Question: How do I solve two PDEs together while they are not simple?


Dear users,

In my attached file I have two PDES, (PDE1 and PDE2). PDE1 is a function of v(t) and w(x,t) and PDE2 is also a function of v(t) and w(x,t). I can solve PDE2 if I say v(t) is 1 for example and you can see the plot. But what if I put v(t) back in PDE2 and want to find v(t) and w(x,t) from PDE1 and PDE2 together? 

Many Thanks,

Baharm31

 

Define PDE Euler-Bernoulli Beam

 

NULL

restart:

Parametrs of piezoelectric and cantilever beam

 

``

Ys := 70*10^9: # Young's Modulus structure

Yp := 11.1*10^10: # Young's Modulus pieazo

ha := -0.00125: # Position

hb := 0.001: # Position

hc := 0.0015: # Position

d31 := -180*10^(-12): # Piezoelectric constant

b := 0.01: #Width of the beam

tb := 0.002:

epsilon33 := 15.92*10^(-9):

hp :=0.00025: # Position

hpc := 0.00125: # Position

YI := b*(Ys*(hb^3- ha^3)+Yp*(hc^3-hb^3))/3: # Bending stiffness of the composit cross section

cs := 0.564: # The equivqlent coefficient of strain rate damping

ca := 0: # Viscous air damping coefficient

Ibeam := (b * tb^3 )/12: # The equivalent moment of inertia

m := 0.101: # Mass of the structure

upsilon := - Yp*d31*b*(hc^2-hb^2)/(2*hp): # Coupling term

lb := 0.57:# Length of the structure (Cantilever Beam)

lp := 0.05:# Length of the Piezoelectric

R:= 10000: # Shunted resistor

Electrical circuit equation

 

PDE1:=(epsilon33 * b*lp / hp) * diff(v(t), t) + (v(t)/R)+ int(d31*Yp*hpc*b* diff(w(x, t),$(x, 2))*diff(w(x, t), t),x = 0..lp)=0;

0.3184000000e-7*(diff(v(t), t))+(1/10000)*v(t)+int(-0.2497500000e-3*(diff(diff(w(x, t), x), x))*(diff(w(x, t), t)), x = 0 .. 0.5e-1) = 0

(1.1.1.1)

``

 

PDE Equation

 

fn := 3.8:# Direct Excitation frequency;

wb(x,t) := 0.01*sin(fn*2*Pi*t):#Direct Excitation;

plot(wb(x,t),t = 0 .. 0.25*Pi,labels = [t,wb], labeldirections = ["horizontal", "vertical"], labelfont = ["HELVETICA", 15], linestyle = [longdash], axesfont = ["HELVETICA", "ROMAN", 10], legendstyle = [font = ["HELVETICA", 10], location = right],color = black);

 

 

FunctionAdvisor(definition, Dirac(n,x));

[Dirac(n, x) = (1/2)*(Int((I*_k1)^n*exp(I*_k1*x), _k1 = -infinity .. infinity))/Pi, `with no restrictions on `(n, x)]

(1.2.1)

 

PDE2 := YI*diff(w(x, t),$(x, 4))+ cs*Ibeam*diff(w(x, t),$(x, 4))*diff(w(x, t), t)+ ca* diff(w(x, t), t) + m * diff(w(x, t),$(t, 2))+ upsilon*v(t)*(Dirac(1,x) -Dirac(1,x-lp) ) =-m*diff(wb(x, t),$(t, 2))-ca*diff(wb(x, t), t);#PDE

1.567812500*(diff(diff(diff(diff(w(x, t), x), x), x), x))+0.3760000000e-11*(diff(diff(diff(diff(w(x, t), x), x), x), x))*(diff(w(x, t), t))+.101*(diff(diff(w(x, t), t), t))+0.4995000000e-3*Dirac(1, x)-0.4995000000e-3*Dirac(1, x-0.5e-1) = 0.583376e-1*sin(7.6*Pi*t)*Pi^2

(1.2.2)

tmax := 0.3:

xmin := 0:

xmax := lb:

N := 20:#NUMBER OF NODE POINT

bc1 := dw(xmin, t) = 0:

bc2 := dw(xmax, t) = 0:

bc3 := w(xmin, t) = 0:

ic1 := wl(x, 0) = 0:

Maple's pdsolve command

 

 

 

bcs := { w(x,0)=0 , D[2](w)(x,0)=0 , w(0, t) = rhs(bc1), D[1](w)(0, t)= rhs(bc1), D[1,1](w)(lb,t) = rhs(bc2), D[1,1,1](w)(lb,t) = rhs(bc2)}; # Boundary conditions for PDE2.

{w(0, t) = 0, w(x, 0) = 0, (D[1](w))(0, t) = 0, (D[2](w))(x, 0) = 0, (D[1, 1](w))(.57, t) = 0, (D[1, 1, 1](w))(.57, t) = 0}

(2.1)

PDES := pdsolve(PDE2, bcs, numeric, time = t, range = 0 .. xmax, indepvars = [x, t], spacestep = (1/1000)*xmax, timestep = (1/1000)*tmax);

 

module () local INFO; export plot, plot3d, animate, value, settings; option `Copyright (c) 2001 by Waterloo Maple Inc. All rights reserved.`; end module

(2.2)

PDES:-plot3d(t = 0 .. tmax, x = 0 .. xmax, axes = boxed, orientation = [-120, 40], shading = zhue, transparency = 0.3);

 

 

NULL


Download Euler-Bernoulli_Beam-last_version.mw

Please Wait...