, they will now show up.

I am sure this is a font issue. The zoom is set at 100%. I made no changes at all other than making the input 1D math as I normally do and set the default to worksheet. Some of my setting are below.

This could be a DPI issue settings of some sort. My monitor is standard monitor (not a 4K one) and again, I have not changed any settings on my PC after I installed